
A Note Concerning the Algorithmic
Analysis of Polymer Thermodynamics

J. Andres Montoya
Universidad Industrial de Santander
jmontoya@matematicas.uis.edu.co

(Received July 4, 2011)

Abstract

In this work we study a tally counting problem arising from a discrete model of
polymer thermodynamics: The Model of Self-avoiding walks constrained to lattice
strips. We show that the partition function of this model can be computed in time
O
(
log2 (n)

)
using a polynomial number of processors

The qualitative properties of some models of statistical mechanics are completely en-

coded into a discrete function called the partition function of the model [10]. Most ther-

modynamical quantities describing the dynamics and structure of those models, like for

example the free energy of the system, can be computed from their partition functions:

solving a discrete model of statistical mechanics means computing its partition function.

Most of the time partition functions are defined as counting problems [12]. We consider, in

our research, a discrete model of statistical mechanics: the self-avoiding walk model. We

study the computational complexity of computing the partition function of this model,

we review the known facts and we prove that there exists a O
(
log2 (n)

)
parallel time

algorithm that computes the number of self-avoiding walks constrained to lattice strips

of fixed height.

The relation between self-avoiding walks and polymer chains is based on the confor-

mational statistics of polymer chains, S. Edwards and his collaborators have shown that

the Self-avoiding walk model can be used as the lattice model describing the relations and

statements of the theory of excluded volume (much more information can be found in

[3]), which is the basic thermodynamical theory of polymer space organization (see [4]).

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 67 (2012) 761-772  

                          
                                          ISSN 0340 - 6253  

 



Thus, we have that a good understanding of the partition function for self-avoiding

walks on two-dimensional grids yields deep information concerning the evolution of poly-

mer chains. We consider a restricted model of polymer chains, the model of polymer

chains constrained to strips of fixed height, which is important in the study of globular

proteins [5]. The self-avoiding walk model related to this physical model is the model of

two-dimensional self-avoiding walks constrained to lattice strips of fixed height. We prove

in this paper, that the partition function of the later model can be computed in time

O
(
log2 (n)

)
employing a polynomial number of processors.

Relations to Previous Work. The self-avoiding walk model is an important model

of polymer thermodynamics. This model is closely related to the counting problem

#SAW defined below.

Given n ≥ 1, the symbol Ln
2 denotes the square lattice of order n, which is the graph

defined by:

• V (Ln
2 ) = [n]× [n] , where [n] is equal to the set {1, ..., n} .

• E (Ln
2 ) = {{(a, b) , (c, d)} : |a− c|+ |b− d| = 1} .

The problem #SAW is the tally counting problem defined by

Problem 1 (#SAW, the self-avoiding walk problem)

• input: 1n, where n ∈ N.

• Problem: compute the number of simple paths (of any length) contained in the square

lattice of order n.

In despite of the intensive work related to this problem, so few is known. We don’t

know of the existence of closed formulae for the counting function encoded by the prob-

lem, we do not know of the existence of efficient algorithms solving the problem and we

don’t know of the existence of hardness proofs that could explain, to some extent, the

intractability of this problem.

Most counting problems are hard, there not exist polynomial time algorithms solv-

ing them, but many of those problems can be probabilistic approximated. Randall and

Sinclair have found a RPTAS (Randomized polynomial time approximation scheme) for

#SAW [9]. Randall-Sinclair algorithm can be considered as the only important result,

(related to the computational feasibility of the problem #SAW ), that have been obtained

up to the date.

-762-



If we modify some of the parameters in the definition of the problem, we can get

feasible versions of it. Some feasible versions of #SAW have been identified and studied.

It is known, for instance, that the counting of up-side and spiral self-avoiding walks can

be carried out in linear time [8]. Klein [6] and Wall-Klein [7] studied a related model, The

Model of Self-avoiding Walks constrained to Lattice Strips of Fixed Height, this model

is important in the study of globular proteins and long polymer chains [5]. We study

the partition function of this problem, denoted by #SAWr, and we exhibit a parallel

algorithm that computes the function #SAWr in time O
(
log2 (n)

)
.

1 Tally counting problems: Welsh’s problem

A counting problem is a function f : Σ∗ → N. A counting problem f : Σ∗ → N is

a tally counting problem if and only if the size of Σ is equal to 1. If f : Σ∗ → N is a

tally counting problem we assume that Σ is equal to {1} . There are many interesting

tally counting problems, some of them related to mathematical chemistry, consider for

instance the following problems:

1. fCG : Σ∗ → N is the tally counting problem defined by

fCG (1n) = # of connected planar graphs of size n

2. fM : Σ∗ → N is the tally counting problem defined by

fM (1n) = # of perfect matchings contained in the square lattice Ln
2

3. fICE : Σ∗ → N is the tally counting problem defined by

fICE (1n) = # of eulerian orientations of the square lattice Ln
2

We are particularly interested in the tally counting problem #SAW, defined above.

This problem is important because it encodes the partition function of The Self-Avoiding

Walk Model of polymer thermodynamics [12]. No efficient algorithms are known, and it

is also unknown if this problem is hard.

Problem. (Welsh’s problem)

Either exhibit polynomial time algorithms solving problem #SAW or prove that #SAW

is #P1 complete [12], [11].

Unfortunately we do not solve Welsh’s problem. In this paper we consider a restriction

of #SAW that arises from a closely related model of polymer thermodynamics and we

develop efficient algorithms solving this new problem.

-763-



Remark 2 What is special, and suspicious, about tally counting problems is the unary

encoding of their instances. Consider the problem #SAW. Given n ≥ 1, the search space

associated to the instance 1n is equal to ([n]× [n])n and its size is equal to 2Ω(n log(n)). It

implies that the running time of the brute force algorithm for #SAW is equal to 2Ω(n log(n)).

And it means that tally counting problems do not (necessarily) become tractable because of

the unary encoding of their instances. If we would use a binary encoding of the instances,

we would get a problem that can be solved in superexponential time using a naive brute

force approach and which cannot be solved in polynomial time because of the length of the

outputs. The quest for polynomial time algorithms (polylog time algorithms) solving the

problem #SAW makes sense if we consider the unary encoding used in definition 1. Also,

the unary encoding employed in the definition of tally counting problems is not a naive

trick that makes intractable problems look easy.

1.1 Schutzenberger–Bertoni Method

In this section we introduce the Schutzenberger–Bertoni Method.

Given Σ a finite alphabet and given L ⊆ Σ∗ a formal language, the census function of

L is the function fL : N → N defined by

fL (n) = |{w ∈ L : |w| = n}|

Let f be a tally counting problem.

Definition 3 We say that f is SB reducible if and only if there exists k ≥ 1, there

exist k unambiguous context-free languages L1, ..., Lk, there exist k polynomial functions

p1 (X) , ..., pk (X) ∈ FNC2 and there exist c1, ..., ck ∈ N such that for all n ≥ 0 the

equation

f (n) =
k∑

i=1

cifLi
(pi (n))

holds.

The Schutzenberger–Bertoni method is based on the SB reducibility notion and the

theorem below.

Theorem 4 (Schutzenberger–Bertoni method)

1. If f is SB reducible, problem f can be solved in time O
(
log2 (n)

)
using a polynomial

number of processors.

-764-



2. If f is SB reducible, there exists a RPTAS for f.

Item 1 can be used to design efficient parallel algorithms, item 1 was proved by Bertoni,

Goldwurm and Sabadini (see [1]). Item 2 can be used to design efficient approximation

algorithms, it was proved by Bertoni, Goldwurm and Santini [2]. Theorem 4 yields a

robust counting technique that we call Schutzenberger–Bertoni method. From now on,

when we say Schutzenberger–Bertoni method, we mean the counting method encoded in

the statement of theorem 4.

2 The model, the problem and the algorithm

Klein [6], and Wall-Klein [7] studied long polymer chains constrained to infinite long

lattice strips, their studies give rise to a new model of polymer thermodynamics: The

Model of Self-avoiding Walks constrained to Lattice Strips of Fixed Height. We can think

of this model as a parameterized model: if we fix a positive integer r, we get The Model

of Self-avoiding Walks constrained to Lattice Strips of Height r, which can be considered

as the rth slice of the former problem. The partition function of this slice is encoded by

the tally counting problem #SAWr defined by:

Problem 5 (#SAWr : counting self-avoiding walks in lattice strips of height r)

• Input: 1n, where n is a positive integer.

• Problem: compute the number of self-avoiding walks contained in the rectangular

lattice [n]× [r] .

We will prove that there exists a parallel algorithm that solves the problem #SAWr

in time O
(
log2 (n)

)
. Our algorithm is based on the Schutzenberger–Bertoni method.

2.1 Efficient algorithms

Let r ≥ 1, we exhibit in this section a parallel algorithm solving the problem #SAWr.

From now on we fix r ≥ 1.

2.1.1 An encoding

Our algorithm is based on Schutzenberger–Bertoni method and a special encoding of the

substructures of the rectangular lattices of height r. This encoding can be employed to

solve many other counting problems related to lattices.

-765-



A Bilateral slice is a lattice graph isomorphic to {0, 1} × [r] . Left slices are the sub-

graphs of bilateral slices that can be obtained by eliminating all the edges of the form

{(1, x) , (1, x+ 1)} .
Left patterns (patterns, for short) are the isomorphism types of the subgraphs of a left

slice (any two left slices of height r are isomorphic).

Lemma 6 Given r ≥ 1, there exist at most 22r patterns.

The lemma above follows from the fact that any pattern is a subset of the set of edges

of a left slice. It implies that we can enumerate in time 2O(r) the set of left patterns, we

use the symbol PL to denote this set.

Given p and q two patterns, we can think of pq, the concatenation of p and q, as a

subgraph of {1, 2, 3} × [r] . The set of nodes of pq that are located on {2} × [r] will be

called the core of pq (or the 2-fiber of pq), and will be denoted with the symbol ς (pq) .

Given i ∈ {0, 1, 2, 3, 4} we define a function αi : PL×PL→N in the following way:

αi (p, q) =
∣∣{v ∈ ς (pq) : degpq (v) = i

}∣∣
where degpq (v) denotes the degree of v as a node of pq. We define analogous functions

β3, β1 : PL → N which count the number of degree-three and degree-one nodes located

on the 0-fiber of the pattern being evaluated. We note that we can compute in time 2O(r)

the tables of each one of the functions α0, α1, α3, α4, β3 and β1.

We can see any subgraph of [n] × [r] as a word written with patterns. Observe that

given γ, a subgraph of the rectangular lattice [n]× [r], subgraph γ is the concatenation of

a sequence p1...pn of n patterns such that all the edges contained in pn are located on its

left column. Also, we can try to encode subgraphs of [n]× [r] as words of length n whose

characters are patterns.

2.1.2 A technical lemma

Let r ≥ 1 and let Ar be the set of finite acyclic subgraphs of N× [r] whose total degree

is upperbounded by 2 (i.e. given H ∈ Ar and given v a node of H, the degree of v, as a

node of H, is bounded by 2).

Lemma 7 Given r ≥ 1, one can compute in time 2O(r) a finite state automaton Mr that

recognizes the set Ar.

Proof. We want to prove that the language

Ωr = {p1...pn ∈ Σ∗ : Ψ}

-766-



is regular, where Ψ is equal to the conjunction of the following constraints:

1. All the edges occurring in pn are vertical edges located on its left column and for

any i ≤ n− 1 we have that the pair (pi, pi+1) is an admissible pair.

2. β1 (p1) +
∑

i≤n−1

α1 (pi, pi+1) = 2 and the equations β0 (p1) = β3 (p1) = 0 hold.

3. The pattern chain p1p2...pn forbids the creation of cycles.

We can write Ψ as Ψ1 ∧ Ψ2, where Ψ1 is the conjunction of the first two constraints,

and Ψ2 is equal to:

The pattern chain p1p2...pn forbids the creation of cycles and there are not degree-three

nodes contained in p1p2...pn

We define two languages

Ω1 = {p1...pn ∈ Σ∗ : Ψ1}

and

Ω2 = {p1...pn ∈ Σ∗ : Ψ2}

We observe that Ωr = Ω1∩Ω2. Recall that the intersection of two regular languages is

regular. Also, it is sufficient to show that both languages, Ω1 and Ω2, are regular. First at

all we show that Ω1 is a regular language, and we also show that a finite state automaton

M1 recognizing Ω1 can be computed in time 2O(r).

Recall that we can compute the sets PL and I; and the tables of α0, α1, α3, α4, β0, β1

and β3 in time 2O(r). Also, before computing the automaton we compute all these objects

which are used by M1 as lookup tables: the tables of α0, α1, α3, α4, β0, β1 and β3 are

incorporated into the transition function of M1. Let M1 be the finite state automaton

(Q, q0, F, δ) defined by:

1. Q = {(q, i) : q ∈ Σ & 0 ≤ i ≤ 2 } ∪ {q0, qr, qa} .

2. F = Q− {qr} .

3. Let p1...pn be an input of M1. The transition function δ is defined in the following

way:

(a) δ (q0, p1) = (p1, β1 (p1)) if β0 (p1) = β3 (p1) = 0 and β1 (p1) ≤ 2, otherwise

δ (q0, p1) = qr

-767-



(b) Given i ≤ n − 1, we have that δ ((pi, k) , pi+1) = qr, whenever one of the

following conditions is satisfied:

• (pi, pi+1) /∈ I.
• k + α1 (pi, pi+1) ≥ 3.

(c) Let i ≤ n− 1. If (pi, pi+1) ∈ I and k + α1 (pi, pi+1) ≤ 2, then

δ ((pi, k) , pi+1) = (pi+1, k + α1 (pi, pi+1))

(d) If α1 (pn−1, pn) + k = 2 and pn does not contain horizontal edges, then

δ ((pn, k) ,�) = qa

(e) If either α1 (pn−1, pn+1) + k 
= 2 or pn contains horizontal edges, then

δ ((pn, k) ,�) = qr

Note that automaton M1 simply checks that p1...pn encodes a sequence of compatible

patterns, such that the number of one-degree nodes is equal to 2 and such that all the

edges occurring in pn are vertical edges located on its left column. It is easy (but tedious)

to check that automaton M1 recognizes Ω1. We have to estimate the computing time

required to construct automaton M1. The computing time is upperbounded by 2O(r),

since the lookup tables can be computed in time 2O(r) and |Q| ∈ 2O(r). Thus, we can

compute M1 in time 2O(r).

To finish with the proof we show that Ω2 is a regular language. We give a very brief

description of an automaton M2 recognizing Ω2. We show that if we fix n ≥ 1, we can

use a regular automaton M2 to recognize the cyclic subgraphs of [n]× [r].

A c-structure is a subgraph of [n]× [r] constituted by a connected set (array) of vertical

edges on the left, and two horizontal edges pointing to the right, one of them located on

the bottom and the other one located on the top of the vertical array. We observe that:

1. Any cycle begins with a c-structure, that is: the leftmost pattern of a cycle neces-

sarily contains at least one c-structure.

2. Any c-structure can be detected by M2, when the automaton is scanning the cor-

responding left-slice (pattern).

A c-structure is like an alert, which warn us of the possible emergence of a cycle.

Also, we have to save information concerning the c-structures that haven been already

-768-



observed. To this end, we keep track of the evolution of the trajectories that arise from

the endpoints of those c-structures. It is possible to keep track of the evolution of those

trajectories given that:

1. Given w an input of M2 and given t ≤ |w| , there are at most r
2
pairs of trajectories

at time t, originated in previously observed c-structures and threatening of giving

rise to cycles.

2. The only information that we have to save, in order to control the evolution of a pair

of dangerous trajectories, are the y-coordinates of the nodes where those trajectories

meet the right column of the left-slice being scanned.

Given i a positive integer lesser than r
2
, we use the symbol Pi to denote the set

{((a1, b1) , ..., (ai, bi)) : Φ}

where Φ is the condition:

a1, ..., ai, b1, ..., bi ∈ {1, ..., r} are pairwise different and a1 � b1; ...; ai � bi.

Let P be equal to the set of states of automaton M2, the set P is essentially equal

to
⋃

0≤i≤ r
2

Pi. Let p = ((a1, b1) , ..., (ai, bi)) be an element of P, and suppose that p is the

state of M2 at time t. State p is informing us that i pairs of dangerous trajectories are

exiting the left-slice being scanned at time t, through the pair of nodes (a1, b1) , ..., (ai, bi).

The transition function of M2, denoted by ρ, is defined in such a way that it allows us to

keep track of the evolution of those trajectories. Consider, as an example, the following

situation:

1. The state of automaton M2, at time t, is equal to ((a1, b1) , (a2, b2) , (a3, b3)) .

2. a1 � b1 � a2 � b2 � a3 � b3.

3. The trajectory whose y-coordinate is equal to a1 ≥ 2, is extended with a vertical

edge pointing down, and then with a horizontal edge.

4. The trajectory whose y-coordinate is equal to b1 is extended with a vertical edge

pointing up, and then with a horizontal edge.

5. The trajectory whose y-coordinate is equal to a2 is extended with a vertical edge

pointing down, and then with a horizontal edge. Moreover, we suppose that a2−b1 =

3.

-769-



6. The trajectory whose y-coordinate is equal to b2 is extended with a vertical edge

pointing up, and then with an horizontal edge.

7. The remaining trajectories are extended with horizontal edges. Moreover, we sup-

pose that a3 − b2 ≥ 2.

8. A new c-structure is observed, it is constituted by two horizontal edges, whose y-

coordinates are equal to k + 3 and k � b3, and by three vertical edges on the left

joining the nodes located at heights k and k + 3.

Then, given all this information, we have that the inner state of automaton M2, at

time t+ 1, is equal to

((a1 − 1, b1 + 1) , (a2 − 1, b2 + 1) (a3, b3) , (k, k + 3))

We identify an evolving c-structure with its corresponding tracking pair. Suppose that

automaton M2 is scanning word w, and suppose that the pair (a, b) belongs to the inner

state of automaton M2, at time t. There are three possibilities for pair (a, b) , (at time

t+1): pair (a, b) merges with another pair occurring at time t; pair (a, b) survives or pair

(a, b) vanishes. We say that (a, b) vanishes a time t + 1 if and only if wt+1, the t + 1-th

pattern of the word being scanned, contains a chain of vertical edges joining the nodes

located at heights a and b. If a pair vanishes, a cycle has been created (detected). On

the other hand, if two pairs merge with each other, this merging gives rise to a cycle if

and only the pairs are nested, that is: if pairs (a, b) and (c, d) merge with each other

at time t + 1, and the inequality a � c � d � b holds, then a cycle has been created

(detected). We use the term pair-vectors to denote the inner states of automaton M2,

we note that the evolution of pairs defines an algebra of pair-vectors which, being finite,

can be precomputed and encoded into the transition function of M2.

We have already discussed the key features of M2. At this point, the reader should

be completely convinced that Ω2 is a regular language, and that a finite state automaton

recognizing Ω2 can be computed in time 2O(r).

We can now claim that a finite state automaton recognizing Ωr can be computed in

time 2O(r). Thus, we have finished with the proof of the lemma.

2.1.3 An algorithm

Let 1n be an instance of #SAWr. A self-avoiding walk contained in the lattice [n] × [r]

can be encoded as a pattern chain p1...pn of length n.

-770-



Let Lr be the language

{p1p2..pn : ψ (p1p2..pn)}
where ψ (p1p2..pn) is the sentence: the pattern chain p1p2..pn encodes a self-avoiding

walk. Observe that #SAWr (1
n) is equal to fLr (1

n) . If we want to show that #SAWr

can be solved in time O
(
log2 (n)

)
it is sufficient to show that one can compute in time

2O(r) an unambiguous pushdown automaton Mr such that

fLr (1
n) = fL(Mr) (1

n)

Next lemma is straightforward

Lemma 8 p1p2..pn belongs to Lr if and only if the following conditions are satisfied

1. For all i ≤ n− 1 we have that the pair (pi, pi+1) is an admissible pair.

2. β1 (p1) +
∑

i≤n−1

α1 (pi, pi+1) = 2 and the equations β0 (p1) = β3 (p1) = 0 hold.

3. The pattern chain p1p2...pn forbids the creation of cycles

It follows from lemma 8 that the language Lr can be defined as

Lr = {p1p2..pn : Ψ1 ∧Ψ2}
where Ψ1 is the conjunction of the first two constraints in the statement of lemma 8

and Ψ2 is the third constraint.

Theorem 9 Lr is a regular language and we can compute in time 2O(r) a finite state

automaton Mr recognizing Lr.

Proof. It is time to put all the pieces together. We want to prove that

Lr = {p1...pn ∈ Σ∗ : Ψ1 ∧Ψ2}

is a regular language (recall that any regular language is an unambiguous context-free

language). We define two languages H1 and H2, where given i ≤ 2

Hi = {p1...pn ∈ Σ∗ : Ψi}

We observe that Lr = H1∩H2. Recall that the intersection of a finite number of regular

languages is a regular language as well. Also, it is sufficient to show that we can compute

two finite state automata recognizing the languages H1 and H2. Lemma 7 estates that

one can compute, in time 2O(r), both automata.

Acknowledgment. This research was developed with the financial support of VIE-UIS.

-771-



References

[1] A. Bertoni, M. Goldwurm, N. Sabadini, The complexity of computing the number

of strings of a given length in context free languages, Theor. Comput. Sci. 86 (1991)

325–342.

[2] A. Bertoni, M. Goldwurm, M. Santini, Random generation and approximate counting

of ambiguously described combinatorial structures, Proc. STACS Conf. (2000) 567–

580.

[3] M. Doi, S. Edwards, The Theory of Polymer Dynamics ,Oxford Univ. Press, Oxford,

1986.

[4] P. Flory, Principles of Polymer Chemistry , Cornell Univ. Press, Itaca, 1953.

[5] I. Jensen, Enumeration of compact self–avoiding walks, Comput. Phys. Commun.

142 (2001) 109–113.

[6] D. Klein, Asymptotic distribution for self–avoiding walks constrained to strips, cylin-

ders and tubes, Jour. Stat. Phys. 23 (1980) 561–586.

[7] D. Klein, F. Wall, Self–avoiding random walks on lattice strips, Proc. Nat. Acad. Sci.

USA (Chemistry) 76 (1979) 1529–1531.

[8] M. Liskiewicz , M. Ogihara, S. Toda, The complexity of counting self–avoiding walks

in two–dimensional grid graphs and in hypercube graphs, Elec. Colloq. Comput.

Compl. Report No. 61 (2001).

[9] D. Randall, A. Sinclair, Testable algorithms for self–avoiding walks, Proc. SODA

(1994) 593–602.

[10] C. Thompson, Mathematical Statistical Mechanics, Princ. Univ. Press, Princeton,

1972.

[11] L. Valiant, The complexity of enumeration and reliability problems, SIAM Jour.

Comput. 8 (1979) 410–421.

[12] D. Welsh, Complexity: Knots, Colourings and Counting , Cambridge Univ. Press,

Cambridge, 1993.

-772-


