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Abstract. The Cluj index is a topological index that is defined as: [UM ]ij =
max|vi,j,pk | ; k = 1, 2, ... where,

vi,j,pk = {v|v ∈ V (G); div < djv; (i, v)h ∩ pk = i; pk ∈ D(G)orΔ(G);h, k = 1, 2, ..}

In this paper, we find an exact formula for the Cluj index of TUC4C8(S) nanotubes.

1 Introduction

Mathematical calculations are absolutely necessary to explore the important concepts in

chemistry. Mathematical chemistry is a branch of theoretical chemistry for discussion

and prediction of the molecular structures using mathematical methods without neces-

sarily referring to the quantum mechanics. Chemical graph theory is an important tool

for studying the molecular structures. This theory had an important effect on the devel-

opment of chemical sciences. A topological index is a real number related to a molecular

graph. It must be a structural invariant. It does not depend on either the labeling or the

pictorial representation of a graph. Several indices have been so far defined and many

of them have found applications as means to model chemical, pharmaceutical and other

properties of molecular structures. The Wiener Index is the first topological index to be

used in chemistry( [1–5,17,18]).
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It was introduced in 1974 by Harlod Wiener as” the path number for characterization

of alkanes”. The unsymmetric Cluj matrix [6], UCJ, has been proposed by Diudea [7]. It

is defined by using either the distance or the detour concept. The non-diagonal entries;

[UM ]ij; M = CJD(Cluj-Distance) or CJΔ(Cluj-Detour), are defined as:

[UM ]ij = max|vi,j,pk | k = 1, 2, . . .

vi,j,pk = {v|v ∈ V (G); div < djv; (i, v)h ∩ pk = i; pk ∈ D(G)orΔ(G);h, k = 1, 2, ..} .

where, |vi,j,pk | is the cardinality of the set vi,j,pk ; which is taken as the maximum overall

paths pk = (i, j)k. D(G) and Δ(G) are the set of distances (i.e, geodesics) and detours

(i.e, elongations), respectively. The set vi,j,pk consists of vertices v lying closer to the

vertex i (condition div < djv). This variant of Cluj matrices is called at least one of the

pathes (v, i)h must be external with respect to the path (i, j)k : (i, v)h ∩ pk = i. In cycle-

containing structures; more one than path (i, j)k may exist; thus supplying various sets of

vi,j,pk . By definition, the (i, j)-entry in the Cluj matrices are square arrays of dimension

N ×N , usually unsymmetric, where vi,j,pk is the set of disconnected vertices. This fact is

undesirable when molecular graph (which are always connected graphs ) are investigated.

If vi,j,pk real (connected) chemical fragments are wanted, the Cluj fragmental matrices

are defined. In this version; the sets of vi,j,pk defined as:

vi,j,pk = {v|v ∈ V (Gp);Gp = G− pk; div(Gp) < djv(Gp); pk ∈ D(G)orΔ(G)}

where div(Gp) and djv(Gp) are the topological distances between the vertex v and the

vertices i and j, respectively in the spanning subgraph Gp resulted by cutting the path

pk = (i, j)k (except its endpoints) from G. Now the set of vi,j,pk consists of vertices lying

closer to the vertex i in Gp. This version is called all pathes external to the path (i, j)k ;

by reason that all paths (i, v)h;h = 1, 2, ... are external with respect to pk, since the last

path was already cut off. The diagonal entries are zero.

The cluj indices are calculated ( [7–16]) as half-sum of the entries in a Cluj symmetric

matrix; M, M = CJD,CJΔ, CFD,CFΔ

IE(M) =
1

2

∑
i

∑
j

[M ]ij[A]ij (1)

IP (M) =
1

2

∑
i

∑
j

[M ]ij (2)
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or from an unsymmetric Cluj matrix, by:

IE2(UM) =
1

2

∑
i

∑
j

[UM ]ij[UM ]ij[A]ij (3)

IP2(UM) =
1

2

∑
i

∑
j

[UM ]ij[UM ]ij (4)

The number defined on edge, IE, is an index, while the number defined on path; IP,

is a hyper-index. Note that the operators, IE and IP, as well as the operators,IE2 and

IP2, may be applied to both symmetric and unsymmetric matrices. When the last two

operators are calculated on a symmetric matrix, the terms of sum represent the squared

entries in that matrix. This is the reason for the number 2 in the symbol of these

operators. It is obvious that IE(M) = IE2(UM) and IP (M) = IP2(UM) with the

condition that M = (UM)(UM)T , where, (UM)T is the transpose of the unsymmetric

matrix, UM .

2 Construction of TUC4C8(S) nanotube

TUC4C8(S) nanotube is made of octagonal and tetrahedron. In TUC4C8(S)[p, q]; the

first letter in the bracket is the number of octagons in the first row, while q denotes the

number of octagons in the first column.

Remark 1. TUC4C8(S) has horizontal and vertical symmetry lines (see Figure 1).

Remark 2. TUC4C8(S) has 4p q vertices (see Figure 1).

3 Results and discussion

In this section, we obtain an exact formula for the Cluj index of TUC4C8(S) on edge.

By using (1), we have the following formula:

IE(CJD) =
1

2

∑
i

∑
j

[CJD]ij[A]ij (5)

Definition 1. The sum of entries in the ith row of [CJD]ij[A]ij is called as the value

of the ith vertex , which is denoted by vi. So, we obtain the value of all vertices by

”Topo− Cluj”. Now we compute the Cluj index of TUC4C8(S)[p, q] by relation (5).

Let G be the graph of TUC4C8(S)[p, q] (see Figure 1). In this graph, all of vertices have

degree two or three. In the following lemmas, we will obtain the values of all vertices of
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degree two and three, separately.

Lemma 1. The total values of all vertices, which have degree two in the TUC4C8(S)[p, q]

Figure 1: TUC4C8(S)[2, 3]

are equal to:
32

3
p3 +

32

3
p2q +

16

3
p+ 16p q + 32q2 (6)

Proof. The lemma is approved by using of Table 1 and (2) and relation (5).

Table 1, is the table of all vertices values, which have degree two at the first row.

Table 1: The values of vertices of degree two at the first row
q → 1 2 3 4 5
p ↓
1 valuation 8 12 16 20 24

number 4 4 4 4 4

2 valuation 24, 28 28, 40 32, 52 36, 64
number 4, 4 4, 4 4, 4 4, 4

3 valuation 48, 52, 64 52, 64, 84 57, 76, 104
number 4, 4, 4 4, 4, 4 4, 4, 4

4 valuation 80, 84, 96, 116 84, 96, 116, 144
number 4, 4, 4, 4 4, 4, 4, 4

5 valuation 120, 124, 136, 156, 184
number 4, 4, 4, 4, 4

At first, we obtain the exact formula for the total values of all vertices in the first row

(when octagons joint with each other there are vertices of degree three at the first row).
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The smallest value of vertices in TUC4C8(S)[p, q] is equal to 4(q + p2) + 8pq. The next

values of vertices follow the formula below:

4(p− k)(2q − (p+ k)) ; k = 1, ..., p− 1

The number of vertices for these values is equal to 4.

Then we have:

4× (4(q + p2) + 8pq) + 4×
(

p−1∑
k=1

(
4(q + p2) + 4((p− k)(2q − (p+ k))) + 8pq

))

= 8p2 + 48p2 q +
16

3
p3 +

8

3
p (7)

Next, we obtain the exact formula for the total values of all vertices in the first column

(there are vertices of degree two at the first column). Table (2) shows the values of all

vertices which have degree two at the first column.

Table 2: The values of vertices of degree two at the first column
q → 1 2 3 4 5
p ↓
1 valuation 8 16 24 32 40

number 4 8 12 16 20

2 valuation 24, 28 40, 44 56, 60 72, 76
number 4, 4 8, 4 12, 4 16, 4

3 valuation 48, 52, 64 72, 76, 88 108, 112, 124
number 4, 4, 4 8, 4, 4 12, 4, 4

4 valuation 80, 84, 96, 116 112, 116, 128, 148
number 4, 4, 4, 4 8, 4, 4, 4

5 valuation 120, 124, 136, 156, 184
number 4, 4, 4, 4, 4

The smallest value of these vertices in TUC4C8(S)[p, q] is equal to 4p(2q − (p − 1)).

The next values of vertices is equal to k2 , k = 1, ..., p− 1.

The numbers of vertices for the above values is equal to:{
4(q − (p− 1)) k = 0

4 k 
= 0 .

So, we have:

4(q − (p− 1))× 4p(2q − (p− 1)) + 4×
p−1∑
k=1

(4p(2q − (p− 1)) + 4k2)

= 32q2 − 16p2q + 16qp− 8p2 +
16

3
p3 +

8

3
p (8)
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Finally, we obtain the total values of all vertices of degree two by adding up (7) and
(8).

Hence, the total values of all vertices which have degree two in the TUC4C8(S)[p, q] are

equal to:

32

3
p3 +

32

3
p2q +

16

3
p+ 16p q + 32q2 (9)

Lemma 2. The total values of all vertices which have degree three in the TUC4C8(S)[p, q]

are equal to:

−16q p2 − 16

3
p+ 96q2 p2 − 48q2 p− 16q p− 32

3
p3. (10)

Proof. The lemma is approved by using of Table 3 and relation (5).

Table 3 shows the values of all vertices which have degree three.

Table 3: The valuaes of vertices of degree three
q → column 1 2 3 4 5
p ↓ number

2 0 28 40 52 64
1 number 0 4 8 12 16

2 52 72, 76 92, 96 112, 116
number 4 4, 4 4, 4 4, 4

2 4 52, 56 76, 80 100, 104 124, 128
number 4, 4 4, 8 4, 12 4, 16

3 56 84 112 140
number 4 8 12 16

2 104, 116 132, 144, 148 160, 172, 176
number 4, 4 4 , 4 , 4 4 , 4 , 8

4 104, 116, 120 136, 148, 152 168, 180, 184
number 4 , 4 , 4 4 , 4 , 8 4 , 4 , 12

3 6 116, 120 152, 156 188, 192
number 4, 4 4, 8 4, 12

5 116, 120, 124 156, 160, 164 196, 200, 204
number 4 , 4 , 4 4 , 8 , 4 4 , 12 , 4

3 120, 124 164, 168 208, 212
number 4, 4 8, 4 12, 4

2 172, 192, 204 208, 228, 240, 244
number 4 , 4 , 4 4 , 4 , 4 , 4

4 172, 192, 204, 208 212, 232, 244, 248
number 4 , 4 , 4 , 4 4 , 4 , 4 , 8

6 192, 204, 208 236, 248, 252
number 4 , 4 , 4 4 , 4 , 8

8 192, 204, 208, 212 240, 252, 256, 260
4 number 4 , 4 , 4 , 4 4 , 4 , 8 , 4

7 204, 208, 212 256, 260, 264
number 4 , 4 , 4 4 , 8 , 4

5 204, 208, 212, 224 260, 264, 268, 280
number 4 , 4 , 4 , 4 4 , 8 , 4 , 4

3 208, 212, 224 268, 272, 284
number 4 , 4 , 4 8 , 4 , 4

We can obtain the values of vertices of degree three by the following method:

1-The values of even columns are arranged from top to bottom.

2-The values of odd columns are arranged from bottom to top.
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3-From top, we put the values of two columns in one brace like the sample below:

k = p− 1 =

{
2
4

.

.

.

k = 1 =

{
7
5

k = 0 = {3
Remark 3. The values of the third column are always put in one brace.

During this process; we observe that one of the sequences in one brace is shorter than the

other sequence except for k = 0 (because it has just one value sequence) and k = p − 1

that has two value sequences with same length except for p = q mode. The smallest values

of vertices in the second column in k = p − 1 brace is equal to 4((2p + 1)q + (2p − 1)).

The smallest values of other columns is equal to:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4((2p+ 1) q + (2p− 1) + ((p− 1)2 − k2) + (q − p) (2p− (2k + 2)))
k = 0, ..., p− 1 short sequence

4((2p+ 1) q + (2p− 1) + ((p− 1)2 − k2) + (q − p) (2p− (2k + 1)))
k = 1, ..., p− 1 long sequence

Distance of the next values from the smallest one in each sequence are equal to j(2k −
j) , j = 0, ..., k − 1 and the rest of values are equal to:

(k2 − 1) + i(i− 2)

i =

{
1, .., p− (k + 1) k = 0, ..., p− 2
1 k = p− 1.

Therefore, we have:⎧⎪⎪⎨
⎪⎪⎩

4((2p+ 1) q + (2p− 1) + ((p− 1)2 − k2) + (q − p) (2p− (2k + 2)) + j(2k − j)
k = 0, ..., p− 1 j = 1, ..., k − 1 short sequence
4((2p+ 1) q + (2p− 1) + ((p− 1)2 − k2) + (q − p) (2p− (2k + 1)) + j(2k − j))
k = 1, ..., p− 1 j = 1, ..., k − 1 long sequence

For the rest of values, we have:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4((2p+ 1)q + (2p− 1) + ((p− 1)2 − k2) + (q − p)(2p− (2k + 2)) + (k2 − 1) + (i(i− 2) + 2))

i =

{
1, .., p− (k + 1) k = 0, ..., p− 2
1 k = p− 1.

short sequence

4((2p+ 1) q + (2p− 1) + ((p− 1)2 − k2) + (q − p) (2p− (2k + 1)) + (k2 − 1) + (i(i− 2) + 2))
k = 1, ..., p− 1 i = 1, ..., p− 1 long sequence
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The numbers of vertices for the above values are equal to:

1-For i = 1, there are 4(q-(p-1)) vertices.

2-For short sequence, when k = p− 1 and i = 1, there are 4(q − p) vertices.

3- Otherwise, there are 4 vertices.

At last,

4

(
p−1∑
k=0

k−1∑
j=0

(4((2p+ 1)q + (2p− 1)) + ((p− 1)2 − k2)

+(q − p)(2p− (2k + 2)) + j(2k − j))

)

=
64

3
qp3 − 24qp2 +

8

3
qp− 28

3
p2 +

4

3
p4 + 8p3 (11)

4

(
p−1∑
k=1

k−1∑
j=0

(4((2p+ 1)q + (2p− 1)) + ((p− 1)2 − k2)

+(q − p)(2p− (2k + 1)) + j(2k − j))

)

=
64

3
qp3 − 16qp2 − 16

3
qp− 4

3
p2 +

4

3
p4 (12)

4

(
p−2∑
k=0

p−(k+1)∑
i=2

(4((2p+ 1)q + (2p− 1)) + ((p− 1)2 − k2)

+(q − p)(2p− (2k + 1)) + (k2 − 1) + i(i− 2) + 2)

)

= −16 + 40

3
p− 16q − 104

3
qp+

4

3
p2 − 4

3
p4 +

8

3
p3 +

80

3
qp3 + 24qp2 (13)

4(q − (p− 1))

(
p−2∑
k=0

(4((2p+ 1)q + (2p− 1)) + ((p− 1)2 − k2)

+(q − p)(2p− (2k + 2)) + (k2))

)
= −16(−q + p− 1)(p− 1)q(3p+ 1) (14)

(4(q − p)(4((2p+ 1)q + (2p− 1)) + (p− 1)2)) = −16(−q + p)(2qp+ q + p2) (15)

4

(
p−1∑
k=1

p−k∑
i=2

(4((2p+ 1)q + (2p− 1)) + ((p− 1)2 − k2)

+(q − p)(2p− (2k + 1)) + (k2 − 1) + i(i− 2) + 2)

)

= −160

3
qp+

80

3
qp3 − 4

3
p4 − 68

3
p2 − 80qp2 +

40

3
p+

32

3
p3 (16)
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The total values of all vertices, which have degree three in the TUC4C8(S)[p, q] are

obtained by adding up (11),(12),(13),(14),(15) and (16). So lemma is approved as:

−16q p2 − 16

3
p+ 96q2 p2 − 48q2 p− 16q p− 32

3
p3.

The main result of this section is the following theorem.

Theorem. The Cluj index of TUC4C8(S)[p, q] is equal to:

IE(CJD) = 16p2q + 32q2 + 96q2p2 − 48q2p2.

Proof. The theorem is approved by the above lemmas and relation (5).

Remark 4. If the figure of TUC4C8(S)[p,q] rotates 90 degree, there will be no difference

in the values of all vertices. Hence, Cluj index of TUC4C8(S)[p,q] is equal to Cluj index

of TUC4C8(S)[q,p].

Example. For p=2 and q=2, cluj index of TUC4C8(S)[p, q] is equal to 704.

4 Conclusion

One of the famous topological indices is Cluj index. In this paper we could obtain the

exact formula for the Cluj index of TUC4C8(S)[p, q] nanotube.

Acknowledgment. The Authors would like to thank the anonymous referee for useful

comments.
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