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Abstract. In this paper, we introduce the edge versions of reverse Wiener numbers eRW  
and eCW  due to distances matrices eRD  and eCD . Next, we conclude several results 
about the relations among them and edge Wiener numbers. Also, we compute the edge 
reverse Wiener numbers of some familiar graphs such as trees, cycles, complete graphs 
and nanotubes. 

 
 
1. Introduction 

   The structure of a chemical compound is usually modeled as a polygonal shape, which is 

often called the molecular graph of this compound. It has been found that many properties of a 

chemical compound are closely related to some topological indices of its molecular graph.    

Among these topological indices, the Wiener number is probably the most important one [8]. 

   The Wiener number is a distance-based graph invariant, used as one of the structure 

descriptors for predicting physicochemical properties of organic compounds (often those 

significant for pharmacology, agriculture, environment protection, etc.). The Wiener index 

was introduced by the chemist H. Wiener about 60 years ago to demonstrate correlations 

between physicochemical properties of organic compounds and the topological structure of 

their molecular graphs. This concept has been one of the most widely used descriptors in 
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relating a chemical compound’s properties to its molecular graph. Therefore, in order to 

construct a compound with a certain property, one may want to build some structure that has 

the corresponding Wiener number [8]. 

  In addition to the myriad applications of the Wiener number in chemistry there are many 

situations in communication, facility location, cryptology, etc., that are effectively modeled by 

a connected graph G satisfying certain restrictions [2]. The biochemical community has been 

using the Wiener number to correlate a compound’s molecular graph with experimentally 

gathered data regarding the compound’s characteristics. In the drug design process, one wants 

to construct chemical compounds with certain properties. The basic idea is to construct 

chemical compounds from the most common molecules so that the resulting compound has 

the expected Wiener number. Compounds with different structures (and different Wiener 

indices), even with the same chemical formula, can have different properties. Hence it is 

indeed important to study the structure (and thus also the Wiener number) of the molecular 

graph besides the chemical formula [8]. 

 

        The ordinary Wiener number (or vertex-Wiener number) is defined as the sum of all 

distances in the hydrogen-depleted graph [9]. The distance ijd  between two graph vertices iv  

and jv  is the number of edges along the shortest path between these two vertices. The matrix 

which has as entries ijd  (topological distances) is called the distance matrix D  of the graph. 

Then, the vertex-Wiener number for a graph G  with n  vertices, defined as:  

��
� �

�
n

i

n

j
ijv dGW

1 12
1)(  

From the close relationship between the Wiener number and the chemical properties of a 

compound, some generalizations of Wiener index are proposed. The vertex reverse Wiener 

number introduced by Alexandru T. Balanan and et al. in [1]. They defined at first the 

distance matrix � �vRD  as follow: 

The diameter )(G� of a graph is the largest distance between any two vertices (i.e. 

� �( ) max , ( ),ijG d i j V G i j� � � � ). Starting from the distance matrix and subtracting from )(G� each 

ijd value, one obtains a new symmetrical matrix which, like the distance matrix, has zeroes on 

the main diagonal and, in addition, at least a pair of zeroes off the main diagonal 

corresponding to the diameter in the distance matrix RD , then: 
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where ijd is the ij -th element of the distance matrix D  which is equal to the graph distance 

between vertices iv  and jv  on the shortest path between them. Therefore, the reverse vertex-

Wiener number for a graph G  with n  vertices, defined as:  
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The vertex complementary distance matrix )(GCDCD vv � of a graph G with n vertices is the 

square  nn�  symmetric matrix whose elements are defined as [5]: 
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It can be observed that all entries in the reverse vertex-Wiener matrix vRD  are lower by 1 than 

those in the vertex complementary distance matrix vCD . 

In this paper, the edge versions of reverse Wiener matrix RD  and complementary distance 

matrix CD  have been defined. And according to these matrices, the edge version of reverse 

Wiener number eRW  and the edge Wiener index with edge complementary distance matrix 

eCD  have been introduced. Also, by finding the relation among them we conclude them for 

some graphs such as trees which are very important in chemistry. 

 
2. Definitions 

At first, we repeat the distances between edges in a graph which have been introduced in 

[3].  

 

Definition 2-1. Let )(),(),,( GEyxfvue ��� and d be the distance between vertices on 

shortest path. The distances between each two edges xye �  and uvf � are 

�
�
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where � �),(),,(),,(),,(min),(1 vyduydvxduxdfed �  and � �),(),,(),,(),,(max),(2 vyduydvxduxdfed � . 

According to these distances, we have: 
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Definition 2-2. The edge reverse Wiener matrix defined as follow: 

� � � �
�
�
�

�
���

�
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jiDG

RD ijkk
ijk ,0

,)(
 

where kD , 0,4k � , are the edge distance matrices which have entries � �ijkd , � � ijkD is the ij -

th element of the edge distance matrix kD which is equal to distance kd  between edges ie  and

je , and  � �
�
�
�

�
�
�

���� jiGEijdG ijkk ),(,max)( . At following for convenience, we use the 

notation ),( jiRDk  instead of � �ijkRD . 

 

 

Definition 2-3. The reverse edge-Wiener numbers for a graph G  with m edges, are 

� ���
� �

�
m

i

m

j
ijkek RDRW

1 12
1 ,  

where 0,4k � . Also, we can restate 
� �
�
 

�
)(,
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GEji

kek jiRDRW . 

 

 

Definition 2-4. The edge complementary distance matrix )(GCDCD kk � of a graph G  with 

m edges is the square mm�  symmetric matrix whose elements are  
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where 0,4k � . At following for convenience, we use the notation ),( jiCDk  instead of 

� �ijkCD . 

 

 

Corollary 2-5. All entries in the reverse edge-Wiener matrices ekRW  are lower by 1 than 

those in the edge complementary distance matrix kCD  for corresponding , 0,4.k k �  

 

Definition 2-6. The edge complementary Wiener numbers of a graph G  with m edges, 

according to edge complementary distance matrix kCD , 4,0�k , are 
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Also, we can restate 
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3. Some alternative approaches  

The edge-Wiener numbers introduced for a graph G  in [3], according to distances

, 0,4kd k � , are as follow: 
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Now, we conclude the relations between edge reverse Wiener numbers and edge Wiener 

numbers. 

 

Theorem 3-1. Let G  be a graph with m  edges. Then we have 
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where 4,0�k . 

 

Proof. Due to the definition of edge reverse Wiener numbers, we have 
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                                                                                                                                       □ 

Also, the relations between edge complementary Wiener numbers and edge Wiener numbers 

are stated in the following theorem. 
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Theorem 3-2. Let G  be a graph with m  edges. Then we have 
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where 4,0�k . 

 

Proof. Due to the definition of edge complementary Wiener numbers, we have 
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                                                                                                                                       □ 

In addition, the relation between edge complementary Wiener numbers and edge reverse 

Wiener numbers are stated in the following Theorem. 

  

Result 3-3. Let G  be a graph with m  edges. Then we have 
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where 4,0�k . 

 

Proof. Due to the definition of edge complementary Wiener numbers, we have 
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4. Computations 

The reason why we computed the edge reverse Wiener numbers and edge complementary 

Wiener numbers for graphs such as trees in this section is because there is an obvious analogy 

between the structural formulas used in chemistry and graphs.  Since the majority of the 

chemical applications of the Wiener number deal with chemical compounds that have acyclic 

organic molecules, whose molecular graphs are trees and, actually, most of the prior work on 

Wiener numbers deals with trees [2]. When the graph is restricted to trees, the problem is 

more complicated [8]. In view of this, it is not surprising that in the chemical literature there 

are numerous studies of properties of the Wiener numbers of trees. Therefore, in this section, 

firstly, we start our computation by computing the edge reverse Wiener numbers and edge 

complementary Wiener numbers for trees. 

In [2], the first edge Wiener number of tress stated by terms of Wiener number.  

 
Theorem 4-1. Let T be a tree with n vertices. Then, the first edge-Wiener number of T is 

0 ( ) ( )
2e v

n
W T W T � �

� �� �
� 


. 

Also the relation between first and second edge Wiener numbers is mentioned in [4]. 

 
Lemma 4-2. The relation between different versions of edge-Wiener numbers for a tree T 

with n vertices is 

4 0

1
( ) ( )

2e e

n
W T W T

�� �
� �� �

� 

 

Therefore, in the following theorem we state the edge reverse Wiener numbers and edge 

complementary Wiener numbers of trees. 

 
Theorem 4-3. The edge reverse Wiener numbers and edge complementary Wiener numbers 

of trees in terms of Wiener number are 

1. 0 0
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where 0,4.k �  

 

Proof. Let T be a tree with n vertices. According to Theorems (3-1, 3-2, 4-1) and Lemma (4-

2), we can concluded the desire results as follows. 
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□ 

In following, we compute the edge reverse Wiener numbers and edge complementary Wiener 

numbers for some well known graphs such as Paths, Stars, Cycles, Complete graphs, Bipartite 

graphs and )(84 SCTUC  nanotubes. 

 

Theorem 4-4. The edge reverse Wiener numbers of paths nP , stars nS , cycles nC , complete 

graphs nK  and bipartite graphs baK ,  are 

1. )3)(2)(1(
3
1)(0 ���� nnnPRW ne           ;   )3)(2)(1(

3
1)(4 ���� nnnPRW ne  

2. 0)(0 �ne SRW                                          ;    0)(4 �ne SRW  
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Proof. We compute the ( )ekW G  and ( )k G�  where 4,0�k for mentioned graphs. The 

quantity ( )ekW G  for mentioned graphs are computed in [3] which are as follows: 
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Also, we have  
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Therefore, the desire results can be concluded by using the Theorem (3-1).   □ 
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Theorem 4-5. The edge complementary Wiener numbers of paths nP , stars nS , cycles nC , 

complete graphs nK  and bipartite graphs baK ,  are 

1. 0
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Proof. According to the Result (3-3), the results concluded easily. □ 

 

Intensive research into nanotubes continues to expand, the number of publications increases 

rapidly; some monographs, books of collected works and a textbook on nanotubes have been 

published. Nanotubes can be multi-walled (MWNTs), comprising several coaxial cylinders, or 

single-walled (SWNTs). As a rule, the proportion of defects in SWNTs is less than in 

MWNTs. Moreover, SWNTs can become defect-free after high-temperature annealing in inert 

media. The structure of nanotubes affects their electronic, mechanical and chemical 

properties; because of this, SWNTs and MWNTs behave in fundamentally different manners. 

The inner diameters of NTs vary between 0.4 nm and several nanometres. The volume of the 

inner cavity of NTs is sufficient for the molecules of other substances to occupy the cavity. 

Graphene sheets in SWNTs and in each shell of MWNTs can have different orientations of 

the primitive graphene lattice vectors. This affects the properties of nanotubes [7]. 

Therefore, in following the first edge reverse Wiener number , 0eRW , for )(84 SCTUC  

nanotube is computed because of importance of nanotubes in particular in chemistry.  

In )(84 SCTUC  nanotube, p is the number of square in a row and q is the number of rows 

which is shown in Figure 1. 
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Figure 1. A TUC4C8(S) Lattice with p = 4 and q = 6. 

 
In [4], the first edge Wiener number of this nanotube is calculated.  

 
Theorem 4-6. [5] The first version of edge-Wiener index of 4 8( ) ( , )TUC C S T p q�  is equal 

to: 
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2.   If p is odd: 
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                                                                                                                                        □ 

Theorem 4-7. The first edge reverse Wiener number , 0eRW , of  4 8( ) ( , )TUC C S T p q�  

nanotubes is 
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2.   If p is odd: 
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Proof. According to the Theorem (4-3), ( ( , )) 6 2E T p q pq p� � and definition of the first 

reverse Wiener number, the results are concluded.   □ 

 
5. Conclusion 

Some relations among edge reverse Wiener numbers, edge complementary Wiener numbers 

and edge Wiener numbers are concluded. And by using these relations these new numbers for 

some well known graphs such as trees and 4 8( )TUC C S  nanotubes are computed. During in 

computation, we get some results, for example the edge reverse Wiener numbers for paths are 

equal together, the edge reverse Wiener numbers of stars are zero and the second edge reverse 

Wiener number for complete graphs and bipartite complete graphs is zero. In this research, we 

try to compute the new numbers for molecular graphs which has more applications in 

chemistry such as trees and nanotubes beside of some well-known graphs.  
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