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Abstract. Let d(G, k) be the number of pairs of vertices of a graph G that are
at distance k, A a real number, and W)(G) = > ,., d(G, k)k>. W,(G) is called the
Wiener-type invariant of G associated to real number A. In this paper, the Wiener-
type invariant of the Cartesian product of graphs is computed. As an application the
Tratch—Stankevich—Zefirov of Cy nanotubes and nanotori are computed. We also find
some new bound for this graph invariant.

1 Introduction

Throughout this paper graph means simple connected graph. The distance between two
vertices u and v of a graph G is denoted by dg(u,v) (d(u,v) for short). It is defined as the
number of edges in a minimum path connecting them. Let d(G, k) be the number of pairs
of vertices of G that are at distance k, A a real number, and Wy(G) = S0, d(G, k)k*,
where d = diam(G) denotes the diameter of the graph G. W,(G) is called the Wiener-
type invariant of G associated to real number A, see [2, 14] for details. Note that d(G,0)
and d(G, 1) represent the number of vertices and edges, respectively. The case of A = 1
is called the classical Wiener index [17]. The quantities WV = %[Wl + W] and TSZ =
%LV3 + %Wz + %Wl are the so-called hyper-Wiener index and Tratch—Stankevich—Zefirov
index [3].

The Cartesian product G x H of graphs G and H is a graph such that V(G x H) =
V(G) x V(H), and any two vertices (a,b) and (u,v) are adjacent in G x H if and only
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if either @ = u and b is adjacent with v, or b = v and «a is adjacent with u, see [7] for
details.

Throughout this paper, C,, P, and K, denote the cycle, path and complete graphs
on n vertices. The complement of a graph G is a graph H on the same vertices such that
two vertices of H are adjacent if and only if they are not adjacent in G. The graph H is

usually denoted by G. Our other notations are standard and taken mainly from [1, 5, 16].

2 Main Results

In this section, an exact formula for the Wiener-type invariants of the Cartesian product
of graphs is presented. We begin with the following lemma which crucial throughout the
paper.
Lemma 2.1. Let G and H be graphs. Then we have:

(&) V(G x H)| = [V(G)] x [V(H)],

(b) [E(G x H)| = |[E(G)] x [V(H)| + [V(G)| x [E(H)|,

(¢) G x H is connected if and only if G and H are connected.

(d) If (a,c), (b,d) € V(G x H) then dgxu((a,c), (b,d)) = dg(a,b) + du(c,d),

(

e) The Cartesian product of graphs is associative and commutative.

Proof. The parts (a—e) are consequences of definitions and some well-known results of

the book of Imrich and Klavzar, [7]. ]

The Wiener index of the Cartesian product graphs was studied in [4]. In [13], Klavzar,
Rajapakse and Gutman computed the Szeged index of the Cartesian product of graphs.
The present authors, [6, 8, 9, 10, 11, 12, 18], computed exact formulas for the hyper-
Wiener, vertex PI, edge PI, the first Zagreb, the second Zagreb, the edge Wiener and the

edge Szeged indices of some graph operations.

Lemma 2.2. Suppose G and H are connected graphs, |V (G)| = m, |V(H)| = n and A
is a positive integer. Then
, A A
WiNG x H) = m*Wi(H)+2 ) W(G)Wy_1(H) + 2 5 Wo(G)Wy_o(H)

o 2()\ A 1)WA,1(G)W(H) +n2WA(G) .
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Proof. Suppose {uy,...,un,} and {vy,...,v,} are vertices of G and H, respectively. Then

by Lemma 2.1 and definition of W),

WG x H) = Y dhanlno) =3 30 3 dh( ). ()

{u} (uior) (uj,00)

n m

Z Z (de(ui, ug) + dp (vg, o))

kl li,j=1

13735 (50 ()t )

kl 1i,j=1

; D0 (@dy(ok ) + G) de (ui, ug)dyr " (vg, vr)

kl=11,j=1

—1

A
o4 ()\ )d’c\fl(ui,uj)dH(vk,U,) +dg(ul,uj))

= m*Wy(H)+2 (’1\> W(GYWs_1(H) + 2 @) Wa(GYW_o(H)

proving the lemma.

- 2(/\ i 1) Wi 1(G)W (H) + n*WA(G)

Corollary 2.3. With notation of Lemma 2.2, TSZ(G x H) = |[V(H)]*TSZ(G) +
[V(G)PTSZ(H) + W(G)W(H) + W(H)W,(G) + 2W(G)W (H).

Proof. By Lemma 2.2, we have:

TSZ(G x H) =

as desired.

%WS(G < H) + %WZ(G « H) + %W(G « H)
%|V(H)|2W5(G) FW(G)Wa(H) + Wa(GYW (H)
SIVGIPWA(H) + S|V (H)PWL(G) + 207 (G)W (H)
SIV@PWa(H) + SW @IV (D + W)V (G)P
|V(H)PTSZ(G) + |[V(G)*TSZ(H) + W(G)Wy(H)

W (H)W(G) + 2W (G)W (H) ,
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Consider a net G[n,m] = P, x P,,. By Corollary 2.3, one can compute the Tratch—

Stankevich—Zefirov index of G[n,m| as follows:

1 1 1 1 . 13
TSZ(P, x P,) = 120m2n5 + ﬂm2n4 + %an‘g - Emzrﬂ %an
1 1 13 1 .
L0592, L 490, L 39 Ao o 1 43
+ 120mn +24mn +36mn 360mn +72mn
— im4n + imZn4 — imn4 + im3n3
72 72 72
1 1 1
— 1—8771,’”3 — l—gm?’n + —mn .

In the next corollary, we compute the Tratch—Stankevich—Zefirov index of nanotubes

and nanotori covered by Cj.

Corollary 2.4. The Tratch—Stankevich—Zefirov index of C nanotubes and nanotori
are computed as follows:

i) If m is even then,

1 1 1 . 23 1 .
TSZPn Cm — = 25 2,4 2,3 2T 2 T 5,2
(P, x ) 120mn +24mn +18mn 360mn+384mn
. 1 1 . 1 1
+ ﬂm‘}n2 + 4—8m4n2 + m7n4n3 — mm“in + %m%‘l
L 3 3 3
+ 21 n 24m n

ii) If m is odd then,

1 1 5 . 13 31
TSZ(P, x Cp) = mmzrﬁ + ﬂmzn4 + mend - @mZn2 — ﬁmzn
L o5, 11 2 4,2 3, 2 I 43
+ 384m n 384mn + 48m n 2976771 n’ 4+ 144m n
1 1 . 1 . 1
— mm‘*n + %msn4 — %mﬁl + ﬂm‘gns — ﬂmn3
1 4 n 1
— —m’n+—mn .
24 24
iii) If m and n are even then,
TSZ(C, x Cy,) = LmZnE’ + ian3 + im2n4 + imzn2 + inzm5
" " 384 16 48 12 384

oo g, 1 o 4 1 5 40 1 4 4 1 54
+ 16nm +48nm +192nm +192nm +32mn.
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iv) If m and n are odd then,

1 - 5 1 7 13
TSZ(C, x Cp) = &ﬁml’bd - %mzmz + @m?nd‘ + @mzn,3 + @nm2
1 r 1 7 13 1
+ @Mmd + 4—871/2m4 + 19—271,2777/3 - @nzm + @m“n?’
1 . 1 1 .. 1 .
— —amt+ —mPnt— —mnt + —=m®n® — —mn
192 192 192 32 32

- —mn®+ imn
32 32 '

v) If m is odd and n is even then,

TSZ(C, x Cp) = m?n® 4 imZn3 + imzn4 + ian2 + i7z2m5

384 64 48 64 384
L o 4,9 o3 19 , 1 54 I o5y
+ 48nm +96nm 384nm+192nm +192mn
1 1
b a4, L33 3
192mn + 32m n San

From now on A denotes a positive real number. In what follows, the extremal graphs

with respect to the Wiener-type invariant are determined.

Lemma 2.5. Suppose G is an incomplete connected graph with n vertices, n > 3. Then
WA(G) = (1 —2Y)|E(G)| + 2*(}) with equality if and only if diam(G) = 2.
Proof. Since A is positive,

d

WAG) = D d(G k) =d(G. 1)+ d(G, k)k*

d
k=1 k=2

S G+ G — |BG) + 2 ((3)-1z@)

k=2
A\ A
(-2iE@)+2 ().
proving the lemma. Clearly the equality holds if and only if diam(G) = 2. |

Corollary 2.6. Suppose G is satisfied the conditions of Lemma 2.5. If diam(G) = 2
then Wy(G) > n — 1 + 2* with quality if and only if G is isomorphic to Ps.
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Proof. By Lemma 2.5 and this fact that in the n—vertex graphs of diameter 2, n — 1 <

|E(G)| < (3) — 1, we have:
WA(G) > |E(G)| — 2\ E(G)| +2A<g) >n—1- 2*(3) +20 + 2*(;”) —n—1+2".

On the other hand, n — 1 = (}) — 1 if and only if n = 3 and since diam(G) = 2, G = P;.
|

In 1956, Nordhaus and Gaddum [15] proved that for the chromatic number x(G) of a
graph G is satisfied the inequality 2/n < x(G)+x(G) < n+1. In recent years, too many
authors named such an inequality for a given topological index, a Nordhaus-Gaddum type
inequality [19]. In what follows a Nordhaus-Gaddum type inequality for the Wiener-type

invariant of graphs is proved.

Corollary 2.7. Suppose G and G are connected incomplete n—vertex graphs with n > 3.

Then Wi(G) + Wi(G) > (3) (1+2*) with equality if and only if diam(G) = diam(G) = 2.

Proof. By Lemma 2.5,

WG +IA(E) = (1= 2B +2(3) + 1 -G+ 2 (})
= (1=2)(E@)| +|E@)]) + 2 (g)
= (1-2) (Z) +2 (g) = (Z)(l +2Y),
as desired. -

Lemma 2.8. Suppose G is a n—vertex connected graph with n > 5 and diam(G) =

diam(G) = 3. Then Wi(G) + Wi(G) < (5)(1+ 3*).
Proof. Suppose t;, = d(G, k) and t, = d(G, k). Tt is clear that ty +t3 = 1, T + 13 = £

and t; +1; = (g‘) Then,

3
VV,\(G) + W,\(G) = Z ty + tk k = t1 + tl) + 2)‘(t2 + tz) + 3 (t'; + tf;)
k=1

(") 4Pttty + ) = (Z) (1+3%),

A
Lo

proving the lemma. ]
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