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Abstract 

A novel topological index, called Cluj-Tehran CT, is defined on the ground of Shell 
polynomials. The polynomial coefficients are calculated by means of Shell matrices, built up 
according to the vertex distance partitions of a graph. Close formulas for calculating the Shell 
polynomial in case of Cluj matrices and the corresponding Cluj-Tehran CT index in several 
particular classes of graphs are given.  

 

Introduction 
 

Finite sequences of some graph invariants, such as the distance degree sequence or the 

sequence of the number of k-independent edge sets can be written as polynomials, as was 

introduced by Hosoya with his Z-counting polynomial.1 Later, a variety of counting 

polynomials have been defined and their properties investigated.2-6 Interested readers are 

invited to consult some recent books in the field.7-10  

 Among the counting polynomial, of particular interest proved to be the Shell 

polynomials, proposed by Diudea,11 which are Hosoya polynomials12 weighted with 
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topological or physico-chemical local properties, useful in Mathematical Chemistry and 

correlating studies. 

Let’s define the entries in a Shell matrix ShM as:8,13 

 
,

, ,[ ] [ ]
i v

i k i v
v d k�

� �ShM M  (1) 

where M is any square topological matrix. Any other operation over the square matrix entries 

� � vi,M  can be used.  The Shell matrix is a collection of the above defined entries: 

 � �,[ ] ; ( ); [0,1,.., ( )]i k i V G k d G� � �ShM ShM  (2) 

The zero column � � ,0iShM  is the diagonal entries in the info matrix M.  

Define now the Shell polynomial10,11 as: 

 ( ) ( , ) k
k

ShM x p G k x� 3�  (3) 

with p(G,k) being sets of  local contributions (of extent k) to the global (molecular) property 

( ) ( , )P G p G k�4   and summation running up to d(G). 

 The polynomial coefficients are calculable from the above defined shell matrices, as 

the half sums on columns. Any square matrix M can be used as info matrix in calculating the 

Shell-polynomials. 

 
Cluj-Tehran index 
 
 On the ground of Shell polynomials and the first two derivatives, in x=1, we define 

here the Cluj-Tehran index10 as: 

 ( , ) (1) (1/ 2) (1)CT ShM G ShM ShM. ..� 
  (4) 

The formula is the same as that used in calculating the Hyper-Wienner WW index14 on Hosoya 

polynomial, with the difference the actual index is more general; in the name of actual index, 

the name/symbol of the info matrix must be specified. 

The index WW can be obtained from the ShD(x) as the half sum of the zero and first 

derivatives, in x=1: 

 ( ) [ (1) (1)] / 2WW G ShD ShD.� 
  (5) 

Relation (5) is true in any graph. Note, the value of  ShD(x), in x=1, equals the Wiener index15 

W(G). The above formulas are exemplified on the graph G1 in Table 1. 

-122-



1
2

3
4

5

6

7 G1 

 

                   Table 1. Polynomial ShD(x) and CT index in G1. 

  ShD(G1)     D(G1)     

  i  \  k  1 2 3 4 RS  1 2 3 4 5 6 7 RS 
1  1 4 6 4 15  0 1 2 3 4 2 3 15 
2  3 4 3 0 10  1 0 1 2 3 1 2 10 
3  3 6 0 0 9  2 1 0 1 2 2 1 9 
4  2 4 6 0 12  3 2 1 0 1 3 2 12 
5  1 2 6 8 17  4 3 2 1 0 4 3 17 
6  1 4 6 4 15  2 1 2 3 4 0 3 15 
7  1 4 9 0 14  3 2 1 2 3 3 0 14 

CS  12 28 36 16 92  15 10 9 12 17 15 14 92 

 
ShD(x) 

  
6x 

 
+14x2 

 
+18x3 

 
+8x4 

          

P(1,G1)      46       W    
P’(1,G1)      120        WW=(46+120)/2=83 
P”(1,G1)      232          

CT (ShD)      236          
 

Shell-Cluj polynomial 

A Cluj fragment7,10,16 
pjiCJ ,,  collects vertices v lying closer to i than to j, the endpoints 

of a path p(i,j). It collects the vertex proximities of i against any vertex j, joined by the path p, 

with the distances measured in the subgraph G-p:  

 � �),(),();( )()(,, vjDviDGVvvCJ pGpGpji �� 5��  (6) 

In graphs containing rings, more than one path could join the pair (i, j), thus resulting 

more than one fragment related to i (with respect to j and a given path p). The entries in the 

Cluj matrix are taken, by definition, as the maximum cardinality among all such fragments: 

 pj,i,
p

CJmax�ji,[UCJ]  (7) 

In trees, due to the unique nature of paths joining any two vertices, pjiCJ ,,  represents 

the set of paths going to j through i. In this way, the path p(i,j) is characterized by a single 

endpoint, which is sufficient to calculate the unsymmetric matrix UCJ. When the path p 

-123-



belongs to the set of distances DI(G), the suffix DI is added to the name of matrix, as in 

UCJDI. When path p belongs to the set of detours DE(G), the suffix is DE. In trees, due to the 

uniqueness of the paths, the two variants of Cluj matrices superimpose. When the matrix 

symbol is not followed by a suffix, it is implicitly DI. Thus, UCJ can be calculated on path 

UCJp or on edges UCJe, the last one being obtained as the Hadamard pair-wise product of 

UCJp with the adjacency matrix A (having the entries 1 if the pair (i,j) belongs to E(G) or 

zero, otherwise): 

 UCJe = UCJp 	 A (8) 

The Cluj matrices are defined in any graph; they are non-symmetric matrices, 

excepting some symmetric graphs, when are symmetric ones. They can be symmetrized by the 

Hadamard multiplication with the corresponding transposes: 

 SCJp = UCJp 	 (UCJp)T (9) 

To calculate the Shell-Cluj polynomial ShUCJ(x), only the unsymmetric matrix UCJ 

will be used. It is worthy mentioned that, in tree graphs, the polynomial derivatives, in x=1, 

are: P(1,G)=W(G) and P’(1,G)=WW(G), properties which come out from the properties of 

Cluj matrices. The above formulas are exemplified on the graph G1 in Table 2.  

Table 2. Polynomial ShUCJ(x) and CT index in G1. 

  ShUCJ(G1)     UCJ(G1)     

  i  \  k  1 2 3 4 RS  1 2 3 4 5 6 7 RS 
1  1 2 2 1 6  0 1 1 1 1 1 1 6 
2  15 6 3 0 24  6 0 3 3 3 6 3 24 
3  15 13 0 0 28  4 4 0 5 5 4 6 28 
4  8 4 4 0 16  2 2 2 0 6 2 2 16 
5  1 1 2 2 6  1 1 1 1 0 1 1 6 
6  1 2 2 1 6  1 1 1 1 1 0 1 6 
7  1 2 3 0 6  1 1 1 1 1 1 0 6 

CS  42 30 16 4 92  15 10 9 12 17 15 14 92 

 
ShUCJ(x) 

  
21x 

 
+15x2 

 
+8x3 

 
+2x4 

          

P(1,G1)      46  W    

P’(1,G1)      83  WW    
P”(1,G1)      102   

CT(ShUCJ)      134   
  

For cycles, an example of the Shell-Cluj polynomial is given in Table 3. It can be seen that the 

relations with W and WW indices are not obeyed in cycle-containing graphs. 
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Table 3. Polynomial ShUCJ(x) and CT index in the simple cycle C6. 

  ShUCJ(C6)    UCJ(C6)    

  i  \  k  1 2 3 RS  1 2 3 4 5 6 RS 
1  6 4 2 12  0 3 2 2 2 3 12 
2  6 4 2 12  3 0 3 2 2 2 12 
3  6 4 2 12  2 3 0 3 2 2 12 
4  6 4 2 12  2 2 3 0 3 2 12 
5  6 4 2 12  2 2 2 3 0 3 12 
6  6 4 2 12  3 2 2 2 3 0 12 

CS  36 24 12 72  12 12 12 12 12 12 72 

 
ShUCJ(x) 

  
18x 

 
+12x2 

 
+6x3 

         

P(1)     36     Compare: 

P’(1)     60       W=27 
P”(1)     60     WW=42 

CT(ShUCJ)     90   
 

Shell-Cluj polynomial and CT-index in particular graphs 
 

Three classes of graphs are next investigated to find close formulas for calculating 

the Shell-Cluj ShUCJ(x) polynomial and Cluj-Tehran CT index: paths Pn, stars S1,m, and 

simple cycles Cn. 

Paths Pn 
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Examples: CT(ShUCJ(Pn)); 2,10n � : 1; 6; 21; 56; 126; 252; 462; 792; 1287. 
 

Stars S1,m;  n=1+m. 

2
1,

1
( , )

2 2m

n n
ShUCJ S x x x


� � � �
� 3 
 3� � � �
� 
 � 
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Examples: CT(ShUCJ(S1,m)); 3,10n � :    15; 28; 45; 66; 91; 120; 153; 190. 

 
Cycles Cn 

Case: 0(mod 4). 

� �
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2( ,1) (3 8) / 32nShUCJ C n n� 
  

2 2( ,1) (4 3 4) / 96nShUCJ C n n n. � 
 �  

3 2( ,1) (5 12 8) / 384nShUCJ C n n n.. � � �  

2 3 2( ( (0(mod4))) (5 20 16 32) / 768nCT ShUCJ C n n n n� 
 
 �  

Examples: CT(ShUCJ(Cn,0(mod4))); n=8,12,16:    328; 2190; 8608 
 

Case: 1(mod 4). 

� �
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( ,1) ( 1)(3 1) / 32nShUCJ C n n n� � 
  

2( ,1) ( 1)(4 7 9) / 96nShUCJ C n n n n. � � 
 
  

3 2( ,1) ( 1)(5 7 9 21) / 384nShUCJ C n n n n n.. � � � � �  

2( ( (1(mod4))) ( 1)( 3)(5 10 17) / 768nCT ShUCJ C n n n n n� � 
 
 
  

Examples: CT(ShUCJ(Cn,1(mod4))); n=9,13,17:    576; 3224; 11560 

Case: 2(mod 4). 

� �
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( ,1) ( 2)(3 2) / 32nShUCJ C n n n� 
 
  

2( ,1) ( 2)(4 5 6) / 96nShUCJ C n n n n. � 
 � 
  

2( ,1) ( 2)( 2)(5 12 12) / 384nShUCJ C n n n n n.. � � 
 � 
  

3 2( ( (2(mod 4))) ( 2)(5 10 4 24) / 768nCT ShUCJ C n n n n n� 
 
 � 
  

Examples: CT(ShUCJ(Cn,2(mod4))); n=6, 10,14:    90; 935; 4564 

 
Case: 3(mod 4). 

� �
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n
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n k n nShUCJ C x n x x x
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) &� 3 
 
 3' $( %
�  

( ,1) ( 1)(3 1) / 32nShUCJ C n n n� 
 �  

2( ,1) ( 1)(4 9) / 96nShUCJ C n n n n. � 
 � �  

2( ,1) ( 1)( 3)(5 2 15) / 384nShUCJ C n n n n n.. � 
 � � �  

2 2( ( (3(mod4))) ( 1) (5 10 27) / 768nCT ShUCJ C n n n n� 
 
 �  

Examples: CT(ShUCJ(Cn,3(mod4))); n=7, 11,15:    168; 1419; 6240 
 

 In the above, the last row in each case gives examples of CT index. The calculations 

were performed by the TOPOCLUJ software package. 

 

Correlating ability of CT index 
Topological indices TIs are among the simplest and efficient descriptors for QSPR/QSAR. We 

tested the newly proposed Cluj-Tehran CT index, namely CT(Sh(DegDI) in predicting some 

physico-chemical properties of Octane alkanes.17 The best correlations have been obtained 

with the values of boiling point BP, entropy S and total surface area TSA (Table 5). The results were 

compared with those obtained for the simple Degree-Distance DegDI index and with those available 

online in the IAMC database.18 
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Table 4. Octanes and their boiling point BP, entropy S and total surface area TSA values 

 Molecule BP S TSA CT(ShDegDI) 
 
1  

9.153 111.67 415.3 1470 

 
2 

 
9.120 109.84 407.85 1155 

 
3 

 
9.115 111.26 397.34 978 

 
 
4  

9.114 109.32 396.04 921 

 
 
5 

 

9.108 109.43 379.04 744 

 
 
6 

 

9.065 103.42 405.11 767 

 
 
7 

 

9.079 108.02 384.93 693 

 
8 

 
9.082 106.98 388.11 727 

 
9 

 

9.088 105.72 395.08 875 

 
10 

 

9.056 104.74 389.79 585 

 
11 

 
9.074 106.59 376.91 602 

 
 
 

12 

 

9.073 106.06 368.1 545 

 
 

13 

 

9.049 101.48 366.99 460 
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14 

 

9.023 101.31 371.75 443 

 
15 

 

9.031 104.09 392.19 545 

 
 

16 

 

9.020 102.06 377.4 409 

 
 

17 

 

9.044 102.39 368.93 494 

 
 

18 

 

8.971 93.06 390.47 307 

 
Table 5. Statistics of QSPR study on Octanes  

 R2 BP S TSA 

1 DegDI17 0.913 0.771 0.520 

2 CT(ShDegDI)17 0.8182 0.6460 0.613 

3 Best in Octanes18 

(monovariate) 
0.782 

  
0.920 

  
0.721 

 

 
One can see, CI index shows a moderately good ability in predicting some physico-

chemical properties of alkanes, which could be useful in multi-variate regression studies. 
 
Conclusions 
 

A novel topological index, called Cluj-Tehran CT, is defined on the ground of Shell 
polynomials. The polynomial coefficients are calculated as the column half sums of Shell 
matrices, built up according to the vertex distance partitions of a graph. Close formulas to 
calculate the Shell-Cluj polynomial and the corresponding Cluj-Tehran index in several 
particular classes of graphs were given.  

The CT descriptors have been tested in prediction of some physico-chemical properties 
of octane alkanes, with promising results, particularly those defined on combination ShDegDI 
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and are continuing tested in our labs on any combination ShM for correlating and 
discriminating abilities. 
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