On the Laplacian Estrada Index of Unicyclic Graphs

Jianping Li1,2, Jianbin Zhang2

1Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510090, P. R. China
2School of Mathematics, South China Normal University, Guangzhou 510631, P. R. China

(Received September 1, 2011)

Abstract

Let G be a simple graph with n vertices. If $\mu_1, \mu_2, \ldots, \mu_n$ are the Laplacian eigenvalues of G, then the Laplacian Estrada index is defined as $\text{LEE}(G) = \sum_{i=1}^{n} e^{\mu_i}$. In this paper, the unicyclic graph on n vertices with the maximal Laplacian Estrada index is determined.

1 Introduction

Given a simple graph G with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$, the adjacency matrix $A(G) = [a_{ij}]$ of G is an $n \times n$ symmetric matrix of 0’s and 1’s with $a_{ij} = 1$ if and only if v_i and v_j are joined by an edge. Denote the degree of vertex v_i by $d_G(v_i)$. Then the Laplacian matrix of G is $L(G) = D(G) - A(G)$, where $D(G)$ is the diagonal matrix $\text{diag}(d_G(v_1), d_G(v_2), \ldots, d_G(v_n))$. Since $A(G), L(G)$ are real symmetric matrices, their eigenvalues $\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G)$ and $\mu_1(G), \mu_2(G), \ldots, \mu_n(G)$, respectively, are real numbers. The eigenvalues of $A(G)$ and $L(G)$ are called the adjacency eigenvalues and the Laplacian eigenvalues of G, respectively. In what follows we assume that $\lambda_1(G) \geq \lambda_2(G) \geq \ldots \geq \lambda_n(G)$ and $\mu_1(G) \geq \mu_2(G) \geq \ldots \mu_{n-1}(G) \geq \mu_n(G) = 0$.

The Laplacian Estrada index of a graph G is defined in [9] as $\text{LEE}(G) = \sum_{i=1}^{n} e^{\mu_i(G)}$.
(Independently of [9], another variant of the Laplacian Estrada index was put forward in [10], defined as $LEE^*(G) = \sum_{i=1}^{n} e^{\lambda_i(G) - 2m/n}$. Bounds and various properties of Laplacian Estrada index were found in [9–14]. For a bipartite graph G with n vertices and m edges, it is shown [8] that

$$LEE(G) = n - m + e^2 \cdot EE(L(G)),$$

where $L(G)$ is the line graph of G, and $EE(L(G)) = \sum_{i=1}^{n} e^{\lambda_i(L(G))}$ is the Estrada index ([5–7]) of $L(G)$. Using the formal (1) and the results of Estrada index, Allić and Zhou [8] showed that the path P_n has minimal, while the star S_n has maximal Laplacian Estrada index among trees on n vertices. Obviously, this method is not suited to calculate the Laplacian Estrada index of the general graphs. So, it is interesting to consider the index for the non-bipartite graphs.

Let G be a graph with n vertices and m edges. If $n = m$, then we call G an unicyclic graph. Let S_n^3 be the unicyclic graph obtained by adding an edge to the star graph S_n. In this paper, we will show that S_n^3 is the unique unicyclic graph on n vertices with maximal Laplacian Estrada index.

2 Main Results

Let G be a graph with n vertices and let $G^* = G + e$ be the graph obtained from G by inserting a new edge e into G.

Lemma 1 [1, 3] The Laplacian eigenvalues of G and G^* interlace, that is, $\mu_1(G^*) \geq \mu_1(G) \geq \mu_2(G^*) \geq \mu_2(G) \geq \cdots \geq \mu_n(G^*) = \mu_n(G) = 0$.

Lemma 2 [15] Let G be a graph with vertex set $V(G)$ and edge set $E(G)$, and N_u be the set of neighbors of u. Then

$$\mu_1(G) \leq \max\{d_G(u) + d_G(v) - |N_u \cap N_v| : uv \in E(G)\}.$$

Let $s(G) = \max\{d_G(u) + d_G(v) - |N_u \cap N_v| : uv \in E(G)\}$ and $n(G) = |V(G)|$. Clearly, if G is an unicyclic graph with n vertices, then $s(G) \leq n$.

Lemma 3 Let G be an unicyclic graph with $n \geq 8$ vertices and $s(G) \leq n(G) - 2$. Then $LEE(G) \leq LEE(S_n^3)$ with equality if and only if $G \cong S_n^3$.

Proof. By induction on \(n \) to prove it. From the Appendix table of [2], there are 57 unicyclic graphs on 8 vertices of \(s(G) \) not greater than 6. We give Table 1 for the LEE of these graphs, in which we use the same graph labels as the Appendix table of [2]. It implies that the result holds for \(n = 8 \).

\[
\begin{array}{cccccc}
\text{Label} & \text{LEE} & \text{Label} & \text{LEE} & \text{Label} & \text{LEE} \\
1 & 134.7549405 & 16 & 186.9609149 & 36 & 262.8445145 \\
2 & 160.1365435 & 17 & 195.4963498 & 40 & 375.5477041 \\
3 & 162.8965473 & 18 & 194.0249743 & 46 & 148.2025007 \\
4 & 161.8648960 & 19 & 197.9591155 & 47 & 171.0874842 \\
5 & 185.7915381 & 20 & 196.4963498 & 48 & 173.6518608 \\
6 & 167.9367951 & 21 & 200.5709879 & 49 & 177.5303931 \\
7 & 189.8493511 & 22 & 273.9601119 & 50 & 180.1005287 \\
8 & 188.0623938 & 24 & 221.0272062 & 51 & 171.2211615 \\
9 & 187.0766847 & 25 & 225.1528983 & 52 & 173.6518608 \\
10 & 191.4014165 & 26 & 262.3182544 & 53 & 204.5253414 \\
11 & 166.9477426 & 27 & 229.4185558 & 54 & 194.2417996 \\
12 & 249.2712699 & 28 & 229.5574315 & 55 & 200.5944661 \\
13 & 213.8766018 & 29 & 269.3362990 & 56 & 232.4648707 \\
14 & 217.8546022 & 31 & 285.4468880 & 57 & 200.4666498 \\
15 & 254.8665304 & 33 & 289.9695503 & 58 & 239.4760009 \\
\end{array}
\]

We now suppose that \(n \geq 9 \) and the result is true for graphs with vertex number less than \(n \). Let \(G \) be a graph with \(n \) vertices. Suppose \(G \cong C_n \). Then \(\mu_1(C_n) \leq 4 \) and \(LEE(G) \leq \mu_1(C_n) \leq 4 \). Note that \(LEE(S_n) = e^n + e^3 + e^1 + \cdots + e^0 > e^n \). Let \(f(n) = e^n - n \cdot e^4 \). Note that \(f'(n) = e^n - n > 0 \), and \(f(7) = e^7 - 7e^4 > e^4 > 0 \). Hence, \(LEE(S_n) > e^n > n e^4 \geq LEE(G) \). Suppose \(G \not\cong C_n \). Then \(G \) must have a pendent vertex. Let \(wt \in E(G) \) with \(d_G(w) = 1 \) and \(G' = G - w \), then \(s(G') \leq s(G) \leq n - 2 \) and \(G = G' \cup \{w\} \). Let \(Spec(G') = \{\mu_1, \mu_2, \cdots, \mu_{n-1}\} \) be the Laplacian spectra of \(G' \), then

\[
LEE(G' \cup \{w\}) = \mu_1 + \mu_2 + \cdots + \mu_{n-1} + e^0.
\]

Note that \(\mu_1(H) + \mu_2(H) + \cdots + \mu_n(H) = 2m \) for any graph \(H \) and \(m \) denotes the number of edges in \(H \). By Lemma 1, then we can assume that the Laplacian spectra of \(G \), is

\[
Spec(G) = \{\mu_1 + x_1, \mu_2 + x_2, \cdots, \mu_{n-1} + x_{n-1}, 0\},
\]

where \(x_i \geq 0 \) and \(\sum_{i=1}^{n-1} x_i = 2 \).

Case 1. \(s(G') \leq n(G') - 2 = n - 3 \). Then

\[
LEE(G) = \sum_{i=1}^{n-1} e^{\mu_1 + x_i} + e^0 \leq e^{\mu_1 + 2} + \sum_{i=2}^{n-1} e^{\mu_i} + e^0
\]

\[
= e^{\mu_1 + 2} - e^{\mu_1} + e^0 + \sum_{i=1}^{n-1} e^{\mu_i}
\]

\[
= e^{\mu_1 + 2} - e^{\mu_1} + e^0 + LEE(G')
\]
By the induction hypothesis, \(LEE(G') \leq LEE(S^3_{n-1}) \) with equality if and only if \(G' \cong S^3_{n-1} \). Now by Lemma 2, \(\mu_1 \leq s(G') \leq n - 3 \), and we have

\[
LEE(G) \leq e^{\mu_1+2} - e^{\mu_1} + e^0 + LEE(S^3_{n-1}) \\
= e^{\mu_1+2} - e^{\mu_1} + e^0 + (e^{n-1} + e^3 + (n-4)e^1 + e^0) \\
= LEE(S^3_n) - [e^n - e^{n-1} + e^1 - e^0 - (e^{\mu_1+2} - e^{\mu_1})] \\
\leq LEE(S^3_n) - [e^n - e^{n-1} + e^1 - e^0 - (e^{n-2} - e^{n-3})] \\
= LEE(S^3_n) - (e - 1)e^{n-3}(e^2 - e - 1) \\
< LEE(S^3_n).
\]

Case 2. For any pendent vertex \(w \), \(s(G - w) = n - 2 \). Then \(s(G) = n - 2 \) since \(n - 2 = s(G - w) \leq s(G) \leq n - 2 \). That is, \(s(G - w) = s(G) = n - 2 \) for any pendent vertex \(w \).

Suppose that \(uv \in E(G) \) such that \(d_G(u) + d_G(v) - |N_u \cap N_v| = s(G) \).

Subcase 2.1. \(u, v \) have no common neighbor. Suppose without loss of generality that \(d_G(u) = y + 1 \geq x + 1 = d_G(v) \). Then \(d_G(u) + d_G(v) = s(G) = n - 2 \), \(x + y = n - 4 \), and \(G \) can be viewed as the connected graph obtained from a double star \(S(x + 1, y + 1) \) and two isolated vertices by adding three edges to them such that each of the three edges is not incident to \(u \) and \(v \), where a double star \(S(a, b) \) is the tree obtained from the stars \(S_a \) and \(S_b \) by joining their centers an edge. Let \(d_G(z_1) = \max\{d_G(z) | z \in V(G) \setminus \{u, v\} \} \). Then \(d_G(z_1) \leq 4 \).

Suppose \(x \geq 4 \). Then \(d_G(u) \geq d_G(v) \geq 5 \), and there must exists a pendent vertex adjacent to \(u \) in \(G \). Let \(w_1 \) be an any pendent vertex at \(u \), then \(s(G - w_1) = s(G) - 1 = n - 3 \), a contradiction.

Suppose \(x = 3 \). If \(d_G(z_1) = 4 \), then \(z_1 \in V(S(x + 1, y + 1)) \setminus \{u, v\} \) and the new three edges are all incident to \(z_1 \). Suppose that \(z_1 \) is adjacent to \(v \), there must exist a pendent vertex, say \(w_2 \), adjacent to \(v \), and then \(s(G - w_2) = s(G) - 1 = n - 3 \), a contradiction. If \(d_G(z_1) \leq 3 \), then \(d_G(u) \geq d_G(v) \geq 4 > d_G(z_1) \), and there must exist a pendent vertex, say \(w_3 \), that incident to \(u \) or \(v \). Clearly, \(s(G - w_3) < s(G) = n - 2 \), a contradiction again.

Suppose \(x = 2 \). Then \(y = n - 6 \geq 3 > x \). Clearly, there is no pendent vertex \(w_4 \) adjacent to \(u \) in \(G \). Otherwise, \(s(G - w_4) = s(G) - 1 \). A contradiction. If \(n \geq 11 \), then \(y = n - 6 \geq 5 \) and there must exist a pendent vertex \(w_5 \) adjacent to \(v \), and consequently \(s(G - w_5) = s(G) - 1 \), a contradiction. So \(9 \leq n \leq 10 \). If \(n = 10 \), then \(y = 4 \). Since there are no pendent vertices adjacent to \(u \), there exists at least a pendent vertex \(w_6 \).
adjacent to \(v \). Clearly, \(s(G - w_6) = s(G) - 1 \), a contradiction. If \(n = 9 \), note the condition \(s(G - w) = s(G) = 7 \) for any pendent vertex \(w \) of \(G \), then \(G \) must be \(H_1 \) or \(H_2 \) in fig.1. By direct computation, the result follows.

Suppose \(x = 1 \). Then \(y = n - 4 - 1 \geq 4 \). If \(n \geq 10 \), then there exists a pendent vertex \(w_7 \) at \(u \) in \(G \). Clearly, \(s(G - w_7) < s(G) \), a contradiction. Thus \(n = 9 \) and \(G \cong H_3 \), where \(H_3 \) is shown as in Fig.1. It is easy to prove the result by direct computation.

By combining Cases 1 and 2, the result follows. \(\square \)

Lemma 4 Let \(G \) be an unicyclic graph with \(n \geq 8 \) vertices and \(s(G) = n - 1 \). Then \(\text{LEE}(G) \leq \text{LEE}(S^3_n) \) with equality if and only if \(G \cong S^3_n \).

Proof. Suppose that \(uv \) be the edges such that \(d_G(u) + d_G(v) - |N_u \cap N_v| = n - 1 \).

If \(u \) and \(v \) have no common neighbors, then \(G \) can be viewed as the connected graph obtained from a double star \(S(a, b)(a + b = n - 1) \) and an isolated vertex by adding two
edges such that the two new edges are not incident to both u and v. Then G must be one of graphs in Fig.2 and Fig.3.

If u and v have a common neighbor, then G can be viewed as the connected graph obtained by G' and an isolated vertex by adding two edges such that the two new edges are not incident to both u and v, where G' is the graph obtained from a triangle $C_3 = zuvz$ by joining respectively x and y isolated vertices to u and v, where $x + y = n - 4$. Thus G must be one of graphs in Fig.4.

Note the fact that $G_i (i = 1, 2, \ldots , 9)$ has Laplacian eigenvalues 1 with multiplicity at least $n_1 + n_2 - 2$ and 0 with multiplicity 1. If $n_1 + n_2 = n - 6$, then we suppose
that \(\mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6, \mu_7 \) are the remaining Laplacian eigenvalues of \(G \), then
\[
\mu_1 + \mu_2 + \mu_3 + \mu_4 + \mu_5 + \mu_6 + \mu_7 = 2n - (n - 8) \cdot 1 - 0 = n + 8.
\]
By Lemma 2, it follows that \(\mu_1 \leq s(G) = n - 1 \). So, we have that for \(n - 1 \geq 9 \),
\[
LEE(G_i) = e^\mu_1 + e^\mu_2 + e^\mu_3 + e^\mu_4 + e^\mu_5 + e^\mu_6 + e^\mu_7 + (n - 8)e^1 + e^0
\leq e^{n-1} + e^0 + 5e^0 + (n - 8)e^1 + e^0
< e^n + e^3 + 5e^1 + (n - 8)e^1 + e^0
= LEE(S'_n)
\]
and for \(n - 1 \leq 9 \),
\[
LEE(G_i) \leq e^{n-1} + e^{n-1} + e^{10-n} + 4e^0 + (n - 8)e^1 + e^0
< e^n + e^3 + e^1 + 4e^1 + (n - 8)e^1 + e^0
= LEE(S'_n)
\]
Similarly, we can prove the result for the cases \(n_1 + n_2 = n - 4 \) and \(n_1 + n_2 = n - 5 \), and then complete the proof.

![Figure 5 Graphs G10, G11 and G12.](image)

Lemma 5 Let \(G \) be the unicyclic graph with \(n \geq 9 \) vertices and \(s(G) = n \). Then \(LEE(G) \leq LEE(S'_n) \) with equality if and only if \(G \cong S'_n \).

Proof. Since \(s(G) = n \), \(G \) is a type of graphs in Fig.5. By direct computation we can obtain that the Laplacian characteristic polynomials of \(G_{10}, G_{11} \) and \(G_{12} \) are respectively
\[
L_{G_{10}}(x) = x(x - 1)^{n-5}[x^4 - (n + 5)x^3 + (n_1n_2 + 6n + 4)x^2 - (3n_1n_2 + 10n - 4)x + 4n]
L_{G_{11}}(x) = x(x - 1)^{n-4}[x^3 - (n + 2)x^2 + (n + 1 + n_1n_2 + 2n_1)x - n]
L_{G_{12}}(x) = x(x - 1)^{n-5}[x^4 - (n + 5)x^3 + (5n + n_1n_2 + 7)x^2 - (7n + 2n_1n_2 + 3)x + 3n].
\]
Then we can obtain that \(G_{10} \) has Laplacian eigenvalues 1 with multiplicity \(n - 5 \), 0 with multiplicity 1, and the largest Laplacian eigenvalue less than \(n - 1 \). By a similar proof of Lemma 4, it follows that \(LEE(G_{10}) < LEE(S'_n) \). Similarly, we also can prove that \(LEE(G_{11}) < LEE(S'_n) \) for \(n_1 \geq 1, n_2 \geq 0 \), and \(LEE(G_{12}) < LEE(S'_n) \) for \(n_1, n_2 \geq 1 \) and \(n \geq 9 \). If \(n_1 = 0 \), then \(G_{12} \cong S'_n \). Thus we complete the proof. \(\square \)
By Lemmas 3, 4 and 5 it follows

Theorem 1 Let G be a connected graph with n vertices and n edges, where $n \geq 9$. Then

$$\text{Lee}(G) \leq e^n + e^3 + (n - 3)e + 1$$

with equality if and only if $G \cong S_n^3$.

References

