The Energy of Kneser Graphs

Benjian Lv, Kaishun Wang*

m
Sy
Beijing Normal University, Beijing, 100875, China
E-mail: benjian@mail.bnu.edu.cn, wangks@bnu.edu.cn

(Received December 5, 2011)

Abstract

In this note, by proving two combinatorial identities, we compute the energy of Kneser graphs.

Let \(\Gamma \) be a graph with \(n \) vertices and eigenvalues \(\lambda_1, \ldots, \lambda_n \). The energy of \(\Gamma \) is defined as \(E(\Gamma) = |\lambda_1| + \cdots + |\lambda_n| \). A graph \(\Gamma \) is said to be hyperenergetic if \(E(\Gamma) > 2n - 2 \). The concept of hyperenergeticity was first introduced by Gutman in [3]. Hyperenergetic graphs are important because molecular graphs with maximum energy pertain to maximality stable \(\pi \)-electron systems.

The Kneser graph \(K(v, k) \) is the graph with \(k \)-subsets of a fixed \(v \)-set as its vertices, with two vertices adjacent if they are disjoint. By [2, Theorem 9.4.3], if \(v \geq 2k + 1 \) then the eigenvalues of \(K(v, k) \) are \((-1)^j \binom{v-k-j}{j} \) with multiplicity \(\binom{v}{j} - \binom{v}{j-1} \), \(j = 0, 1, \ldots, k \). Then the energy of \(K(v, k) \) is

\[
E(K(v, k)) = \sum_{j=0}^{k} \left(\binom{v}{j} - \binom{v}{j-1} \right) \binom{v-k-j}{j}.
\]

Akbari [1] proved that \(K(v, k) \) is hyperenergetic for any integers \(v \) and \(k \geq 2 \) with \(v \geq 2k + 1 \). In this note, we shall compute the energy of Kneser graphs.

We start with two combinatorial identities.

*Corresponding author
Lemma 1 For any odd number \(n \) and any integer \(k \) with \(2k > n > 0 \), we have
\[
\sum_{j=0}^{n} (-1)^j \binom{n}{j} \binom{2k-n}{k-j} = 0.
\]

Proof. Note that
\[
\sum_{j=0}^{n} (-1)^j \binom{n}{j} \binom{2k-n}{k-j} = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{n-j} \binom{2k-n}{k-n+j} = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \binom{2k-n}{k-j}.
\]
Since \(n \) is odd number, the desired result follows.

Lemma 2 For any integer \(r \) and positive integer \(k \), we have
\[
\sum_{j=0}^{k} (-1)^{k-j} \binom{r}{j} \binom{2k-r}{k-j} = \frac{(r-1)(r-3) \cdots (r-2k+1)2^k}{k!}.
\]

Proof. Consider the polynomial
\[
g(x) = \sum_{j=0}^{k} (-1)^{k-j} \binom{x}{j} \binom{2k-x}{k-j} - \frac{(x-1)(x-3) \cdots (x-2k+1)2^k}{k!}.
\]
The degree of \(g(x) \) is at most \(k \). Lemma 1 implies that \(1, 3, \ldots, 2k-1 \) are \(k \) distinct roots of \(g(x) \). Since \(g(0) = 0 \), we have \(g(x) = 0 \). Hence \(g(r) = 0 \), as desired.

Theorem 1 For \(v \geq 2k+1 \), the energy of \(K(v, k) \) is
\[
E(K(v, k)) = \frac{(v-1)(v-3) \cdots (v-2k+1)2^k}{k!}.
\]

Proof. Since
\[
\sum_{j=0}^{k} \binom{v}{j} \left(\binom{v}{j-1} \right) \left(v-k-j \right) = \sum_{j=0}^{k} \binom{v}{j} \binom{v-k-j}{k-j} - \sum_{j=1}^{k} \binom{v}{j-1} \binom{v-k-j}{k-j} = \sum_{j=0}^{k} \binom{v}{j} \left(\binom{v-k-j-1}{k-j} + \binom{v-k-j-1}{k-j-1} \right) - \sum_{j=0}^{k-1} \binom{v}{j} \binom{v-k-j-1}{k-j-1} = \sum_{j=0}^{k} \binom{v}{j} \binom{v-k-j-1}{k-j} = \sum_{j=0}^{k} (-1)^{k-j} \binom{v}{j} \binom{2k-v}{k-j},
\]
by Lemma 2 the desired result follows.
Acknowledgement

This research was partially supported by NSF of China, NCET-08-0052 and the Fundamental Research Founds for the Central Universities of China.

References

