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Abstract 

The Zhang–Zhang(ZZ) polynomials (aka Clar covering polynomial) for several 

subclasses of catacondensed and pericondensed benzenoid systems have been computed using 

an automatic computer code developed in our group and described in [C.-P. Chou and H.A. 

Witek, MATCH Commun. Math. Comput. Chem., submitted]. General closed-form 

expressions for several series of catacondensed benzenoids and for the prolate rectangular 

pericondensed benzenoids have been obtained. The presented results suggest that general 

closed-form expressions for the ZZ polynomials of many classes of pericondensed benzenoid 

systems can be discovered by analysis of structural similarities between the ZZ polynomials 

of their subclasses.  Methods and techniques of finding such similarities are outlined.

1. Introduction 

In the preceding paper[1] (hereafter referred to as I) we have reported a computer 

program developed in our group to determine the Zhang–Zhang (ZZ) polynomials of 

benzenoid systems. The ZZ polynomial[2-14] is a combinatorial polynomial representing in a 
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very convenient way all the conceivable resonance structures that can be written for a given 

aromatic system. It has a finite order equal to the Clar number Cl, i.e., the maximal number of 

aromatic Clar sextets that can be accommodated inside a given benzenoid structure. The ZZ 

polynomial of some benzenoid system B can be expressed as 

 � �
0

ZZ , ,
Cl

k
k

k
B x c x

�

��   

where x is a dummy variable used to differentiate between various classes of resonance 

structures and ck denotes the number of Clar covers in a given class possessing exactly k 

aromatic Clar sextets[15]. The term Clar cover of order k was first introduced by Zhang and 

Zhang[2-5] to denote a permissible resonance structure of some benzenoid system B built of n 

sp2-hybridized carbon atoms, which is characterized by k aromatic Clar sextets and n/2−3k 

localized double bonds. The knowledge of the ZZ polynomial yields immediately a number of 

important topological invariants characterizing the structure B; c0 is equal to the number of its 

Kekulé structures and cCl  is equal to the number of its Clar structures. The importance of the 

ZZ polynomial representations stems from the possibility of its fast evaluation owing to 

convenient recursive properties it obeys (for details see I). Our program is capable to evaluate 

the ZZ polynomials for dense, pericondensed benzenoids containing up to 500 carbon atoms. 

For catacondensed and quasi-linear pericondensed benzenoids, the limiting number of carbon 

atoms is much larger and may exceed 10000. For even larger structures, one needs to execute 

our program in parallel mode, which makes the maximal number of atoms in the system under 

consideration dependent on the number of employed processors. 

The theory of ZZ polynomials was reviewed in the preceding publication I together with 

simple examples enabling a novice in the field deeper understanding of the main underlying 

concepts. We have also discussed the recursive properties of ZZ polynomials, which were 

extensively used to develop our program. We concluded the preceding publication I by 

reviewing a number of general combinatorial techniques, which can be used for finding the 

ZZ polynomials for various classes of benzenoid structures. In this study, we apply the 

developed techniques for finding the explicit, closed-form of the ZZ polynomial for certain 

subfamilies of benzenoid structures. Our main aim is to show that the developed program can 

be a useful theoretical tool for this purpose. Our study closely follows the thorough and 
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monumental account of benzenoid structures given by Cyvin and Gutman[16]. We show that 

our approach is capable of finding closed-form expressions for the ZZ polynomials for many 

benzenoid systems in analogy to the closed-form expressions for the numbers of Kekulé 

structures compiled by Cyvin and Gutman[16]. We do not attempt to make the current study 

complete; the given here ZZ polynomials are computed only for certain subclasses of 

benzenoids systems obtained by fixing some of the indices. Only in few cases, we are able to 

give most general formulas. More complete studies focusing on each family of benzenoids 

and giving the most general forms of the ZZ polynomial will be published subsequently. Note 

that the compact form of the presented here results strongly indicates that this goal can be 

achieved, even if its realization may require considerable effort. 

2. Catacondensed benzenoid systems 

a. Multiple segment linear hexagonal chain L(m,n), m ≥ 3 

 

Figure 1. Multiple segment linear hexagonal chain L(m,n) 

We attempt to find the ZZ polynomial of multiple segment linear hexagonal chains 

L(m,n), shown in Figure 1, by fixing first the value of m and generalizing later the resulting 

family of ZZ polynomials to some non-fixed value of m. The simplest structure in this family, 

with m = 2, has been already discussed in I. Note that the case m = 2 reduces to a single 

armchair chain N(n) of length n obeying the recurrence relation 

 ZZ( ( ), ) ZZ( ( 1), ) ( 1) ZZ( ( 2), )N n x N n x x N n x� � � � � �  (1) 

and having the ZZ polynomial given explicitly by  
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 (2) 

When m = 3, the ZZ polynomials of the shortest few L(3,n) structures are given by 

 

� �
� �� �
� �� �
� �� �
� �� �
� �� �

2

2 3

2 3 4

2 3 4 5

ZZ (3,0), 2
ZZ 3,1 , 4 3

ZZ 3,2 , 10 13 4

ZZ 3,3 , 24 43 24 4

ZZ 3,4 , 58 133 108 36 4

ZZ 3,5 , 140 391 416 208 48 4 .

L x x
L x x

L x x x

L x x x x

L x x x x x

L x x x x x x

� � �
 � �
 � � �
� � � � �
 � � � � �

 � � � � � ��

 (3) 

From Eq. (3), it is clear that the ZZ polynomials of the L(3,n) series obey a recurrence relation 

given by 

 ZZ( (3, ), ) ( 2) ZZ( (3, 1), ) ( 1) ZZ( (3, 2), ).L n x x L n x x L n x� � � � � � � �  (4) 

The recurrence can be easily solved using MAPLE[17], giving the following closed-form 

formula for the ZZ polynomial of L(3,n) 

 

2 2

2

2 2

2

1 ( 2 4) ( 2) 8 8ZZ( (3, ), ) 2
2 28 8

1 ( 2 4) ( 2) 8 82 .
2 28 8

n

n

x x x x xL n x x
x x

x x x x xx
x x

� �� �� � � � � �
� � � � �� �� �� �� �� �

� �� �� � � � � � �
� � � � �� �� �� �� �� �

�

 (5) 

When m = 4, the ZZ polynomial for the shortest few L(4,n) are given by 

 

� �� �
� �� �
� �� �
� �� �
� �� �

2

2 3

2 3 4

2 3 4 5

ZZ 4,1 , 5 4

ZZ 4,2 , 17 25 9

ZZ 4,3 , 56 118 81 18

ZZ 4,4 , 185 508 513 225 36

ZZ 4,5 , 611 2068 2754 1800 576 72 .

L x x

L x x x

L x x x x

L x x x x x

L x x x x x x

� � �


� � �
 � � � ��
 � � � � �
 � � � � � ��

 (6) 
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The corresponding recurrence relation is found to be 

 ZZ( (4, ), ) (2 3) ZZ( (4, 1), ) ( 1) ZZ( (4, 2), ).L n x x L n x x L n x� � � � � � � �  (7) 

By solving the recurrence relation, one gets the closed form of the ZZ polynomial for the 

L(4,n) series that can be written as 

 

2 2

2

2 2

2

1 ( 2 4) (2 3) 4 16 13ZZ( (4, ), ) 2
2 24 16 13

1 ( 2 4) (2 3) 4 16 132 .
2 24 16 13

n

n

x x x x xL n x x
x x

x x x x xx
x x

� �� �� � � � � �
� � � � �� �� �� �� �� �

� �� �� � � � � � �
� � � � �� �� �� �� �� �

�

 (8) 

An analysis of the recursion formulas for the L(m,n) series shows that in the general case 

the recurrence relation for the ZZ polynomials of L(m,n) can be expressed as 

 � �ZZ( ( , ), ) ( 2) ( 1) ZZ( ( , 1), ) ( 1) ZZ( ( , 2), ).L m n x m x m L m n x x L m n x� � � � � � � � � �  (9) 

Using standard techniques for solving recurrence formula as described in I with initial 

conditions 

 � �ZZ ( ,1), 1 (1 )L m x m x� � �  (10) 

 � � 2 2 2 2ZZ ( ,2), (1 ) (1 2 2 ) ( 1)L m x m m m x m x� � � � � � �  (11) 

yields the closed formula of the Zhang–Zhang polynomial for L(m,n) in the following form 

 

2

2

1 (2 ) (5 ) 4 ( 1) ( 2)ZZ( ( , ), ) ( 2)
2 2

1 (2 ) (5 ) 4 ( 1) ( 2)( 2) ,
2 2

n

n

m x m x m m x kL m n x x
k

m x m x m m x kx
k

� �� �� � � � � � � �
� � � � �� �� �� �� �

� �� �� � � � � � � �
� � � � �� �� �� �� �

 (12) 

where k = (x+1)2m2 – 2(x+1)(2x+1)m + 4x2 + 8x + 5. This formula can be also obtained by 

extrapolating the series given by the Eqs. (2), (5), and (8), but probably a large number of 
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terms would be required to discover all the underlying regularities. Note that by setting x = 0, 

Eq. (12) reduces to the formula for calculating number of Kekulé structure reported in [18]. 

b. Hammer H(n) 

 

Figure 2. Hammer-like benzenoid H(n) 

The hammer-like H(n) structures, shown in Figure 2 and at page 100 of [16], can be 

obtained by terminating the ends of a linear polyacene of length n with two pyrene fragments. 

In principle, H(n) is not a catacondensed benzenoid due to the presence of pericondensed 

terminal groups, but we treat it in this section as the varying fragment is catacondensed. The 

ZZ polynomials of the shortest ten structures of this type are given by 

 

� �
� �
� �
� �
� �
� �
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2 3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

2

ZZ (0), 35 70 47 12
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H x x x x x
H x x x x x x
H x x x x x x
H x x x x x x
H x x x x x x
H x x x
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� �
� �
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2 3 4 5

2 3 4 5

2 3 4 5
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ZZ (6), 185 520 557 282 67 6
ZZ (7), 210 595 642 327 78 7
ZZ (8), 235 670 727 372 89 8
ZZ (9), 260 745 812 41 0 9 .7 1 0

x x x
H x x x x x x
H x x x x x x
H x x x x x x
H x x x x x x

� �
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� � � � � �
� � � � � �
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�






�




� �






 (13) 

This series has a constant order and can be expressed in a closed-form as  

� � 2 3 4 5

2 3 4

5

ZZ ( ), 5(5 7) 5(15 14) (85 47) 3(15 4) (11 1)

1 (8 )(1 ) (17 6 )(1 ) (8 11 )(1 ) (1 6 )
.

(1 )
(1 )

H n x n n x n x n x n x nx

n x n x n x n x
n x

�

� � � � � � � � � � �

� � � � � � � � � � � �

� �

 (14) 
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The first term, 25n + 35, agrees with the number of Kekulé formulas given by Cyvin and 

Gutman[16]. Furthermore, using the obvious, natural decomposition of this structure into the 

pyrene and polyacene fragments, as suggested by Zhang and Zhang[2], yields the same ZZ 

polynomial in somewhat more natural form given by 

 � � 2 2 2ZZ ( ), ( 5 5) (1 (1 )) 2( 1)( 5 5),H n x x x n x x x x� � � � � � � � �  (15) 

where 2 5 5x x� �  is easily identified as the ZZ polynomial of phenantrene. 

c. Starphenes St(n,m,l) 

 

Figure 3. Starphene St(n,m,l) structure 

A starphene St(n,m,l), shown in Figure 3, can be considered as a structure obtained by 

fusing three linear polyacenes of length n, m, and l, respectively. It is easy to see that an 

application of Property 2 of I to the central hexagon immediately yields the ZZ polynomial 

of St(n,m,l) given by 

 � � � � � � � �ZZ ( , , ), ZZ ( 1), ZZ ( 1), ZZ ( 1), 1St n m l x L n x L m x L l x x� � � � � � � �  

with � �ZZ ( ),L k x  given by Eq. (10). In starphenes, the first decomposition step leading to this 

nice recursive form is clear, but for many other structures, mostly of pericondensed nature, the 

first step (or steps) is not immediately obvious. Therefore, we re-derive this formula using an 

alternative approach similar in spirit to those discussed in I. We believe that this analysis can 

be helpful for more complicated systems, even if here it may look here like overcomplicating 

a simple issue. The ZZ polynomials for the smallest few St(n,m,l) structures are given by 
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2 3

2 3

2 3

2 3

2 3

2 3

( (2,2,2), ) 9 13 6
( (2,2,3), ) 13 21 11 2
( (2,3,3), ) 19 34 20 4
( (3,3,3), ) 28 55 36 8
( (2,2,4), ) 17 29 16 3
( (2,3,4), ) 25 47 29 6
( (3,3,4), ) 3

ZZ St x x x x
ZZ St x x x x
ZZ St x x x x
ZZ St x x x x
ZZ St x x x x
ZZ St x x x x
ZZ St x

� � � �
� � � �
� � � �
� � � �
� � � �
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� 2 3

2 3

2 3

2 3

7 76 52 12
( (2,4,4), ) 33 65 42 9
( (3,4,4), ) 49 105 75 18
( (4,4,4), ) 65 145 108 27

x x x
ZZ St x x x x
ZZ St x x x x
ZZ St x x x x

� � �
� � � �
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�






�




� �






 (16) 

Obviously, the ZZ polynomials of starphenes have the order not greater than 3 and can be 

expressed in the following form 

 � �
3

0
ZZ ( , , ), ( , , ) k

k
k

St n m l x f n m l x
�

��  (17) 

with the yet unknown functions ( , , )kf n m l . A better insight in the unknown functions 

( , , )kf n m l  can be obtained from the analysis of the ZZ polynomials for starphenes with two 

indices fixed. It is easy to find that the ZZ polynomials for the St(2,2,l) series have a closed 

form given by 

 � � 2 3ZZ (2,2, ), 1 4 (8 3) (5 4) ( 1) ,St l x l l x l x l x� � � � � � � �  (18) 

which suggest that the unknown function ( , , )kf n m l are functions of indices n, m, and l of 

degree 0 or 1. The associated multinomial basis {1, } {1, } {1, }n m l� �  consists of eight terms. 

Clear permutational symmetry of the unknown functions   

 ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )k k k k k kf n m l f n l m f m n l f m l n f l m n f l n m� � � � �  

allows one to reduce the size of the basis to only four fully-symmetric terms { 1, l + m + n, lm 

+ ln + mn, lmn } corresponding to the fully-symmetric irreducible representation of the 

symmetric group S3, casting Eq. (17) in the following matrix form 
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 � �

0,0,0,0 0,1,0,0 0,1,1,0 0,1,1,1

1,0,0,0 1,1,0,0 1,1,1,0 1,1,1,1

2,0,0,0 2,1,0,0 2,1,1,0 2,1,1,1

3,0,0,0 3,1,0,0 3,1,1,0 3,

2

1 1,1
3

,

ZZ ( ,

1

, ),

1 T a a a a
a a a a l m n
a a a a lm ln mn
a

x

a a a lmn

St n m l x
x
x

� �� � � �
� �� � �
� �� � ��
� �� � �
� �� � �� �� �

�

��

�

�

�
�

�

.
�
�
�
�

 (19) 

Substituting the ZZ polynomials listed in Eq. (16) into this linear equations and solving 

the (possibly overdetermined) linear problem gives the general formula for the ZZ polynomial 

of St(n,m,l) as 

 � � 2

3

1 1 0 0 1 1
1 0 1 3
0 1 2 3
1 1 1 1

ZZ ( , , ), .

T

l m n
lm l

x
St n m l x

x
x

n mn
lmn

� � �
� � �

�

� � � �� �
� � � �� �
� � � �� ��
� � � �� �
� � � �� �
� � � �� ��

 (20) 

Using slightly different bases for solving the linear problem simplifies Eq. (20) even 

further giving the following general formula of ZZ polynomials of starphenes 

 � � 2

3

0
1 1 0 0

ZZ ( , , ), ,
(1 ) 0 1 0

1 1 0

(1 ) 0 0

0

0

1
1
0

1

T

x
St n

L M N
L

m l x
M LN MNx

x LMN

� � � �� �
� � � �� ��� � � �� ��
� � � �� ��
� � � �� �

�� � � ��

� �

�

� �
 (21) 

where N = n – 1, M = m – 1, and L = l – 1, which can be expressed readily in the familiar form 

 � � � �� �� �ZZ ( , , ), 1 (1 ) 1 (1 ) 1 (1 ) 1St n m l x x N x M x L x� � � � � � � � �  (22) 

given earlier by Zhang and Zhang[2]. By setting x = 0 in Eq. (22), one obtains the number of 

Kekulé structures reported previously[19, 20]. Note that the regularity observed here is general; 

the basis constructed from the powers of 1 + x gives usually much shorter expansions then the 

basis of monomials kx  and solves the set of linear equations giving smaller numerical coefficients. 

Similar observation is true for the basis of indices, where a homogeneous shift by an integer may 

lead to great simplification of the final formulas. 
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d. Tripod T(n,m,l) 

 

Figure 4. Tripod structure T(n,m,l) 

The next system is a tripod-like system T with three indices n, m, l. Again, this system is  

pericondensed rather than catacondensed, but we study it here as the varying fragments are 

catacondensed. When n or l = 1, tripod is non-Kekuléan and the ZZ polynomial vanishes. 

When n = l = 1, tripod reduces to a linear polyacene L(m). When m = 1, the ZZ polynomial is 

given by a simple formula 

 � � � � � �ZZ ( ,1, ), ( 1) ZZ ( 1), ZZ ( 1),T n l x x L n x L l x� � � � � . (23) 

The ZZ polynomials of T(n,m,l) for n, m, l = 2 and 3 are given by 

 

2

2

2 3

2 3

2

2 3

2 3

ZZ( (2,2,2), ) 6 6
ZZ( (2,2,3), ) 9 11 3
ZZ( (2,3,2), ) 11 16 7
ZZ( (2,3,3), ) 16 26 13 2
ZZ( (3,2,2), ) 9 11 3
ZZ( (3,2,3), ) 14 21 9
ZZ( (3,3,2), ) 16 26 13 2
ZZ( (3,3,3), )

T x x x
T x x x
T x x x x
T x x x x
T x x x
T x x x x
T x x x x
T x

� � �
� � �
� � � �
� � � �
� � �
� � � �
� � � �

2 324 44 26 5x x x

�





�




� � � � �

 (24) 

The technique used for finding the formula for starphene can be applied here after some 

modification. The coefficients of the ZZ polynomial of this system are found to be maximally 

linear functions of the indices n, m, and l in close analogy to starphene. However, instead of 

having 3 interchangeable indecies like in starphene, only two indices, n and l, are related by 

permutational symmetry. Thus, eight terms in the {1, } {1, } {1, }n m l� �  basis reduce to six terms 
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{1, m, l + n, lm + mn, ln, lmn}. After solving the linear equations, one gets the formula for 

tripod T(n, m, l) as  

 � � 2

3

0 1
1 3

ZZ ( , , ), ,
2 3

1

1
1 0 1 1 0

2 2 3 1
5 2 2 2
2 1 0 1 1

T m
x l n
x lm mn
x nl

lmn

T n m l x

� �
� �� � � �� �� � � �� ��� � � �� � �� � � �� � �� � � �� �� � � �� �� �
�

�
� � �
�

�

� �
� �

 (25) 

or alternatively in the (1+x) basis as 

 � � 2

3

1
1 1 0 0 0 0

1 2 1 1 0 0
(1 ) 1 1 2 1
(1 ) 2 1 0 1 1

0
0

ZZ ( , , ), .
1 0

1

T

T n

m
x l n
x lm mn
x n

m l x

lm
l
n

� � � �
� � � �� � �� � �

�

�
� � � �� � � � �
� � �

�
� �
� �
� �

� � �
� �
��� � �� � �
� ��

�
� �

�
�

 (26) 

Decomposition of this system in a conventional way gives the formula of tripod T(n,m,l) as 

 
� � � � � � � �� �

� � � � � �� �
ZZ ( , , ), ZZ ( 2), ZZ ( 1), ZZ ( 1),

(1 ) ZZ ( 2), ZZ ( 2), ZZ ( 2),

T n m l x L m x L n x L l x

x L m x L n x L l x

� � � � � �

� � � � � � � ,
 (27) 

where L(n) is a linear polyacene with length n. 

e. Zigzag-edge coronoids ZC(n, m, l) 

The zigzag-edge coronoids ZC(n,m,l), shown in Figure 5, can be considered as a structure 

obtained by fusing six segments of linear polyacenes into a closed loop. To find a closed form 

of the ZZ polynomial for this family of benzenoid structures, we first consider its certain 

subfamily obtained by fixing n = m = 3. The ZZ polynomials of the smallest few ZC(3,3,l) 

structures are given by 
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� �
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�

�

� 2 3 4 5 64 13285 10068 4057 816 64 .x x x x x x

�





�
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Figure 5. Zigzag-edge coronoid ZC(n,m,l) 

It is easy to find that this constant-order series can be written in a closed form as 
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 (29) 

Eq. (29) suggests that the coefficients of the ZZ polynomial for ZC(m,n,l) are maximally 

quadratic functions of the indices. The full index basis contains 27 functions: 2{1, , }n n �

2{1, , }m m � 2{1, , }l l ,but permutational symmetry allows for reducing it to only 10 their fully-

symmetric linear combinations. Following the same train of arguments as for starphenes in 

the previous section, the general formula of the ZZ polynomial for zigzag-edge coronoids 

ZC(m,n,l) can be expressed in the symmetry-adapted basis of multinomials as 
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where N = (n – 2), M = (m – 2), and L = (l – 2). 

 The sparse matrix representation of Eq. (30) is quite robust for actual calculations, but 

it may be advantageous to cast Eq. (30) in a simpler form. It is quite straightforward to 

identify that the blue, green, and red entries in Eq. (30) define the expansion of the following 

simple three functions in our basis 
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 (31) 

where s = x + 1. This identification helps to cast Eq. (30) in much simpler form 
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� �
 (32) 

 where N = (n – 2), M = (m – 2), L = (l – 2), and s = x + 1. 

 Note that the ZC(n, m, l) system is a cyclo-polyphenacene with number of segments 

t = 6. The formula of the ZZ polynomial for cyclo-polyphenacenes has been reported by Guo, 

Deng, and Chen[21] with number of segments t ≥ 2; however, no closed-form formula was 

provided. Besides, the formula provided in [21] is erroneous; its corrected version is given in 

[22]. 
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f. Fenestrene F(n,m) 

 

Figure 6. Fenestrene structure F(n,m) 

 The next system studied here is the fenestrene structure abbreviated as F(n,m) and 

shown in Figure 6. We consider here only the structures with the index m odd. From the 

analysis of the ZZ polynomials of F(n,m) with n = 3,4,5,6,7,8, and 9 and m = 5,7,9,11, and 13, 

we find that the general formula are given by 

 � � � �� �2 2
2 2 1 2 1ZZ ( , ), 2 2 2 2 2,n m m m m mF n m x L N N N N N� � � � �� � � � � �  (33) 

where Ln = ZZ(L(n), x) = 1+(1+x)n and Nn = � � � �
0

1
ZZ ( ), 1 ,

n
k

k

n k
N n x x

k�

� �� �
� �� �

� �
� are the ZZ 

polynomials of the zigzag and armchair single chains, respectively. 

3. Pericondensed benzenoid systems 

a. Hexagons O(m,k,n) with m = 1, 2, and 3 

The hexagonal-shaped graphene flakes O(m,k,n), aka hexagons, fully characterized by 

giving a set of 3 indices (m,k,n), constitute one of the most important classes of benzenoid 

structures. 
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Figure 7. Hexagon O(m,k,n) 

 Here, we will analyze a subfamily of these structures obtained by first setting m = k and 

then fixing the value of m to 1, 2, and 3. When m = 1, the O(m,m,n) subfamily reduces to 

linear polyacenes L(n) of length n with the ZZ polynomial given by Eq. (10). When m = 2, the 

ZZ polynomials for the shortest few O(2,2,n) structures are given by 
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 (34) 

This series has a constant order. It is easy to find a closed formula for it given by 
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 (35) 

When m = 3, the ZZ polynomial for the few shortest O(3,3,n) are given by 
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 (36) 

Again this series has constant order. A closed formula for it can be found as  
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 (37) 

Note that the formulas for calculating the number of Kekulé structure derived from Eqs. (35) 

and (37) can be found as 
2 31

2 23
n n� �� �� �

� �� �
� �� �

 and 
3 4 51

3 3 340
n n n� � �� �� �� �

� �� �� �
� �� �� �

, respectively, 

which agree with the formula given previously[16, 23-25].  

We believe that further analysis of the presented here ZZ polynomials for the O(m,m,n) 

series of hexagon structures may cast them in a simpler form that will be easy to generalize 

for any value of m. We further expect that a more extensive study of the ZZ polynomial series 
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for the hexagon benzenoid structures will yield a closed-form expression for the ZZ 

polynomial of any O(m,k,n) benzenoid structure in close analogy to the corresponding 

formula for the number of Kekulé structures. We are planning to perform such a study 

devoted to thorough analysis of the ZZ polynomials of the O(m,k,n) structures in near future. 

The results presented here are a mere indication that this task can be accomplished, though 

relative complexity of the ZZ polynomials for the O(2,2,n) and O(3,3,n) subfamilies of 

structures suggests rather high degree of difficulties to be encountered in such a study unless 

serious simplifications of presented here formulas can be discovered. 

b. Chevron Ch(k,m,n) 

 

Figure 8. Chevron Ch(k,m,n) 

 

The next important class of regular benzenoid structures are chevron-shaped structures 

(aka chevrons) defined by a set of three indices as Ch(k,m,n), shown in Figure 8. Here, we 

analyze a subfamily of these structures obtained by setting k = m and further fixing the value 

of k to 1, 2, and 3. When k = 1, the Ch(1,1,n) structures reduce to linear polyacenes with the 

ZZ polynomial given by Eq. (10). When k = 2, the ZZ polynomials for the shortest few 

Ch(2,2,n) structures are given by 
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 (38) 

A closed-form formula of for this constant-order series can be found as 
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This formula can be further simplified by factorizing the powers of x+1 giving 
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For k = m = 3, the ZZ polynomial of the shortest few Ch(3,3,n) are given by 
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Again, a closed-form formula of the ZZ polynomial for Ch(3,3,n) is easy to be found as 
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Similar factorization like for Ch(2,2,n) yields more compact formula given by 
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Note that the first term in Eq. (42), the formula for calculating the number of Kekulé 

structure,  agrees the formula for reported previously[23, 26]. 

The presented here ZZ polynomials for chevron structures have simpler structure than 

those for the studied here hegagons and in principle it should be easier to find a general, three-

index closed-form formula for the ZZ polynomials of Ch(k,m,n). We are planning to study 

this class of structures in one of our subsequent papers. 

c. Multiple zigzag chains Z(m,n) 

 

Figure 9. Multiple zigzag chains Z(m,n) 

Multiple zigzag chains Z(m,n), shown in Figure 9, constitute next basic class of 

pericondensed benzenoid structures. This family of structures is fully characterized by giving 
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two indices, n corresponding to the length of the zigzag-like edge and m giving the length of 

the armchair-like edge. When m = 1, the Z(1,n) class reduces to linear polyacenes with the ZZ 

polynomials given by Eq. (10). When m = 2, the Z(2,n) class reduces to parallelograms M(2,n) 

with the ZZ polynomials given by Eq. (14) of I. When m = 3, the Z(3,n) class reduces to 

chevron structures Ch(2,2,n) with the ZZ polynomials given by Eq. (40). The ZZ polynomials 

of the shortest few Z(4,n), Z(5,n), and Z(6,n) structures are given in Table I. It is immediately 

clear that the order of these polynomials is equal to m. Closed-form formulas for these series 

can be easily found as 
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 (46) 

Note that the formulas for calculating the number of Kekulé structure obtained by 

transforming Eqs. (44), (45), and (46) to the  x basis agree with the formulas reported 

previously[16, 24, 25, 27]. 

Low-order coefficients of these series have simple form that can be readily generalized 

for any value of m. The free coefficient is always equal to 1, the coefficient multiplying 
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( 1)x �  is equal to mn, and the coefficient multiplying 2( 1)x �  is equal to
( 1)

2
n m �� �

� �
� �

. However, 

coefficients accompanying higher-order terms have more complicated structure that cannot be 

easily generalized for any value of m. Work along this line is in progress in our group and we 

hope to be able to present a closed-form ZZ polynomial for multiple zigzag chain Z(m,n) in 

one of our next studies. 

Another possible path of finding a closed-form expression for the ZZ polynomials of the 

multiple zigzag chain Z(m,n) structures can be pursued by fixing the value of n and obtaining 

a general one-dimensional formulas as functions of the index m. When n = 1, the Z(m,1) 

structures reduce to a single armchair chain system N(m) with 2 hexagons in each segment. 

The closed-form of the ZZ polynomial for this system was given in Eqs. (11) and (12) of I. 

When n = 2, the ZZ polynomials for the shortest few Z(m,2) structures are given by 
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�  (47) 

The order of the ZZ polynomials in this series shows constant linear progression 

suggesting that the members of the series may be connected via some recursion formula in 

analogy to the recurrence formula of the Z(m,1) structures, which was given by Eq. (10) of I. 

It is indeed quite easy to find such a recurrence given by 
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This recurrence relation is a third-order linear homogeneous recurrence relation with constant 

coefficients, which can be readily used for computing the ZZ polynomial of the Z(m,2) 

structures in a recursive fashion taking the following initial values as a starting point: 
ZZ( (0,2), ) 1, ZZ( ( 1,2), ) 1, and ZZ( ( 2,2), ) 0.Z x Z x Z x� � � � �  In principle, it is possible to 

solve this recurrence using MAPLE, however the resulting explicit formula involves 

summation over quite complicated roots of  the characteristic polynomial, which in practice is 

more cumbersome than using the recurrence relation. 

Similar analysis performed for the Z(m,3), Z(m,4), and Z(m,5) subfamilies (See Table II) 

reveals that also these families can be generated recursively by the following recurrence 

relations 
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Z m x x Z m x x x Z m x

x Z m x x Z m x
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 (49) 
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2 3

4

ZZ ( ,4), (2 3) ZZ ( 1,4), ( 3)( 1) ZZ ( 2,4),
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Z m x x Z m x x x Z m x

x x Z m x x Z m x

x Z m x
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 (50) 
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2 3

4 5

ZZ ( ,5), (2 3) ZZ ( 1,5), (3 6)( 1) ZZ ( 2,5),

( 4)( 1) ZZ ( 3,5), ( 5)( 1) ZZ ( 4,5),

( 1) ZZ ( 5,5), ( 1) ZZ ( 6,5), ,

Z m x x Z m x x x Z m x

x x Z m x x x Z m x

x Z m x x Z m x

� � � � � � �

� � � � � � � �

� � � � � �

 (51) 

with appropriate number of initial terms equal to 4, 5, and 6, respectively. An analysis of 

these formulas yields a general recurrence relation formula for the Z(m,n) structures that can 

be expressed as 
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ZZ ( , ), ( 1) ( 1) ( 1) ZZ ( 1, ), ,2 2
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k

k

k n k n
Z m n x x x Z m k n x

k k

� 	
� 	� �

�

� �� � � � � �� 	 � 	
� �� � � �� 	 � 	� � � � � � � �� � � �� �� � � �� � � �� ��� � � �� �

�  (52) 

where r� 	� �  denotes the floor function. Note that by setting x = 0 in Eq. (52), it reduces to the 

general recursion relation formula for calculating the number of Kekulé structure, which has 

been reported in several publications[27-29]. Formula (52) can be used to generate the ZZ 

polynomial for the structure Z(m,n) provided that the ZZ polynomials for the initial  

members of this subfamily are known: ZZ( ( 2, ), )Z n x� , ZZ( ( 1, ), )Z n x� ,…, ZZ( ( 1, ), )Z n n x� , 

where the following values can be assumed for the first few artificial members of this series:

ZZ( (0, ), ) 1Z n x � , ZZ( ( 1, ), ) 1Z n x� � , and ZZ( ( 2, ), ) 0Z n x� � . Note that for practical 

calculations with large n this recurrence formula is not very useful, because the determination 

of the ZZ polynomial for the first n + 1 members of this family may constitute a considerable 

computational problem. In our opinion the first of the presented here possible paths of finding 

the closed-form expression for the ZZ polynomials of the Z(m,n) structures, with the fixed 

value of m rather than with the fixed value of n, is more promising for accomplishing this task.  

d. Ribbon Rb(m,m,n) with n = 2, m ≥ n 

 

Figure 10. Ribbon Rb(k,m,n) 

The next important class of benzenoids is the family of ribbon-like structures Rb(k,m,n) 

defined in Figure 10. Here, we restrict our attention to a subclass of these structures obtained 

by setting k = m and further restricting n to 2 and 3. The ZZ polynomials of the shortest few 

Rb(m,m,2) structures are given by 
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 (53) 

Since the order of the ZZ polynomials in this series is constant, a closed formula of the 

ZZ polynomial for it can be found by 

 
� � 2 2

2 2
3 4

1 2( 2)(1 ) (5 17 15)(1 )ZZ ( , ,2),

.
2 2

(2 5)(1 ) (1 )
1 2

m xRb m m x m m x

m m
m x x
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� �� � � �
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�

 (54) 

For n = 3, the ZZ polynomials of the shortest few Rb(m,m,3) structures are given by 

 

2 3
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2 3 4 5

2 3 4 5 6

2

ZZ( (3,3,3), ) 20 30 12
ZZ( (4,4,3), ) 69 139 90 20
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ZZ( (7,7,3), ) 1716 5806 7716 508
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 (55) 

Again, the order of the ZZ polynomials in this series is constant and a closed-form for the 

series can be expressed as 
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5 6
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 (56) 
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Note that the formula for calculating the number of Kekulé structure agrees with the 

formula given previously[16, 30]. 

The resulting formulas display quite high degree of internal symmetry suggesting that 

extending this study to other, more general ribbon structures can yield a general formula 

applicable to computing the ZZ polynomial of any Rb(k,m,n) ribbon-like benzenoid structure. 

Needless to say, we are planning to perform this task in the near future. 

e. Oblate rectangle Or(m,n) 

 

Figure 11. Oblate rectangle Or(m,n) 

Next important family of pericondensed benzenoid structures is the class of oblate 

rectangular benzenoids Or(m,n) shown in Figure 11. This case with m = 1 was studied 

previously by Gutman, Furtula, and Balaban[7], who offered a closed form solution obtained 

as a solution to the discovered recurrence relation. When n = 0, this class reduces again to 

polyacenes L(m) with the ZZ polynomials given by Eq. (10) and when n = 1, it reduces to the 

hexagon O(2, 2, m) structures with the ZZ polynomials given by Eq. (35). When n = 2, the ZZ 

polynomials of the shortest few Or(m,2) structures are given by 
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This series has a constant order and it is possible to find its closed-form formula, which is 

given by 
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Again, similarly to other pericondensed structures studied earlier, this closed-form 

expression has a familiar form with the free coefficient equal to 1 and with the coefficient 

multiplying the (1 )kx�  term being a polynomial in n of degree k. Note that the formula for 
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calculating the number of Kekulé structures obtained from Eq. (58) by setting x = 0 is 

identical to the formula reported previously[23]. 

f. Prolate rectangle Pr(m,n) 

 

Figure 12. Prolate rectangle Pr(m,n) 

The next class of benzenoids studied here comprises the prolate rectangular structures 

Pr(m,n) shown in Figure 12. This class of structures is quite special as it has an essentially 

disconnected character and can be treated as a parallel arrangement of n linear polyacenes of 

length m. Consequently, we are able to find the ZZ polynomials of this class of structures for 

a general case. To do so, we proceed as follows. When m = 1, the studied family of structures 

reduces to poly-phenylenes of length n and the ZZ polynomial given by 

 ZZ( (1, ), ) (2 ) .nPr n x x� �  (59) 

When m = 2, the ZZ polynomials of the shortest few Pr(2,n) structures have the obvious 

closed form given by 
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Similarly for m = 3, the ZZ polynomials of the shortest few Pr(3,n) structures are given 

by 
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It is immediately clear that the general form of the ZZ polynomial for the Pr(m,n) 

structure is given by 

 ZZ( ( , ), ) (1 (1 ))nPr m n x m x� � �  (62) 

Note that the formula of calculating the number of Kekulé structures given by Yen[31] 

for Pr(m,n) can be recovered by simply setting x = 0 in Eq. (62). In addition, Eq. (62) can be 

further extended to a general prolate rectangle-like structure, in which the length of each 

polyacene chain is not the same. Assuming that such a structure is given by parallel 

arrangement of m polyacenes of length m1, m2, …, mn, respectively, the corresponding ZZ 

polynomial is given by 

 � � � �1 2
1

ZZ ([ , ,..., ], ), 1 ( 1) .
n

n k
k

Pr m m m n x m x
�

� � �!  (63) 

This formula is probably the most important single result obtained in this study. 

g. Zigzag-edge coronoid fused with starphene ZCS(n,m,l) 

 

Figure 13. Zigzag-edge coronoid fused with starphene ZCS(n,m,l) 
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The last system considered in this work is a composite benzenoid obtained by fusing a 

zigzag-edge coronoid ZC(n,m,l) with a starphene St(n,m,l). This system, abbreviated as 

ZCS(n,m,l), is shown in Figure 13. The ZZ polynomials for n, m, l = 4 and 5 are given by 
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The resulting ZZ polynomials have a constant order equal to 9. Moreover, from the 

analysis of the ZZ polynomials for the ZCS(4,4,l) series, it is possible to find that the ZZ 

polynomial coefficients depend on the index l up to the third power. The same technique, 

which was used earlier for the starphene, coronoid, and tripod systems, can be applied here 

again with the basis 2 3 2 3 2 3{1, , , } {1, , , } {1, , , }n n n m m m l l l� � . The resulting 64-dimensional 

basis can be seriously reduced by the permutational symmetry adaptation, giving a fully-

symmetric basis with only 20 functions. Thus, the resulting coefficient matrix has the 

dimension 10 by 20. The ZZ polynomial of ZCS(n,m,l) can be thus expressed as 
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where s = (1+x), N = n – 2, M = m – 2, and L = l – 2. Any attempts to cast this matrix 

equations into a simple functional form, as successfully performed for zigzag-edge coronene 

ZC(n,m,l), fail; the simplest expression we could obtain reads 
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where W = (Ns+1)(Ms+1)(Ls+1), V = (Ns+1)+(Ms+1)+(Ls+1), and U =(Ns+1)(Ms+1)+ 

(Ms+1)(Ls+1) + (Ns+1)(Ls+1). Relatively high degree of complexity of this equation 

motivated us to look for the ZZ polynomial by recursive decomposition of the ZCS(n,m,l) 

structure, which yielded even more complicated equation containing 39 addends.   

4. Conclusion 

We illustrate the capabilities of the developed automatic computer program for 

determination of the Zhang–Zhang (ZZ) polynomials by computing of the ZZ polynomials for 

several subclasses of catacondensed and pericondensed benzenoid systems. For all the studied 

here catacondensed benzenoids and for one class of pericondensed benzenoids—prolate 

rectangular structures Pr(m,n)—we were able to obtain closed-form expressions applicable to 

any member of a given class. For the remaining pericondensed benzenoid systems, we are 

able to determine the ZZ polynomials only for certain subfamilies of a given class. From the 

presented results, it is clear how to generalize our results to the remaining subfamilies. We 

notice after Zhang and Zhang that the ZZ polynomials for most of the pericondensed 

structures have very similar form, provided that the ZZ polynomial is expressed as a sum of 

powers of (1 )x� . The results presented in this manuscript suggest that general closed-form 

expressions for the ZZ polynomials of many classes of pericondensed benzenoid systems can 

be discovered by a somewhat tedious analysis of structural similarities between the ZZ 

polynomials of their subclasses.  Methods and techniques of finding such similarities are 

-61-



outlined. We plan to investigate these similarities in a series of subsequent papers, which 

hopefully will reveal a general closed-form expression of the ZZ polynomial for each class.  

It is important to stress here that the results presented in this manuscript are not sensu 

stricto proofs of these properties, but should be rather treated as conjectures. However, the 

resulting formulas have been verified against a large number of ZZ polynomials for structures 

not comprised in the search sets, confirming their transferability. We believe that these tests 

guarantee that the expressions for the ZZ polynomials given here are valid in general. For 

those interested in strict demonstration of the presented here formulas, we stress that the 

presented formulas usually suggest a certain way of decomposing the original structures using 

the recursive properties of the ZZ polynomials described in I, which can be used for a regular 

proof. 
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