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Abstract. Let d(G, k) be the number of pairs of vertices of a graph G that are
at distance k, λ a real number, and Wλ(G) =

∑
k≥1 d(G, k)kλ. Wλ(G) is called the

Wiener-type invariant of G associated to real number λ. In this paper, the Wiener-
type invariant of the Cartesian product of graphs is computed. As an application the
Tratch−Stankevich−Zefirov of C4 nanotubes and nanotori are computed. We also find
some new bound for this graph invariant.

1 Introduction

Throughout this paper graph means simple connected graph. The distance between two

vertices u and v of a graph G is denoted by dG(u, v) (d(u, v) for short). It is defined as the

number of edges in a minimum path connecting them. Let d(G, k) be the number of pairs

of vertices of G that are at distance k, λ a real number, and Wλ(G) =
∑d

k=1 d(G, k)kλ,

where d = diam(G) denotes the diameter of the graph G. Wλ(G) is called the Wiener-

type invariant of G associated to real number λ, see [2, 14] for details. Note that d(G, 0)

and d(G, 1) represent the number of vertices and edges, respectively. The case of λ = 1

is called the classical Wiener index [17]. The quantities WW = 1
2
[W1 +W2] and TSZ =

1
6
W3+

1
2
W2+

1
3
W1 are the so-called hyper-Wiener index and Tratch−Stankevich−Zefirov

index [3].

The Cartesian product G×H of graphs G and H is a graph such that V (G×H) =

V (G) × V (H), and any two vertices (a, b) and (u, v) are adjacent in G × H if and only
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if either a = u and b is adjacent with v, or b = v and a is adjacent with u, see [7] for

details.

Throughout this paper, Cn, Pn and Kn denote the cycle, path and complete graphs

on n vertices. The complement of a graph G is a graph H on the same vertices such that

two vertices of H are adjacent if and only if they are not adjacent in G. The graph H is

usually denoted by Ḡ. Our other notations are standard and taken mainly from [1, 5, 16].

2 Main Results

In this section, an exact formula for the Wiener-type invariants of the Cartesian product

of graphs is presented. We begin with the following lemma which crucial throughout the

paper.

Lemma 2.1. Let G and H be graphs. Then we have:

(a) |V (G×H)| = |V (G)| × |V (H)|,
(b) |E(G×H)| = |E(G)| × |V (H)| + |V (G)| × |E(H)|,
(c) G×H is connected if and only if G and H are connected.

(d) If (a, c), (b, d) ∈ V (G×H) then dG×H((a, c), (b, d)) = dG(a, b) + dH(c, d),

(e) The Cartesian product of graphs is associative and commutative.

Proof. The parts (a−e) are consequences of definitions and some well-known results of

the book of Imrich and Klavžar, [7].

The Wiener index of the Cartesian product graphs was studied in [4]. In [13], Klavžar,

Rajapakse and Gutman computed the Szeged index of the Cartesian product of graphs.

The present authors, [6, 8, 9, 10, 11, 12, 18], computed exact formulas for the hyper-

Wiener, vertex PI, edge PI, the first Zagreb, the second Zagreb, the edge Wiener and the

edge Szeged indices of some graph operations.

Lemma 2.2. Suppose G and H are connected graphs, |V (G)| = m, |V (H)| = n and λ

is a positive integer. Then

Wλ(G×H) = m2Wλ(H) + 2

(
λ

1

)
W (G)Wλ−1(H) + 2

(
λ

2

)
W2(G)Wλ−2(H)

+ · · ·+ 2

(
λ

λ− 1

)
Wλ−1(G)W (H) + n2Wλ(G) .
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Proof. Suppose {u1, . . . , um} and {v1, . . . , vn} are vertices of G and H, respectively. Then

by Lemma 2.1 and definition of Wλ,

Wλ(G×H) =
∑
{u,v}

dλG×H(u, v) =
1

2

∑
(ui,vk)

∑
(uj ,vl)

dλG×H((ui, vk), (uj, vl))

=
1

2

n∑
k,l=1

m∑
i,j=1

(dG(ui, uj) + dH(vk, vl))
λ

=
1

2

n∑
k,l=1

m∑
i,j=1

(
λ∑

r=0

(
λ

r

)
drG(ui, uj)d

λ−r
H (vk, vl)

)

=
1

2

n∑
k,l=1

m∑
i,j=1

(dλH(vk, vl) +

(
λ

1

)
dG(ui, uj)d

λ−1
H (vk, vl)

+ · · ·+
(

λ

λ− 1

)
dλ−1G (ui, uj)dH(vk, vl) + dλG(ui, uj))

= m2Wλ(H) + 2

(
λ

1

)
W (G)Wλ−1(H) + 2

(
λ

2

)
W2(G)Wλ−2(H)

+ · · ·+ 2

(
λ

λ− 1

)
Wλ−1(G)W (H) + n2Wλ(G) ,

proving the lemma.

Corollary 2.3. With notation of Lemma 2.2, TSZ(G × H) = |V (H)|2TSZ(G) +

|V (G)|2TSZ(H) + W (G)W2(H) + W (H)W2(G) + 2W (G)W (H).

Proof. By Lemma 2.2, we have:

TSZ(G×H) =
1

6
W3(G×H) +

1

2
W2(G×H) +

1

3
W (G×H)

=
1

6
|V (H)|2W3(G) +W (G)W2(H) +W2(G)W (H)

+
1

6
|V (G)|2W3(H) +

1

2
|V (H)|2W2(G) + 2W (G)W (H)

+
1

2
|V (G)|2W2(H) +

1

3
W (G)|V (H)|2 + 1

3
W (H)|V (G)|2

= |V (H)|2TSZ(G) + |V (G)|2TSZ(H) +W (G)W2(H)

+ W (H)W2(G) + 2W (G)W (H) ,

as desired.
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Consider a net G[n,m] = Pn × Pm. By Corollary 2.3, one can compute the Tratch–

Stankevich–Zefirov index of G[n,m] as follows:

TSZ(Pn × Pm) =
1

120
m2n5 +

1

24
m2n4 +

1

36
m2n3 − 1

12
m2n2 − 13

360
m2n

+
1

120
m5n2 +

1

24
m4n2 +

1

36
m3n2 − 13

360
mn2 +

1

72
m4n3

− 1

72
m4n+

1

72
m2n4 − 1

72
mn4 +

1

18
m3n3

− 1

18
mn3 − 1

18
m3n+

1

18
mn .

In the next corollary, we compute the Tratch−Stankevich−Zefirov index of nanotubes

and nanotori covered by C4.

Corollary 2.4. The Tratch−Stankevich−Zefirov index of C4 nanotubes and nanotori

are computed as follows:

i) If m is even then,

TSZ(Pn × Cm) =
1

120
m2n5 +

1

24
m2n4 +

1

18
m2n3 − 23

360
m2n+

1

384
m5n2

+
1

24
m3n2 +

1

48
m4n2 +

1

144
m4n3 − 1

144
m4n+

1

96
m3n4

+
1

24
m3n3 − 1

24
m3n .

ii) If m is odd then,

TSZ(Pn × Cm) =
1

120
m2n5 +

1

24
m2n4 +

5

144
m2n3 − 13

192
m2n2 − 31

720
m2n

+
1

384
m5n2 − 11

384
mn2 +

1

48
m4n2 − 7

2976
m3n2 +

1

144
m4n3

− 1

144
m4n+

1

96
m3n4 − 1

96
mn4 +

1

24
m3n3 − 1

24
mn3

− 1

24
m3n+

1

24
mn .

iii) If m and n are even then,

TSZ(Cn × Cm) =
1

384
m2n5 +

1

16
m2n3 +

1

48
m2n4 +

1

12
m2n2 +

1

384
n2m5

+
1

16
n2m3 +

1

48
n2m4 +

1

192
n3m4 +

1

192
n4m3 +

1

32
m3n3 .
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iv) If m and n are odd then,

TSZ(Cn × Cm) =
1

384
m2n5 − 5

96
m2n2 +

1

48
m2n4 +

7

192
m2n3 +

13

384
nm2

+
1

384
n2m5 +

1

48
n2m4 +

7

192
n2m3 − 13

384
n2m+

1

192
m4n3

− 1

192
nm4 +

1

192
m3n4 − 1

192
mn4 +

1

32
m3n3 − 1

32
m3n

− 1

32
mn3 +

1

32
mn .

v) If m is odd and n is even then,

TSZ(Cn × Cm) =
1

384
m2n5 +

3

64
m2n3 +

1

48
m2n4 +

1

64
m2n2 +

1

384
n2m5

+
1

48
n2m4 +

5

96
n2m3 − 19

384
n2m+

1

192
n3m4 +

1

192
m3n4

− 1

192
mn4 +

1

32
m3n3 − 1

32
mn3 .

From now on λ denotes a positive real number. In what follows, the extremal graphs

with respect to the Wiener-type invariant are determined.

Lemma 2.5. Suppose G is an incomplete connected graph with n vertices, n ≥ 3. Then

Wλ(G) ≥ (1− 2λ)|E(G)|+ 2λ
(
n
2

)
with equality if and only if diam(G) = 2.

Proof. Since λ is positive,

Wλ(G) =
d∑

k=1

d(G, k)kλ = d(G, 1) +
d∑

k=2

d(G, k)kλ

≥ d(G, 1) + 2λ
d∑

k=2

d(G, k) = |E(G)|+ 2λ
((

n

2

)
− |E(G)|

)

= (1− 2λ)|E(G)|+ 2λ
(
n

2

)
,

proving the lemma. Clearly the equality holds if and only if diam(G) = 2.

Corollary 2.6. Suppose G is satisfied the conditions of Lemma 2.5. If diam(G) = 2

then Wλ(G) ≥ n− 1 + 2λ with quality if and only if G is isomorphic to P3.
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Proof. By Lemma 2.5 and this fact that in the n−vertex graphs of diameter 2, n− 1 ≤
|E(G)| ≤ (n

2

)− 1, we have:

Wλ(G) ≥ |E(G)| − 2λ|E(G)|+ 2λ
(
n

2

)
≥ n− 1− 2λ

(
n

2

)
+ 2λ + 2λ

(
n

2

)
= n− 1 + 2λ .

On the other hand, n− 1 =
(
n
2

)− 1 if and only if n = 3 and since diam(G) = 2, G ∼= P3.

In 1956, Nordhaus and Gaddum [15] proved that for the chromatic number χ(G) of a

graph G is satisfied the inequality 2
√
n ≤ χ(G)+χ(Ḡ) ≤ n+1. In recent years, too many

authors named such an inequality for a given topological index, a Nordhaus-Gaddum type

inequality [19]. In what follows a Nordhaus-Gaddum type inequality for the Wiener-type

invariant of graphs is proved.

Corollary 2.7. Suppose G and Ḡ are connected incomplete n−vertex graphs with n ≥ 3.

ThenWλ(G) + Wλ(Ḡ) ≥ (n
2

)
(1+2λ) with equality if and only if diam(G) = diam(Ḡ) = 2.

Proof. By Lemma 2.5,

Wλ(G) +Wλ(Ḡ) ≥ (1− 2λ)|E(G)|+ 2λ
(
n

2

)
+ (1− 2λ)|E(Ḡ)|+ 2λ

(
n

2

)

= (1− 2λ)(|E(G)|+ |E(Ḡ)|) + 2λ+1

(
n

2

)

= (1− 2λ)

(
n

2

)
+ 2λ+1

(
n

2

)
=

(
n

2

)
(1 + 2λ) ,

as desired.

Lemma 2.8. Suppose G is a n−vertex connected graph with n ≥ 5 and diam(G) =

diam(Ḡ) = 3. Then Wλ(G) + Wλ(Ḡ) <
(
n
2

)
(1 + 3λ).

Proof. Suppose tk = d(G, k) and t̄k = d(Ḡ, k). It is clear that t2 + t3 = t̄1, t̄2 + t̄3 = t1

and t1 + t̄1 =
(
n
2

)
. Then,

Wλ(G) +Wλ(Ḡ) =
3∑

k=1

(tk + t̄k)k
λ = (t1 + t̄1) + 2λ(t2 + t̄2) + 3λ(t3 + t̄3)

<

(
n

2

)
+ 3λ(t2 + t̄2 + t3 + t̄3) =

(
n

2

)
(1 + 3λ) ,

proving the lemma.
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[16] N. Trinajstić, Chemical Graph Theory , CRC Press, Boca Raton, 1992.

[17] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem.

Soc. 69 (1947) 17–20.

[18] H. Yousefi–Azari, B. Manoochehrian, A. R. Ashrafi, The PI index of product graphs,

Appl. Math. Lett. 21 (2008) 624–627.

[19] L. Zhang, B. Wu, The Nordhaus–Gaddum–type inequalities for some chemical in-

dices, MATCH Commun. Math. Comput. Chem. 54 (2005) 189–194.

-54-


