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Abstract 

In the last few decades, the use of similarity measures has been becoming more and more 

important due to the relevance of comparing samples in order to find out clusters of similar 

samples, to generate priority lists, and, in general, to discover patterns in data structures.  

In drug design, their relevance is already well established to search for the most suitable 

alternative to a target drug. In the QSAR field they are currently the key factor in read-accross 

strategy along with the defined chemical space. 

Similarity indices for binary variables are usually called similarity coefficients and their first 

definitions date back to the end of the 19th century provided by scientists especially interested 

in taxonomic studies. Till date, more than 50 different similarity coefficients have been found 

in the literature, each having its own mathematical properties and characteristics and used in 

different scientific fields. 

In this paper, five new similarity coefficients for binary data are proposed and compared with 

some well-known similarity coefficients.  
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1.  Introduction 
A great variety of data can be represented by binary variables [1;2], which express binary 

status of the sample, i.e. presence/absence, yes/no, true/false. For example, in archeology, 

binary data may denote that a particular artifact is found or not in a specific location; in 

taxonomy, binary data may denote the presence or absence of a particular taxonomic 

character in species; in psychology, binary data may denote if a person has a specific 

psychological trait; in chemistry, binary data may denote presence or absence in a molecule of 

a specific fragment or functional group. 

Let two objects s and t be described by two binary vectors x and y each comprised of p 

variables with values 0/1. The binary similarity measures are commonly calculated from the 

data reported in Table 1, where a, b, c, and d are the frequencies of the events (x = 1 and 

y = 1), (x = 1 and y = 0), (x = 0 and y = 1), and (x = 0 and y = 0), respectively, in the pair of 

binary vectors describing the objects s and t; p is the total number of variables, equal to a + 

b + c + d, which is the length of each binary vector.  
 

Table 1. Frequency table of the four possible combinations for two binary variables. 

 y = 1 y = 0  

x = 1 a b a + b 

x = 0 c d c + d 

 a + c b + d p 
 

In other words,  

V a is the number of variables equal to one for both objects (common "presences")  

V d is the number of variables equal to zero for both objects (common "absences") 

V a + b is the number of variables equal to one for the s-th object  

V a + c is the number of variablese equal to one for the t-th object.  

 

The diagonal entries a and d give information about the degree of similarity between the two 

objects, whereas the entries b and c give information about their dissimilarity.  

There are two basic groups of similarity coefficients: symmetrical measures of similarity and 

asymmetrical measures of similarity. Symmetrical measures of similarity use both a and d, 

meaning that the double-zero state (d) for two objects (e.g. absence of a feature in both 

objects) is treated in exactly the same way as any other pair of values. These measures should 
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be used when the double-zero state is a valid basis for comparing two objects; on the contrary, 

asymmetrical measures of similarity can be used, which skip the double-zero state in the 

similarity evaluation. 

Some of the most common similarity coefficients are listed in Table 2. 

 

2.  New binary similarity coefficients 
Five new similarity coefficients are proposed in this paper and are listed in Table 3. 

As it can be seen from their formula, they are simply derived by applying the logarithm 

transformation to some common similarity coefficients and some their variants. All these 

coefficients range between 0 and 1. 

The coefficients T1, T3 and T4 are obtained by the independent logarithm transformation of 

the numerator and denominator of Sokal-Michener (SM), Russel-Rao (RR) and Jaccard-

Tanimoto (Ja) coefficients, respectively. T2 is a logarithmic variant of T1, while T5 is a 

logarithmic variant of the similarity coefficients based on correlation, i.e. ranging between -1 

and +1. The denominator of T5 corresponds to the maximum value the numerator can reach. 
 

Table 2. Seven common binary coefficients. 

Symbol Similarity coefficient Name Ref 

Ja sJa
a

a b c



� �
 Jaccard (1912) - Tanimoto [3] 

RR RR
as
p


  Russel – Rao (1940) [4] 

SM sSM
a d

p
�



 

Sokal-Michener (1958),  
simple matching   

[5] 

SS1 1s
2 2SS
a

a b c



� �
 Sokal – Sneath 1 (1963) [6] 

SS2 2
2 2sSS

a d
p a d

�



� �
 Sokal – Sneath 2 (1963) [6] 

SS3 3
1
4SS

a a d ds
a b a c b d c d

$ %
 � � � �& '� � � �( )  
Sokal – Sneath 3 (1963) [6] 

SS4  ! !  ! !4SS
a ds

a b a c b d c d

 �

� � � �  
Sokal – Sneath 4 (1963) [6] 
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3.  Data sets 
In order to investigate the new similarity coefficients and compare them with existing ones, 

three simple simulated data sets (A, B, and C) have been generated, each comprised of a 

different number (20, 40, 60, respectively) of binary vectors of variable lenght: A (20x10), B 

(40x5), and C (60x10), respectively. 

Along with the three simulated data sets, a real data set was taken from the literature.  It 

consists of 125 pesticides, each described by 69 binary variables calculated by Dragon 6 

software [7] and representing the presence/absence of atom pairs at different topological 

distances (between 1-4). 

This data set was used to evaluate the performance of the considered similarity coefficients in 

structure similarity analysis of chemicals. 
 

Table 3. The five new binary similarity coefficients. 

Symbol New similarity coefficients Derived from 

T1 
 !

 !1

1
1T

log a d
s

log p
� �



�

 SM 

T2 
 !  !

 !2

1 1
1T

log p log b c
s

log p
� � � �



�

 - 

T3 
 !
 !3

1
1T

log a
s

log p
�



�  

RR 

T4 
 !

 !4

1
1T

log a
s

log a b c
�



� � �  

Ja 

T5 
 !  !

 !5 2

1 1
1 4T

log ad log bc
s

log p /
� � �



�  

- 

 

 
4.  Comparison of similarity coefficients 
Starting from the three simulated data sets, the similarity coefficients under investigation were 

calculated for each pair of objects, obtaining 190, 780 and 1770 similarity profiles for the data 

sets A, B, and C, respectively, Finally, all the similarity profiles were queued to generate a 

unique set constituted by 2740 records. Then, the matrix constituted by 2740 rows (pairs of 

objects) and 12 columns (the studied similarity coefficients) has been evaluated by Principal 

Component Analysis (PCA), correlation, and rank analyses. 
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In order to evaluate characteristics and relationships of the new similarity coefficients, a first 

comparison (Table 3) with seven of the most common coefficients (Table 2) was carried out 

by using PCA on the data set collecting different similarity values for 2740 pairs of objects. 

The loading plots of the first four PCs, explaining 98.4% of the total variance, are shown in 

Fig. 1 and 2. These plots are useful to study the relationships among asymmetrical 

coefficients represented by triangles and symmetrical coefficients represented by circles; the 

new similarity coefficients are represented by squares. 

The first component (PC1, Fig. 1) explains 78.5% of the total variance; all the loadings have 

almost the same values, meaning that this PC is related to the global degree of similarity 

between samples as measured by the different coefficients; this component is not particularly 

significant for the goal of this paper since it does not highlight differences among the 

similarity coefficients. The second component (PC2, Fig. 1) explains 14.1% of the variance 

and distinguishes symmetric (on the top) from asymmetric coefficients (on the bottom); 

indeed, positive loadings are related to symmetric coefficients such as simple matching (SM), 

second, third and fourth Sokal-Sneath coefficients (SS2, SS3 and SS4), and the novel 

coefficients T1, T2, and T5, which are also symmetric with respect to a and d counts; negative 

loadings are related to asymmetric coefficients, i.e. first Sokal-Sneath (SS1), Jaccard-

Tanimoto (Ja), and Russel-Rao (RR) coefficient, together with T3 and T4. It is also 

noteworthy that the coefficients T3 and T4 are relatively isolated along PC2, thus revealing in 

some way a different kind of asymmetrical behaviour. 

The third and fourth components (PC3 and PC4, Fig. 2) explain only 5.9% of the total 

variance and reveal some details about differences among the studied similarity coefficients. 

PC3 mainly explains some differences among symmetrical indices and specifically highlights 

the opposite behaviour of SS2 and T1 on the left side and SS4 on the right side, whereas PC4 

highlights the opposite behaviour of SS1 and T2 on the upper side and T5 on the bottom side. 

With the exception of T1 and SS2 coefficients, in the PC4 vs PC3 plot, all the other 

coefficients appear relatively isolated thus representing some specific information not 

explained by the other ones. 

Relationships among the twelve similarity coefficients were further investigated by 

calculating the pairwise correlations of similarity coefficients by using both the Pearson 

formula (Table 4) and the Spearman rank correlation coefficients (Table 5). 
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From the Pearson correlations (Table 4), it results that the classical indices are largely 

correlated to each other with values always greater than 0.5. The same consideration holds for 

the new indices, with the exception for the correlation pair T2 and T3 (ρ = 0.370). 

Considering the relationships between old and new indices, the minimum correlation values 

are observed for the pairs RR and T2 (ρ = 0.459), SM and T3 (ρ = 0.475), and SS2 and T3 (ρ = 

0.490). Note that a correlation background around 0.4-0.5 could be expected due to the 

common derivation of all the indices from only four parameters (a, b, c, and d). 

Moreover, the maximum correlation between the new indices is observed for the pair T3 and 

T4 (ρ = 0.964), whereas the largest correlation between old and new similarity coefficients is 

found for the pair second Sokal-Sneath coefficient (SS2) and T1 (ρ = 0.984). Also the 

correlations SM-T1, SM-T2, RR-T3, Ja-T4, SS3-T5 are relatively high (ρ = 0.949, 0.949, 

0.948, 0.948, and 0.968, respectively), as expected from the relationships implied by their 

definitions. Among the classical binary coefficients, SM and SS2 also have high correlation 

equal to 0.983. 

 

Fig. 1. Loading plot of PC2 vs PC1 of the similarity coefficients in analysis. 
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Fig. 2. Loadings of PC4 vs PC3 of the similarity coefficients in analysis. 
 
 
 
 
Table 4. Pearson correlations between the 12 studied binary similarity coefficients. In boldface, the correlations 
greater than 0.98 and in italic the correlations greater than 0.90. 

 SM  Ja RR SS1 SS2 SS3 SS4 T1 T2 T3 T4 T5 

SM  1 0.745 0.519 0.752 0.983 0.912 0.832 0.949 0.949 0.475 0.620 0.854 

Ja 0.745 1 0.893 0.976 0.706 0.808 0.832 0.688 0.730 0.872 0.948 0.777 

RR 0.519 0.893 1 0.831 0.515 0.569 0.541 0.514 0.459 0.948 0.903 0.566 

SS1 0.752 0.976 0.831 1 0.692 0.785 0.832 0.663 0.787 0.773 0.872 0.743 

SS2 0.983 0.706 0.515 0.692 1 0.897 0.777 0.984 0.890 0.490 0.615 0.834 

SS3 0.912 0.808 0.569 0.785 0.897 1 0.944 0.873 0.855 0.586 0.734 0.968 

SS4 0.832 0.832 0.541 0.832 0.777 0.944 1 0.747 0.830 0.569 0.742 0.897 

T1 0.949 0.688 0.514 0.663 0.984 0.873 0.747 1 0.827 0.523 0.634 0.795 

T2 0.949 0.730 0.459 0.787 0.890 0.855 0.830 0.827 1 0.370 0.544 0.798 

T3 0.475 0.872 0.948 0.773 0.490 0.586 0.569 0.523 0.370 1 0.964 0.581 

T4 0.620 0.948 0.903 0.872 0.615 0.734 0.742 0.634 0.544 0.964 1 0.713 

T5 0.854 0.777 0.566 0.743 0.834 0.968 0.897 0.795 0.798 0.581 0.713 1 
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Table 5. Spearman rank correlations between the 12 studied binary similarity coefficients. In boldface, the 
correlations greater than 0.98 and in italic the correlations greater than 0.90. 

 SM  Ja RR SS1 SS2 SS3 SS4 T1 T2 T3 T4 T5 

SM  1.000 0.737 0.516 0.737 1.000 0.881 0.811 0.990 0.990 0.494 0.701 0.858 

Ja 0.737 1.000 0.929 1.000 0.737 0.796 0.801 0.747 0.712 0.904 0.991 0.781 

RR 0.516 0.929 1.000 0.929 0.516 0.596 0.598 0.530 0.492 0.987 0.946 0.589 

SS1 0.737 1.000 0.929 1.000 0.737 0.796 0.801 0.747 0.712 0.904 0.991 0.781 

SS2 1.000 0.737 0.516 0.737 1.000 0.881 0.811 0.990 0.990 0.494 0.701 0.858 

SS3 0.881 0.796 0.596 0.796 0.881 1.000 0.965 0.883 0.861 0.567 0.759 0.976 

SS4 0.811 0.801 0.598 0.801 0.811 0.965 1.000 0.826 0.780 0.576 0.769 0.923 

T1 0.990 0.747 0.530 0.747 0.990 0.883 0.826 1.000 0.961 0.520 0.722 0.853 

T2 0.990 0.712 0.492 0.712 0.990 0.861 0.780 0.961 1.000 0.458 0.666 0.846 

T3 0.494 0.904 0.987 0.904 0.494 0.567 0.576 0.520 0.458 1.000 0.938 0.555 

T4 0.701 0.991 0.946 0.991 0.701 0.759 0.769 0.722 0.666 0.938 1.000 0.739 

T5 0.858 0.781 0.589 0.781 0.858 0.976 0.923 0.853 0.846 0.555 0.739 1.000 

 

 

Similarity coefficients are frequently used to provide ranking of the objects (e.g. the most 

similar chemicals to a query compound). In this case, objects are ranked from the most to the 

less similar to the target and what is relevant is just the object ranking and not the strength of 

their similarity relationship. For this reason, the Spearman rank correlation analysis on the 

simulated data set was carried out replacing similarity values by ranks. Results of this analysis 

are reported in Table 5. 

The rank correlations between the five novel coefficients are relatively low meaning that they 

produce quite different rankings of samples. Only the rankings provided by the coefficients 

T1 and T2 are quite similar (ρ = 0.961); moreover, both T1 and T2 have a high rank 

correlation equal to 0.990 with SM and SS2; the coefficients T3 and T4 have a rank correlation 

of 0.938 between them. Moreover, T3 is highly correlated with RR (ρ = 0.987) and T4 highly 

correlated with Ja and SS1 (ρ = 0.991). The coefficient T5 seems relatively correlated only to 

SS3 and SS4, with a rank correlation of 0.976 and 0.923, respectively. 
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From the Table 5, it can be also noted that the ranks obtained by SM and SS2 are identical, as 

well as the for the ranks obtained by Ja and SS1. 

 

Finally, in order to investigate theperformance of the indices towards a practical application a 

structure similarity analysis was carried out on the real data set of 125 pesticides. 

Metobromuron was arbitrarily chosen as the reference molecule (Fig 3). Structure similarites 

of the remaining 124 chemicals towards metabromuron were then evaluated by the use of all 

the similarity indices in analysis. 

 
 

 

Fig. 3. Molecular structure of Metobromuron, selected as the reference 
compound for the similarity ranking of 124 pesticides. 

 

 

For each of the similarity coefficients, the ranking of pesticides from the most to the least 

similar to the query compound was derived. The list of the molecules ranked at the first 20 

positions is reported in Table 6 for all the considered similarity coefficients. From the results 

of Table 6, it can be again concluded that indices SM, SS2, T1, and T2 provide the same 

ranking of molecules (SM and SS2 are theoretically correlated one); analogously, the same 

ranking is obtained by Ja and SS1, which are theoretically correlated one too, and by RR and 

T3, they being correlated one for this data set. An interesting conclusion can be drawn for 

indices T4 and T5 that seem to give rankings different from the other similarity coefficients; 

in particular, T4 differs from Ja and SS1 starting from the 9th rank position, while T5 differs 

even from the first ranks. 

The most similar molecules to Metobromuron as detected by the different similarity 

coefficients are shown in Table 7. 
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Table 6. First twenty rank positions of the 124 pesticide molecules for the twelve binary similarity coefficients. 

Rank SM, SS2, 
T1, T2 Ja, SS1 RR, T3 SS3 SS4 T4 T5 

1 21, 29 21, 29 29 29 29 29 29 
2 21 21 21 21 44 

3 20, 25, 44, 
71  20 69, 82 44 20 20 38, 53, 64 

4 82 25, 71 25, 71 82 

5  25, 71 20, 120, 
121   25, 71  

6 20 44 62 

7 38, 53, 64, 
82 44  38, 53, 64 82 44 76 

8  69 

9, 25, 28, 
36, 45, 71, 
72, 80, 99, 

107 
 38, 53, 64 69 21 

9 38, 53, 64 120, 121 19, 56, 86 
10 82 

11 62, 65, 66, 
67   62 69 65, 66, 67, 

72  

12 65, 66, 67 65, 66, 67 65, 66, 67 25, 71 
13 
14 20 

15 3, 52, 69, 
72 72  69 62 38, 53, 64 3 

16 120, 121 3 72 82 
17 72 120, 121 65, 66, 67 

18  62 
18, 31, 33, 
35, 39, 42, 
43, 44, ..... 

52  9  

19 

13, 33, 61, 
85, 100, 

110, 116, 
120, 121 

52  120, 121 52 33  

20 33 3 52 52 
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Table 7. Some of most similar pesticide molecules as found by the different similarity coefficients. 
 

id 21 
 

 
 

id 29 
 

 
 

id 25 
 
 
 

 
 

id 20 
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id 44 
 

 
 

id 53 
 
 
 

 
 

id 64 
 
 

 
 

id 69 
 
 
 

 
 

id 71 
 

 
 

id 82 
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5.  Conclusions 
In this paper five novel similarity coefficients were proposed. Simulated data were first 

generated to evaluate the novel indices in comparison with seven common indices. 

From the Principal Component Analisys and the correlation analysis undertaken on the 

similarity data it was concluded that T1 and T2 do not provide new useful information since 

they behave as simple matching (SM) and second Sokal-Sneath (SS2) coefficients; T3, T4 and 

T5 are less correlated with the other common similarity indices, providing at least different 

similarity patterns, which are basically logarithmic transformations of some classical indices 

used for similarity analysis. Investigation of performances of the novel indices in structure 

similarity analysis of a real data set confirms that the same conclusions drawn from the 

analysis of simulated data and specifically that only indices T4 and T5 deserve further 

investigation to better understand their potentialto select alternative for a query compound. 
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