Extremal Graphs under Wiener-type Invariants

A. Hamzeh a, S. Hossein-Zadeh ${ }^{a}$, A. R. Ashrafi ${ }^{a, b, *}$
${ }^{a}$ Department of Mathematics, Faculty of Science, University of Kashan, Kashan, 8731751167, Iran
${ }^{b}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM),P.O. Box: 193955746, Tehran, Iran

(Received September 12, 2010)

Abstract

Let $d(G, k)$ be the number of pairs of vertices of a graph G that are at distance k, λ a real number, and $W_{\lambda}(G)=\sum_{k \geq 1} d(G, k) k^{\lambda}$. $W_{\lambda}(G)$ is called the Wiener-type invariant of G associated to real number λ. In this paper, the Wienertype invariant of the Cartesian product of graphs is computed. As an application the Tratch-Stankevich-Zefirov of C_{4} nanotubes and nanotori are computed. We also find some new bound for this graph invariant.

1 Introduction

Throughout this paper graph means simple connected graph. The distance between two vertices u and v of a graph G is denoted by $d_{G}(u, v)(d(u, v)$ for short $)$. It is defined as the number of edges in a minimum path connecting them. Let $d(G, k)$ be the number of pairs of vertices of G that are at distance k, λ a real number, and $W_{\lambda}(G)=\sum_{k=1}^{d} d(G, k) k^{\lambda}$, where $d=\operatorname{diam}(G)$ denotes the diameter of the graph $G . W_{\lambda}(G)$ is called the Wienertype invariant of G associated to real number λ, see $[2,14]$ for details. Note that $d(G, 0)$ and $d(G, 1)$ represent the number of vertices and edges, respectively. The case of $\lambda=1$ is called the classical Wiener index [17]. The quantities $W W=\frac{1}{2}\left[W_{1}+W_{2}\right]$ and $T S Z=$ $\frac{1}{6} W_{3}+\frac{1}{2} W_{2}+\frac{1}{3} W_{1}$ are the so-called hyper-Wiener index and Tratch-Stankevich-Zefirov index [3].

The Cartesian product $G \times H$ of graphs G and H is a graph such that $V(G \times H)=$ $V(G) \times V(H)$, and any two vertices (a, b) and (u, v) are adjacent in $G \times H$ if and only

[^0]if either $a=u$ and b is adjacent with v, or $b=v$ and a is adjacent with u, see [7] for details.

Throughout this paper, C_{n}, P_{n} and K_{n} denote the cycle, path and complete graphs on n vertices. The complement of a graph G is a graph H on the same vertices such that two vertices of H are adjacent if and only if they are not adjacent in G. The graph H is usually denoted by \bar{G}. Our other notations are standard and taken mainly from $[1,5,16]$.

2 Main Results

In this section, an exact formula for the Wiener-type invariants of the Cartesian product of graphs is presented. We begin with the following lemma which crucial throughout the paper.

Lemma 2.1. Let G and H be graphs. Then we have:
(a) $|V(G \times H)|=|V(G)| \times|V(H)|$,
(b) $|E(G \times H)|=|E(G)| \times|V(H)|+|V(G)| \times|E(H)|$,
(c) $G \times H$ is connected if and only if G and H are connected.
(d) If $(a, c),(b, d) \in V(G \times H)$ then $d_{G \times H}((a, c),(b, d))=d_{G}(a, b)+d_{H}(c, d)$,
(e) The Cartesian product of graphs is associative and commutative.

Proof. The parts (a-e) are consequences of definitions and some well-known results of the book of Imrich and Klavžar, [7].

The Wiener index of the Cartesian product graphs was studied in [4]. In [13], Klavžar, Rajapakse and Gutman computed the Szeged index of the Cartesian product of graphs. The present authors, $[6,8,9,10,11,12,18]$, computed exact formulas for the hyperWiener, vertex PI, edge PI, the first Zagreb, the second Zagreb, the edge Wiener and the edge Szeged indices of some graph operations.

Lemma 2.2. Suppose G and H are connected graphs, $|V(G)|=m,|V(H)|=n$ and λ is a positive integer. Then

$$
\begin{aligned}
W_{\lambda}(G \times H) & =m^{2} W_{\lambda}(H)+2\binom{\lambda}{1} W(G) W_{\lambda-1}(H)+2\binom{\lambda}{2} W_{2}(G) W_{\lambda-2}(H) \\
& +\cdots+2\binom{\lambda}{\lambda-1} W_{\lambda-1}(G) W(H)+n^{2} W_{\lambda}(G)
\end{aligned}
$$

Proof. Suppose $\left\{u_{1}, \ldots, u_{m}\right\}$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ are vertices of G and H, respectively. Then by Lemma 2.1 and definition of W_{λ},

$$
\begin{aligned}
W_{\lambda}(G \times H) & =\sum_{\{u, v\}} d_{G \times H}^{\lambda}(u, v)=\frac{1}{2} \sum_{\left(u_{i}, v_{k}\right)} \sum_{\left(u_{j}, v_{l}\right)} d_{G \times H}^{\lambda}\left(\left(u_{i}, v_{k}\right),\left(u_{j}, v_{l}\right)\right) \\
& =\frac{1}{2} \sum_{k, l=1}^{n} \sum_{i, j=1}^{m}\left(d_{G}\left(u_{i}, u_{j}\right)+d_{H}\left(v_{k}, v_{l}\right)\right)^{\lambda} \\
& =\frac{1}{2} \sum_{k, l=1}^{n} \sum_{i, j=1}^{m}\left(\sum_{r=0}^{\lambda}\binom{\lambda}{r} d_{G}^{r}\left(u_{i}, u_{j}\right) d_{H}^{\lambda-r}\left(v_{k}, v_{l}\right)\right) \\
& =\frac{1}{2} \sum_{k, l=1}^{n} \sum_{i, j=1}^{m}\left(d_{H}^{\lambda}\left(v_{k}, v_{l}\right)+\binom{\lambda}{1} d_{G}\left(u_{i}, u_{j}\right) d_{H}^{\lambda-1}\left(v_{k}, v_{l}\right)\right. \\
& \left.+\cdots+\binom{\lambda}{\lambda-1} d_{G}^{\lambda-1}\left(u_{i}, u_{j}\right) d_{H}\left(v_{k}, v_{l}\right)+d_{G}^{\lambda}\left(u_{i}, u_{j}\right)\right) \\
& =m^{2} W_{\lambda}(H)+2\binom{\lambda}{1} W(G) W_{\lambda-1}(H)+2\binom{\lambda}{2} W_{2}(G) W_{\lambda-2}(H) \\
& +\cdots+2\binom{\lambda}{\lambda-1} W_{\lambda-1}(G) W(H)+n^{2} W_{\lambda}(G),
\end{aligned}
$$

proving the lemma.
Corollary 2.3. With notation of Lemma 2.2, TSZ $(G \times H)=|V(H)|^{2} T S Z(G)+$ $|V(G)|^{2} T S Z(H)+W(G) W_{2}(H)+W(H) W_{2}(G)+2 W(G) W(H)$.

Proof. By Lemma 2.2, we have:

$$
\begin{aligned}
T S Z(G \times H) & =\frac{1}{6} W_{3}(G \times H)+\frac{1}{2} W_{2}(G \times H)+\frac{1}{3} W(G \times H) \\
& =\frac{1}{6}|V(H)|^{2} W_{3}(G)+W(G) W_{2}(H)+W_{2}(G) W(H) \\
& +\frac{1}{6}|V(G)|^{2} W_{3}(H)+\frac{1}{2}|V(H)|^{2} W_{2}(G)+2 W(G) W(H) \\
& +\frac{1}{2}|V(G)|^{2} W_{2}(H)+\frac{1}{3} W(G)|V(H)|^{2}+\frac{1}{3} W(H)|V(G)|^{2} \\
& =|V(H)|^{2} T S Z(G)+|V(G)|^{2} T S Z(H)+W(G) W_{2}(H) \\
& +W(H) W_{2}(G)+2 W(G) W(H),
\end{aligned}
$$

as desired.

Consider a net $G[n, m]=P_{n} \times P_{m}$. By Corollary 2.3, one can compute the Tratch-Stankevich-Zefirov index of $G[n, m]$ as follows:

$$
\begin{aligned}
T S Z\left(P_{n} \times P_{m}\right) & =\frac{1}{120} m^{2} n^{5}+\frac{1}{24} m^{2} n^{4}+\frac{1}{36} m^{2} n^{3}-\frac{1}{12} m^{2} n^{2}-\frac{13}{360} m^{2} n \\
& +\frac{1}{120} m^{5} n^{2}+\frac{1}{24} m^{4} n^{2}+\frac{1}{36} m^{3} n^{2}-\frac{13}{360} m n^{2}+\frac{1}{72} m^{4} n^{3} \\
& -\frac{1}{72} m^{4} n+\frac{1}{72} m^{2} n^{4}-\frac{1}{72} m n^{4}+\frac{1}{18} m^{3} n^{3} \\
& -\frac{1}{18} m n^{3}-\frac{1}{18} m^{3} n+\frac{1}{18} m n .
\end{aligned}
$$

In the next corollary, we compute the Tratch-Stankevich-Zefirov index of nanotubes and nanotori covered by C_{4}.

Corollary 2.4. The Tratch-Stankevich-Zefirov index of C_{4} nanotubes and nanotori are computed as follows:
i) If m is even then,

$$
\begin{aligned}
T S Z\left(P_{n} \times C_{m}\right) & =\frac{1}{120} m^{2} n^{5}+\frac{1}{24} m^{2} n^{4}+\frac{1}{18} m^{2} n^{3}-\frac{23}{360} m^{2} n+\frac{1}{384} m^{5} n^{2} \\
& +\frac{1}{24} m^{3} n^{2}+\frac{1}{48} m^{4} n^{2}+\frac{1}{144} m^{4} n^{3}-\frac{1}{144} m^{4} n+\frac{1}{96} m^{3} n^{4} \\
& +\frac{1}{24} m^{3} n^{3}-\frac{1}{24} m^{3} n
\end{aligned}
$$

ii) If m is odd then,

$$
\begin{aligned}
\operatorname{TSZ}\left(P_{n} \times C_{m}\right) & =\frac{1}{120} m^{2} n^{5}+\frac{1}{24} m^{2} n^{4}+\frac{5}{144} m^{2} n^{3}-\frac{13}{192} m^{2} n^{2}-\frac{31}{720} m^{2} n \\
& +\frac{1}{384} m^{5} n^{2}-\frac{11}{384} m n^{2}+\frac{1}{48} m^{4} n^{2}-\frac{7}{2976} m^{3} n^{2}+\frac{1}{144} m^{4} n^{3} \\
& -\frac{1}{144} m^{4} n+\frac{1}{96} m^{3} n^{4}-\frac{1}{96} m n^{4}+\frac{1}{24} m^{3} n^{3}-\frac{1}{24} m n^{3} \\
& -\frac{1}{24} m^{3} n+\frac{1}{24} m n .
\end{aligned}
$$

iii) If m and n are even then,

$$
\begin{aligned}
T S Z\left(C_{n} \times C_{m}\right) & =\frac{1}{384} m^{2} n^{5}+\frac{1}{16} m^{2} n^{3}+\frac{1}{48} m^{2} n^{4}+\frac{1}{12} m^{2} n^{2}+\frac{1}{384} n^{2} m^{5} \\
& +\frac{1}{16} n^{2} m^{3}+\frac{1}{48} n^{2} m^{4}+\frac{1}{192} n^{3} m^{4}+\frac{1}{192} n^{4} m^{3}+\frac{1}{32} m^{3} n^{3}
\end{aligned}
$$

iv) If m and n are odd then,

$$
\begin{aligned}
T S Z\left(C_{n} \times C_{m}\right) & =\frac{1}{384} m^{2} n^{5}-\frac{5}{96} m^{2} n^{2}+\frac{1}{48} m^{2} n^{4}+\frac{7}{192} m^{2} n^{3}+\frac{13}{384} n m^{2} \\
& +\frac{1}{384} n^{2} m^{5}+\frac{1}{48} n^{2} m^{4}+\frac{7}{192} n^{2} m^{3}-\frac{13}{384} n^{2} m+\frac{1}{192} m^{4} n^{3} \\
& -\frac{1}{192} n m^{4}+\frac{1}{192} m^{3} n^{4}-\frac{1}{192} m n^{4}+\frac{1}{32} m^{3} n^{3}-\frac{1}{32} m^{3} n \\
& -\frac{1}{32} m n^{3}+\frac{1}{32} m n
\end{aligned}
$$

v) If m is odd and n is even then,

$$
\begin{aligned}
T S Z\left(C_{n} \times C_{m}\right) & =\frac{1}{384} m^{2} n^{5}+\frac{3}{64} m^{2} n^{3}+\frac{1}{48} m^{2} n^{4}+\frac{1}{64} m^{2} n^{2}+\frac{1}{384} n^{2} m^{5} \\
& +\frac{1}{48} n^{2} m^{4}+\frac{5}{96} n^{2} m^{3}-\frac{19}{384} n^{2} m+\frac{1}{192} n^{3} m^{4}+\frac{1}{192} m^{3} n^{4} \\
& -\frac{1}{192} m n^{4}+\frac{1}{32} m^{3} n^{3}-\frac{1}{32} m n^{3}
\end{aligned}
$$

From now on λ denotes a positive real number. In what follows, the extremal graphs with respect to the Wiener-type invariant are determined.

Lemma 2.5. Suppose G is an incomplete connected graph with n vertices, $n \geq 3$. Then $W_{\lambda}(G) \geq\left(1-2^{\lambda}\right)|E(G)|+2^{\lambda}\binom{n}{2}$ with equality if and only if $\operatorname{diam}(G)=2$.

Proof. Since λ is positive,

$$
\begin{aligned}
W_{\lambda}(G) & =\sum_{k=1}^{d} d(G, k) k^{\lambda}=d(G, 1)+\sum_{k=2}^{d} d(G, k) k^{\lambda} \\
& \geq d(G, 1)+2^{\lambda} \sum_{k=2}^{d} d(G, k)=|E(G)|+2^{\lambda}\left(\binom{n}{2}-|E(G)|\right) \\
& =\left(1-2^{\lambda}\right)|E(G)|+2^{\lambda}\binom{n}{2}
\end{aligned}
$$

proving the lemma. Clearly the equality holds if and only if $\operatorname{diam}(G)=2$.
Corollary 2.6. Suppose G is satisfied the conditions of Lemma 2.5. If $\operatorname{diam}(G)=2$ then $W_{\lambda}(G) \geq n-1+2^{\lambda}$ with quality if and only if G is isomorphic to P_{3}.

Proof. By Lemma 2.5 and this fact that in the n-vertex graphs of diameter 2, $n-1 \leq$ $|E(G)| \leq\binom{ n}{2}-1$, we have:

$$
W_{\lambda}(G) \geq|E(G)|-2^{\lambda}|E(G)|+2^{\lambda}\binom{n}{2} \geq n-1-2^{\lambda}\binom{n}{2}+2^{\lambda}+2^{\lambda}\binom{n}{2}=n-1+2^{\lambda} .
$$

On the other hand, $n-1=\binom{n}{2}-1$ if and only if $n=3$ and since $\operatorname{diam}(G)=2, G \cong P_{3}$.

In 1956, Nordhaus and Gaddum [15] proved that for the chromatic number $\chi(G)$ of a graph G is satisfied the inequality $2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1$. In recent years, too many authors named such an inequality for a given topological index, a Nordhaus-Gaddum type inequality [19]. In what follows a Nordhaus-Gaddum type inequality for the Wiener-type invariant of graphs is proved.

Corollary 2.7. Suppose G and \bar{G} are connected incomplete n-vertex graphs with $n \geq 3$. Then $W_{\lambda}(G)+W_{\lambda}(\bar{G}) \geq\binom{ n}{2}\left(1+2^{\lambda}\right)$ with equality if and only if $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$.

Proof. By Lemma 2.5,

$$
\begin{aligned}
W_{\lambda}(G)+W_{\lambda}(\bar{G}) & \geq\left(1-2^{\lambda}\right)|E(G)|+2^{\lambda}\binom{n}{2}+\left(1-2^{\lambda}\right)|E(\bar{G})|+2^{\lambda}\binom{n}{2} \\
& =\left(1-2^{\lambda}\right)(|E(G)|+|E(\bar{G})|)+2^{\lambda+1}\binom{n}{2} \\
& =\left(1-2^{\lambda}\right)\binom{n}{2}+2^{\lambda+1}\binom{n}{2}=\binom{n}{2}\left(1+2^{\lambda}\right),
\end{aligned}
$$

as desired.
Lemma 2.8. Suppose G is a $n-$ vertex connected graph with $n \geq 5$ and $\operatorname{diam}(G)=$ $\operatorname{diam}(\bar{G})=3$. Then $W_{\lambda}(G)+W_{\lambda}(\bar{G})<\binom{n}{2}\left(1+3^{\lambda}\right)$.

Proof. Suppose $t_{k}=d(G, k)$ and $\bar{t}_{k}=d(\bar{G}, k)$. It is clear that $t_{2}+t_{3}=\bar{t}_{1}, \bar{t}_{2}+\bar{t}_{3}=t_{1}$ and $t_{1}+\bar{t}_{1}=\binom{n}{2}$. Then,

$$
\begin{aligned}
W_{\lambda}(G)+W_{\lambda}(\bar{G}) & =\sum_{k=1}^{3}\left(t_{k}+\bar{t}_{k}\right) k^{\lambda}=\left(t_{1}+\bar{t}_{1}\right)+2^{\lambda}\left(t_{2}+\bar{t}_{2}\right)+3^{\lambda}\left(t_{3}+\bar{t}_{3}\right) \\
& <\binom{n}{2}+3^{\lambda}\left(t_{2}+\bar{t}_{2}+t_{3}+\bar{t}_{3}\right)=\binom{n}{2}\left(1+3^{\lambda}\right)
\end{aligned}
$$

proving the lemma.

Acknowledgement. We would like to thank the referee for a number of helpful comments and suggestions.

References

[1] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova, Huntington, 2001.
[2] I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128-132.
[3] I. Gutman, A. A. Dobrynin, S. Klavžar, L. Pavlović, Wiener-type invariants of trees and their relation, Bull. Inst. Combin. Appl. 40 (2004) 23-30.
[4] A. Graovac, T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53-62.
[5] F. Harary, Graph Theory, AddisonWesley, Reading, 1969.
[6] S. Hossein-Zadeh, A. Hamzeh, A. R. Ashrafi, Wiener-type invariants of some graph operations, FILOMAT 23 (2009) 103-113.
[7] W. Imrich, S. Klavžar, Product Graphs - Structure and Recognition, Wiley, New York, 2000.
[8] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discr. Appl. Math. 157 (2009) 804-811.
[9] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, S. G. Wagner, Some new results on distance-based graph invariants, Eur. J. Combin. 30 (2009) 1149-1163.
[10] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008) 1402-1407.
[11] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discr. Appl. Math. 156 (2008) 1780-1789.
[12] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, I. Gutman, The edge Szeged index of product graphs, Croat. Chem. Acta 81 (2008) 277-281.
[13] S. Klavžar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (1996) 45-49.
[14] S. Klavžar, I. Gutman, A theorem on Wiener-type invariants for isometric subgraphs of hypercubes, Appl. Math. Lett. 19 (2006) 1129-1133.
[15] E. A. Nordhaus, J. W. Gaddum, On complementary graphs, Amer. Math. Month. 63 (1956) 175-177.
[16] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
[17] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
[18] H. Yousefi-Azari, B. Manoochehrian, A. R. Ashrafi, The PI index of product graphs, Appl. Math. Lett. 21 (2008) 624-627.
[19] L. Zhang, B. Wu, The Nordhaus-Gaddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 189-194.

[^0]: *Corresponding author. Email address: ashrafi@kashanu.ac.ir

