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Abstract 

In this paper a formula for the number of 5-matchings in triangular–free and 4–cycle–free 
graph based on the number of vertices, edges, the degrees of vertices and the number of 5-
cycles was obtained. 
 
1. Introduction 
A graph G=(V,E)  is set containing vertices  and edges that these edges are two elements sets 

of vertices that they are denoted by V(G) and E(G), respectively. Graphs in this paper are 

finite, loopless and contains no multiple edges. For such a graph G, n and m are assumed the 

number of its vertices and edges respectively. We define a matching in G to be a spanning 

subgraph of G, whose components are vertices and edges. A k-matching is a matching with k 

edges. A perfect matching is a matching with edges only. We use the p(G,k) to denote the 

number of k-matching in G and it’s assumed that p(G,0)=1. 

The matching polynomial of graph G is denoted by µ (G, x) that defined by 

μ (�, �) = �(−1)����	
�
�  �(�, 
)����� 

The graphs that have the same matching polynomials are called co-matching. It is obvious 

that two isomorphic graphs are co-matching. But the reverse is not true [2]. However, some 

graphs that have this feature that co-matching is equal to isomorphism. These graphs can be 

characterized by their matching polynomials. For example, Petersen graph is one of these 
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graphs [2]. The graphs that are characterized by their matching polynomial are called 

matching unique. The above-mentioned feature has vital role in graphs categorization. 

The number of 3-matchings can be found in Farrel and Guo ([2]) to do this they used degrees 

of vertices and the number of vertices, edges and triangles also Behmaram ([1]) has calculated 

the number of 4-matchings in triangular-free graphs. 

 

2. Preliminaries 
It is obvious that the number of 1–matching is equal to the number of edges of G, i.e.  �(� , 1) = �. In this section we derived p(G, k) for k = 2,3,4. 

Lemma 2.1. If the degrees of vertices of G are ��, ��, … ,  then the number of 2–matching ؛��

is: 

� (�, 2) = ��2 � − � ���2 ��
�
�  

Lemma 2.2. Any graph that is co–matching with a regular graph is also regular of the same 

valency 

Lemma 2.3. 

� (�, 3) =  ��3 � −  (� − 2) � ���2 �� +  2 � ���3 �� +  �(���� −  1)��� –  1� −  �� 

where N� is the number of triangles in G 

Corollary 2.4. Let G be a regular graph of degree d with n vertices. Then, 

� (�, 2) =  (� − 4)� + 28  (��)  
� (�, 3) =  (�� − 12� + 40)�� +  (6� − 48)� + 1648 . (��) −  �� 

Proof. By m = ��� , Lemma 2.1. and Lemma 2.3.؛ the result is obvious. 

Corollary 2.5. suppose that G and H are two regular graphs which are co–matching, then the 

number of triangles in G is equal to the number of triangles in H. 

Proof. By Corollary 2.4. and Lemma 2.2., it is obvious. 

Lemma 2.6.[2] Let G be a triangular–free graph, with V (G) = {1, 2, …, n} and let the degree 

of vertex i is d�. Also, let N(i) be the set of neighbors of i in G. Hence, the number of 4–

matching is: 
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�(�, 4) =  ��4 � + (� − 2) �(���� −  1)��� −  1� −  � ���4 �� − � ���2 �{�,�}⊂" ���2 � 

− �   
� � (�� {�,#}⊂$ (�) −  1) (�# −  1) −  � ���2 �� � (� − %, 2) −  � ���3 ��  (� − ��)

−  � � (��   {�,&.#}⊂$ (�)� +  �& +  �# −  3) +  �' 

where �' is the number of 4–cycles in G. 
 

Corollary 2.7.  Let G be a triangular–free graph with n vertices which is regular of valency d. 

Then,  

�(�, 4) =  ��*� �-�/5 ��7��9:���*5 ����/� �-����;--��/5(:9��<9�)�5�-�;7-  (��) + �'     
Proof: By Lemma 2.6.and the relations � = ���  and 

p(G– i, 2) =   �m − d�2 � −  � >d?′2 @?A�  

 

where ��′ =  B �� − 1, CD�(%) ��          , C ∉  .the result is obviously obtained ؛ �(%)�

 

Corollary 2.8. suppose that G and H are two triangular – free regular graphs which are co–

matching, then the number of 4–cycles in G is equal to the number of 4–cycles in H. 

Proof: By Corollary 2.7. and Lemma 2.2. the result is clearly verified. 

 

3. The number of 5–matchings 
In the following theorem we will obtain a formula for the sixth coefficient, i.e, p (G, 5), of the 

matching polynomial in triangular–free and 4–cycle–free graphs. 

Theorem 3.1. Let G be a triangular–free and 4–cycle–free graph, with V(G) = {1,  2, …, n} 

and let the degree of vertex i is ��. Also, let N (i) be the set of neighbors of i in G. Hence, the 

number of 5–matchings is: 

� (�, 5) =  ��5 � −  � ���5 ��
�
�   −  � ���4 ��

�
� (� −  ��) − � ���3 ��
�
� �� − ��2 � 

                           − � ���2 ��
�
�  � (� − %, 3) +  �(�� − 1)�� ��� −  1� �� − �� −  �� +  2 2 � 
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                        − 3 � ��� –  12 � ��� −  12 � +  � � (�� − 1)�I$(�)�{�}#I$(�)�{�}���� (�J − 1) 

                          + � � K��# − 12 � (�� −  1) + ��� −  12 � (�# −  1)L {�,#}⊂$(�)%  

                              −(� − 4) � � (��{�,#}⊂$(�)� −  1)(�# −  1) 

                 + 2 � � [(��{�,&,#}⊂$(�)� −  1)(�& −  1) + (�� −  1)(�# −  1) + (�& −  1)(�# −  1)] 
                   − � ���2 � ���2 �{�,�}⊂" �(� −  % −  C, 1) + (� −  4) � � (�� +  �& +  �#{�,&,#}⊂$(�)� −  3)

−  3 � � (�� +  �& +   �# + �M −  4) −  �O {�,&,#,M}⊂$(�)�  

where �O  is the number of 5–cycles in G. 

Proof. To find p (G, 5), first we find the number of subsets of edges in G that have 5 edges, 

i.e., �PQ �. Then subtract the number of graphs in which they do not form a 5–matching.  

The possible subgraphs which do not form a 5–matching are shown in Figure 1. 

 

Let �O '� ؛ �R ؛ �� ؛ �S ؛ �T ؛ ^� ؛\� ؛�Z ؛�Y ؛�X ؛�W ؛�V ؛"� ؛�U ؛  and �_  denote the 

number of subgraphs of G that are isomorphic to P؛ q؛ S؛ T؛ X؛ Y؛ Z؛ V؛ H ؛   E؛ F؛ L؛ K؛ M؛ I 

and J respectively. Now, we calculate each of these numbers, as follows: �&: For counting the number of graphs that are isomorphic to S, we choose one vertex and 

then five edges adjacent to this vertex. Therefore, we have: 

�R =  � ���5 ��
�
�  

N`: For counting N`؛ first select an edge ij from E(G) , then choose two edges from each: i 

and j, except ij ,therefore, N` is: 

�S =  � ��� –  12 � ��� −  12 ���  

Na: For counting Na, we choose a vertex i from V (G) and then select a subset {k,s,t,r} from 

N(i). 

 

-36-



 

Then we select an edge which is adjacent to k, s, t or r, other than edges connecting k,s,t and r 

to i. Therefore, Na is: 

�X = � � (��{�,&,#,M}⊂$(�)� +  �& +  �# +  �M −  4) 

N�: For counting N� choose a vertex i from V(G) and then four edges that are adjacent to i. 

Then we select another edge that is not adjacent to i. 

But this single edge may be connected to four edges that are adjacent to i and so it makes a 

graph that is isomorphic to F. (see figure 2) 

 

 

 

 

 

 

Therefore, we subtract  Na. So we have 

Figure 2. The case T in fig.1 

i

P q S T 

X Y Z V 

H E F L 

L M K I J 

Figure 1. The possible subgraphs  which do not form  a 5-matching 
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�� =  � ���4 ��
�
� (� −  ��) −  �X 

Nb: For counting  Nb , we choose a vertex i from V(G) and then select a subset {k,t} from N(i). 

We select an edge adjacent to k and two edges adjacent to t, or conversely, except edges 

connecting k,t to i. There fore Nb is: 

�T =  � � [��# −  12 �{�,#}⊂$(�)� (�� −  1) +  ��� −  12 � (�# −  1)]. 
Nc: For counting  Nc , we choose a vertex i from V(G) and then select a subset {k,s,t} from 

N(i).after this we select an edge from k,t , k,s or s,t other than edges connecting k,s,t to i. 

Therefore Nc is: 

�V =  � � [(�e −  1)(�&{�,&,#}⊂$(�)� −  1) + (�� − 1)(�# −  1) + (�& −  1)(�# −  1)]. 
Nf: For counting  Nf, first select an edge ij from E(G), then choose a vertex t from N(j) – {i} 

and choose a vertex k from N(i) – {j}. Then select an edge from each t and k  tj and ki. 

It is possible that the edge from k and the edge from t be adjacent to each other which this 

makes a graph isomorphic to P. (See figure 3) Hence we subtract the number of cases in 

which they do not form graphs isomorphic to p. 

 
In the above figure, we count �O five times. 

Thus: 

�' =  � � (�� − 1)(�#�I $(�)�{�}#I $(�)� {�}�� −  1) − 5�g 

Nh : For counting Nh, we choose a vertex i from V(G) and then select three edges adjacent to i. 

After this we select two edges adjacent to each other except edges from i. But these two edges 

may be connected to edges of i. Now we subtract the number of cases in which these two 

edges are connected to edges of i. (See figure 4) 

Figure3. subgraph p 

K t 

i j 
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In the above counting we count N` twice (fig.4–a) and Nb once (fig.4–b). Therefore, Nh is: 

�W =  � ���3 � [�� −  ��2 ��
�
� −  � (� − %, 2)] − 2�S − �T. 

Nj: For counting Nj, we choose a vertex i from V(G) and then select a subset {k,t} from N(i). 

Then select an edge from each t and k, except edges connecting k, t to i. Now we have a path 

of length four (P5). The number of subgraphs in G that are isomorphic to P5 is 

� � (dl −  1)(dJ −  1).{l,J}⊂n(�)�  

After selecting P5, we choose one edge of graph that does not belong to P5. This edge must 

not be connected to the edges of P5. Therefore, we subtract the number of graphs in which 

this single edge is connected to P5. (see figure 5). 

 

 

 

 

 

 

 

Considering the above figure, we count �'  and �T  two times (fig.5–a,b) and �V  one time 

(fig.5–c) and �O five times (fig.5–d). 

Thus: 

Figure 4. The case of E in figure 1 

i j 

(a) 
(b) 

Figure 5. The case of Z in figure 1 

(a) (b) (c (d) 

, 

k t 

i 

k 

i 

t 

, 
K t

i
k 

t 

i 
, 
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�U = (� − 4) � � (��{�,#}⊂$(�)� −  1)(�# −  1) −  2�' −  2�T − �V −  5�O. 
�Y: For counting �Y, we choose a vertex i from V(G) and then select a subset {k,s,t} from N(i). 

Then we select an edge which adjacent to k, s or t, exept edges connecting k,s,t to i. Finally, 

we choose another edge, except mentioned edges. The last edge must not be connected to 

edges of i, t, s and k. (see figure 6). Hence, subtract the number of cases in which they do not 

form graphs isomorphic to L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

the above counting we count �V  twice (fig.6–a) and �T  once (fig.6–b) and �S  four times 

(fig.6–c) and �X three times (fig.6–d). Therefore, �Y is: 

�Y = (� − 4) � � (�� +  �&{�,&,#}⊂$(�)� +  �# −  3) − 2�V −  �T −  4�S −  3�X. 
No: For counting No, we select an edge ij, then choose two edges that are adjacent to it. Then 

select a 2–matching from G-{i,j}. Now subtract the number of cases in which edges of the 2–

matching are connected to edges that are adjacent to ij. (see figure 7). 

k ti

s

(c

s

 
k i t k i

s

t 
 

 

k i t

(a (b

(d

Figure 6. The case of L in figure 1 

s 
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In the above figure , we count �U twice (fig.7–a) and �' once ( fig.7–b). Therefore, �\ is: 

�\ =  �(���� −  1)��� −  1��(� − % − C, 2) −  2�U −  �'. 
Nq: For counting Nq, choose a vertex i of V(G) and select two edges adjacent to i. Then select 

a 3–matching from G-i. Now subtract the number of cases in which edges of the 3–matching 

are connected to edges of i. (see figure 8) 

 

 

 

 

 

 

 

 

 

 

In the above  we count No twice (fig.8–a) and Nj once (fig.8–b). Therefore, Nq is: 

�Z =  � ���2 �  r(� − %, 3) −  2�\
�

�
� −  �U. 
Ns: For counting the number of graphs which are isomorphic to V, choose a vertex i of V(G) 

and select three edges adjacent to i. Then select a 2–matching from G–i. Now subtract the 

number of cases in which edges of the 2–matching are connected to edges of i. (see figure 9). 

, 

i 
i 

(a) (b) 

Figure 8. The case of K in figure 1 

j 

i i 

, 
j 

(a) (b) 

Figure 7.The case of M in figure 1 
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i  
 

Considering the above figure, we count Nt and Nc once (fig.9–a,b). 

Thus:  

�" =  � ���3 ��
�
�  �(� − %, 2) −  �Y −  �V. 

Nu: For counting  Nu, first select an edge ij from E(G), then choose two edges that are adjacent 

to ij. Hence we have a path of length three (P4). After selecting P4, we choose two edges 

adjacent to each other of graph G that does not belong to P4. Now, subtract the number of 

cases in which two adjacent edges are connected to at least one edge of P4 except ij (see 

figure 10). 

 

 

 

 

 

 

 

 

 

 

In mentioned process, we count �' twice (fig.10–a) and �T once (fig.10–b) and �O five times 

(fig.10–c). Thus: 

�^ =  �(���� −  1)��� −  1�[�� −  �� −  �� +  12 � −  r(� –  v –  C, 2)]  −  2�' −  �T −  5�O  

i

,

(a) (b)
Figure 9. 

i 

j 

, 

i 

j 

, 

i j 

(a) (b) (c) 

Figure 10. The case of Z in figure 1 
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j 

Nw: In this case, first select a subset {i,j} from V(G), then choose two edges from i and j, too 

Then choose another edge that is not adjacent to i and j. 

Now subtract the number of cases in which they do not from graphs isomorphic to J. These 

cases are as follows: 

1. One of the edges of i is connected to one of j. 

2. One edge of i is connected to j. 

3. The last single edge is connected to edges of i and j. 

 Cases of 1,2 and 3 are shown in figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the above we count N(a) once (fig.11–a) and N(b) twice (fig.11–b). so we have: 

�(x) +  2�(y) =  �(���� −  1)��� −  1�(� −  �� −  �� +  1) 

Where N(a) and N(b) denote the number of subgraphs of G that are isomorphic to (a) and (b) 

respectively. Also we count Nc twice (fig.11–c), Nb once (fig.11–d), Nt once (fig.11–e), Nu 
twice (fig.11–f), Nf  twice (fig.11–g), Nc  once (fig.11–h), Nz  five times (fig.11–i), Nj  once 

(fig.11–j) and Nf once (fig.11–k). 

Thus: 

)j(  

Figure 11. 

, , , , , 

(a) (b) (c (d) (e) (f) 

i

 

i 

j 

i 

j 

i 

j 

i 

j 

i j 

, , , , 

(g) (h) (i)  (k) 

i j 
i j i j i j i

j 
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�_ =  � ���2 � ���2 �{�,�}⊂"  r(� − % − C, 1) −  �(�� −  1)(���� −  1) (� −  �� −  �� +  1) 

             – 3�V −  �T − �Y −  2�^ −  3�' −  5�O – �U. 
Now, the number of 5–matching is: 

�(�, 5) =  ��5 � − �O −  �' −  �& −  �� −  �S −  �T −  �U −  �" − �V −  �W −  �X −  �Y− �Z −  �\ −  �^ −  �_ 

The result is obtained by direct substitution into above formula. 

Corollary 3.2. Let G be a triangular–free and 4–cycle–free graph with n vertices which is 

regular of valency d. 

Then, 

r(�, 5) =  ��5 � −  � ��5� −  � (� + 11 � − 12) ��4�
+  � K 6 (� − 1)� +  3 (� − 4)(� − 1) −  �� − �2 �L ��3� 

                           + � [�� (�, 2) −  r(�, 3) −  �� (� − 2� + 1) −  �(� − 1)(� − 3� + 2)
+  (� − 1)� (� − 2) −  (� − 4)(� − 1)�] ��2�  −  |(� –  2�) ��2� +  �~ ��2��

 

                           + � (� − 1)�  �� − 2� + 22 � −  3� �� − 12 �� +  � (� − 1)- − �O 

 

Proof. In this case we have  

� ���5 ��
�
� = � ��5� 

� ���4 ��
�
�  (� −  ��) =  � (� − �) ��4� 

� ���3 ��
�
� �� −  ��2 � = � �� − �2 � ��3� 

� ���2 ��
�
�  �(� − %, 3)

= [�(�, 3) −  ��(�, 2) +  �� (� − 2� + 1)+  �(� − 1)(� − 3� + 2)]. �. ��2� 
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�(���� −  1)��� −  1� �� −  �� −  �� +  22 � = � (� − 1)�  �� − 2� + 22 � 

� ��� −  12 � ��� −  12 ��� = � �� −  12 ��
 

� � (�� − 1)� ∈$(�)�{�}#∈$(�)�{�}�� (�# −  1) =  � (� − 1)- 

� � [��# −  12 �{�,#}⊂$(�)�  (�� −  1) +  ��� −  12 � (�# −  1)] = 2� (� − 1) �� − 12 � ��2� 

� � (��{�,#}⊂$(�)� −  1)(�# −  1) =  � (� − 1)�  ��2� 

� � [(��{�,&,#}⊂$(�)� −  1) (�& −  1) + (�� −  1)(�# −  1) +  (�& −  1)(�# −  1)]
= 3� (� − 1)�  ��3� 

� ���2 � ���2 �{�,�}⊂"  �(� − % − C, 1) = | ��2� (� − 2�) +  �~ ��2��
 

� � (��{�,&,#}⊂$(�)� +  �& +  �# −  3) = 3� (� − 1) ��3� 

� � (�� +  �&{�,&,#,M}⊂$(�)� +  �# +  �M −  4) = 4� (� − 1) ��4� 

The result is obtained by direct substitution into the formula for p(G,5), given in the theorem. 

 

Corollary 3.3. Let G and H be triangular–free and 4–cycle–free regular graphs and suppose 

that G and H are co–matching graphs. Then the number of 5–cycles in G and H are equal. 

Proof: From µ(G,x)= µ(H,x), we deduce that  

p(G,5) = p(H,5) and it follows from corollary 3.2. and lemma 2.2. that   Nz(G) = Nz(H). 

 

Acknowledgment. We appreciate the financial support of Islamic Azad University of 
Mahshahr that helped us in the way of doing this work. 

 

 

-45-



References 

[1] E. J. Farrell, J. M. Guo, On matching coefficients, Discr. Math. 89 (1991) 203–210. 

[2] A. Behmaram, On the number of 4–matching in graphs, MATCH Commun. Math. 

Comput. Chem. 62 (2009) 381–388 

[3] C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993. 

[4] D. M. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent Results in the Theory of 

Graph Spectra, Annals of Discrete Math., North Holland, 1987. 

[5] G. B. Khosroshahi, C. Maysoori, B. Tayfe-Rezaie, A note on 3–factorization of 
��, J. 

Combin. Des. 9 (2001) 379–383. 

-46-


