On the Maximal Energy Trees with One Maximum and One Second Maximum Degree Vertex

Jing Li, Xueliang Li

Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
E-mail: lj02013@163.com; lxl@nankai.edu.cn

(Received June 18, 2011)

Abstract

For a simple graph G, the energy $E(G)$ is defined as the sum of the absolute values of all eigenvalues of its adjacent matrix. For $d_1 > d_2 \geq 3$ and $t \geq 3$, denote by T_a the tree formed from a path P_t on t vertices by attaching $d_1 - 1$ P_2’s on one end and $d_2 - 1$ P_2’s on the other end of the path P_t, and T_b the tree formed from P_{t+2} by attaching $d_1 - 1$ P_2’s on an end of the P_{t+2} and $d_2 - 2$ P_2’s on the vertex next to the end. In [14] Yao showed that among trees of order n and two vertices of maximum degree d_1 and second maximum degree d_2 ($d_1 > d_2$), the maximal energy tree is either the graph T_a or the graph T_b, where $t = n + 4 - 2d_1 - 2d_2 \geq 3$. However, she could not determine which one of T_a and T_b is the maximal energy tree. This is because the quasi-order method is invalid for comparing their energies. In this paper, we use a new method to determine the maximal energy tree. We prove that the maximal energy tree is T_b if $d_1 \geq 7$, $d_2 \geq 3$ or $d_1 = 6, d_2 = 3$. Moreover, for $d_1 = 4$ and $d_2 = 3$, the maximal energy tree is the graph T_b if $t = 4$, and the graph T_a otherwise. For other cases, the maximal energy tree is the graph T_b if (i) $d_1 = 5, d_2 = 4$, t is odd and $3 \leq t \leq 45$, (ii) $d_1 = 5, d_2 = 3$, t is odd and $3 \leq t \leq 29$, (iii) $d_1 = 6, d_2 = 5$, $t = 3, 5, 7$, (iv) $d_1 = 6, d_2 = 4$, $t = 5$; and for all the remaining cases, the maximal energy tree is the graph T_b.

*Supported by NSFC No.11071130.
1 Introduction

Let G be a simple graph of order n, and $\lambda_1, \lambda_2, \cdots, \lambda_n$ be the eigenvalues of G. Then the energy of G is defined as

$$E(G) = \sum_{i=1}^{n} |\lambda_i|,$$

which was introduced by Gutman in [9]. The match polynomial [6, 7] of G is defined as

$$m(G, x) = \sum_{k=0}^{[n/2]} (-1)^k m(G, k) x^{n-2k},$$

where $m(G, k)$ denotes the number of k-matchings of G and $m(G, 0) = 1$. If $G = T$ is a tree of order n, then the characteristic polynomial [5] of G has the form

$$\varphi(T, x) = m(T, x) = \sum_{k=0}^{[n/2]} (-1)^k m(T, k) x^{n-2k}.$$

And, by Coulson integral formula [3, 4, 8, 11], we have for a tree T,

$$E(T) = \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^2} \log \left[\sum_{k=0}^{[n/2]} m(T, k) x^{2k} \right] dx.$$

As we did in [12], for convenience we use the so-called signless matching polynomial [1]

$$m^+(G, x) = \sum_{k=0}^{[n/2]} m(G, k) x^{2k}.$$

Then we have

$$E(T) = \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^2} \log m^+(T, x) dx. \quad (1)$$

For basic properties of $m^+(G, x)$, we refer to our paper [12].

For more results on graph energy, we refer to the survey [10]. For terminology and notations not defined here, we refer to the book of Bondy and Murty [2].

Graphs with extremal energies are interested in literature. In 2009 Li et al. [13] showed that among trees of order n with two vertices of maximum degree $\Delta (\geq 3)$, the maximal energy tree is either the graph G_a or the graph G_b, where $t = n + 4 - 4\Delta \geq 3$ and G_a is the tree formed from a path P_t on t vertices by attaching $\Delta - 1$ P_2’s on each end of the path P_t, G_b is the tree formed from P_{t+2} by attaching $\Delta - 1$ P_2’s on an end of the
Figure 1.1 The maximal energy trees with n vertices and two vertices u and v of degree d_1 and d_2.

P_{t+2} and $\Delta - 2$ P_2’s on the vertex next to the end. However, they could not determine which one of G_a and G_b is the maximal energy tree. In our recent paper [12], we used a new method to determine the maximal energy tree. In a similar way, Yao [14] gave the following Theorem 1.1 about the maximal energy tree with one maximum and one second maximum degree vertex.

Theorem 1.1 ([14]) Among trees with a fixed number of vertices (n) and two vertices of maximum degree d_1 and second maximum degree d_2 ($d_1 > d_2$), the maximal energy tree has as many as possible 2-branches.

1. If $n \geq 2d_1 + 2d_2 - 1$, then the maximal energy tree is either the graph T_a or the graph T_b, depicted in Figure 1.1.
2. If $n \leq 2d_1 + 2d_2 - 2$, then the maximal energy tree is among the graph T_c depicted in Figure 1.1.

From Theorem 1.1, one can also see that for $n \geq 2d_1 + 2d_2 - 1$, she could not determine which one of the trees T_a and T_b has the maximal energy. In fact, the quasi-order method they used before is invalid for the special case. In this paper, we will use the Coulson integral formula method to determine which one of the trees T_a and T_b has the maximal energy. One must notice that since $d_1 \neq d_2$ here, the energy is a function in two variables d_1 and d_2, and this makes our discussion much more complicated.
2 Preliminaries

In this section, we list some useful properties of the signless matching polynomial $m^+(G, x)$, which will be used in the sequel, and already appeared in [12].

Lemma 2.1 Let v be a vertex of G and $N(v) = \{v_1, v_2, \ldots, v_r\}$ the set of all neighbors of v in G. Then

$$m^+(G, x) = m^+(G - v, x) + x^2 \sum_{v_i \in N(v)} m^+(G - v - v_i, x).$$

Lemma 2.2 Let P_t denote a path on t vertices. Then

1. $m^+(P_t, x) = m^+(P_{t-1}, x) + x^2 m^+(P_{t-2}, x)$, for any $t \geq 1$,
2. $m^+(P_t, x) = (1 + x^2) m^+(P_{t-2}, x) + x^2 m^+(P_{t-3}, x)$, for any $t \geq 2$.

The initials are $m^+(P_0, x) = m^+(P_1, x) = 1$, and we define $m^+(P_{-1}, x) = 0$.

Corollary 2.3 Let P_t be a path on t vertices. Then for any real number x,

$$m^+(P_{t-1}, x) \leq m^+(P_t, x) \leq (1 + x^2)m^+(P_{t-1}, x), \text{ for any } t \geq 1.$$

3 Main results

Before giving our main results, we state some knowledge on real analysis, for which we refer to [15].

Lemma 3.1 For any real number $X > -1$, we have

$$\frac{X}{1+X} \leq \log(1 + X) \leq X.$$

For convenience, we introduce the following notations:

$$A_1 = (x^2 + 1)(d_1x^6 + d_2x^6 + d_2x^4 + d_1d_2x^4 + d_1x^4 + 2x^4 + 2x^2 + d_1x^2 + d_2x^2 + 1),$$

$$A_2 = x^2(x^2 + 1)(x^6 + 2x^4 + d_1d_2x^4 + d_1x^2 + d_2x^2 + x^2 + 1).$$
\[B_1 = 2x^8 + d_1 x^8 + 6x^6 + 2d_1 d_2 x^6 + d_1 d_2 x^4 + 2d_1 x^4 + 4x^4 + 2d_2 x^4 + d_2 x^2 + d_1 x^2 + 3x^2 + 1, \]
\[B_2 = x^2(x^2 + 1)(x^6 + 2x^4 + d_1 d_2 x^4 + d_1 x^2 + d_2 x^2 + x^2 + 1). \]

Using Lemmas 2.1 and 2.2 repeatedly, we can easily get the following two recursive formulas, where \(t = n + 4 - 2d_1 - 2d_2 \geq 3: \)
\[m^+(T_a, x) = (1 + x^2)^{d_1 + d_2 - 5}(A_1 m^+(P_{t-3}, x) + A_2 m^+(P_{t-4}, x)), \quad (2) \]
and
\[m^+(T_b, x) = (1 + x^2)^{d_1 + d_2 - 5}(B_1 m^+(P_{t-3}, x) + B_2 m^+(P_{t-4}, x)), \quad (3) \]

From Eqs. (2) and (3), by some elementary calculations we can obtain
\[m^+(T_a, x) - m^+(T_b, x) = (1 + x^2)^{d_1 + d_2 - 5}(d_2 - 2)x^6(x^2 - (d_1 - 2))m^+(P_{t-3}, x). \quad (4) \]

We know directly from Figure 1.1 that if \(t = 2 \) or \(d_2 = 2, T_a \cong T_b \), then \(E(T_a) = E(T_b) \), so we only consider the cases \(t \geq 3 \) and \(d_1 > d_2 \geq 3. \)

Now we give a useful lemma.

Lemma 3.2 Among trees with \(n \) vertices and two vertices of maximum and second maximum degree \(d_1 \) and \(d_2 \), let \(k = d_1 - d_2 \), if \(1 \leq k \leq 3, d_2 \geq 7 - k \) or \(4 \leq k \leq 12, d_2 \geq 3 \), the maximal energy tree is the graph \(T_b \), where \(t = n + 4 - 2d_1 - 2d_2 \geq 3. \)

Proof. Since \(m^+(T_a, x) > 0 \) and \(m^+(T_b, x) > 0 \), we have
\[\frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} = \frac{m^+(T_a, x)}{m^+(T_b, x)} - 1 > -1. \]

Therefore, from Eq. (1) and Lemma 3.1, we get that
\[E(T_a) - E(T_b) = \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \frac{m^+(T_a, x)}{m^+(T_b, x)} dx \]
\[= \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} \right) dx \]
\[\leq \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \cdot \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} dx. \quad (5) \]
By Corollary 2.3, we have \(m^+(P_{t-4}, x) \leq m^+(P_{t-3}, x) \) and \(m^+(P_{t-4}, x) \geq \frac{m^+(P_{t-3}, x)}{1+x^2} \) for \(t \geq 4 \). So, we have

\[
E(T_a) - E(T_b) \leq \frac{2}{\pi} \int_0^{+\infty} \frac{1}{x^2} \cdot \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} dx
\]

\[
= \frac{2}{\pi} \int_0^{+\infty} \frac{(d_2 - 2)x^4(x^2 - (d_1 - 2))m^+(P_{t-3}, x)}{B_1m^+(P_{t-3}, x) + B_2m^+(P_{t-4}, x)} dx
\]

\[
\leq \frac{2}{\pi} \int_0^{+\infty} \frac{(d_2 - 2)x^4(x^2 - (d_1 - 2))}{\sqrt{d_1 - 2}} \frac{B_1 + B_2/(1 + x^2)}{B_1 + B_2} dx + \frac{2}{\pi} \int_0^{\sqrt{d_1 - 2}} \frac{(d_2 - 2)x^4(x^2 - (d_1 - 2))}{B_1 + B_2} dx
\]

\[
+ \frac{2}{\pi} \int_0^1 \frac{2(d_2 - 2)x^4(x^2 - (d_1 - 2))}{(5d_1d_2 + 6d_1 + 5d_2 + 26)(x^2 + 1)} dx = \frac{2}{\pi} f(d_1, d_2).
\]

Where

\[
f(d_1, d_2) = \frac{2(d_2 - 2)}{3(d_1 + 3)\sqrt{d_1 - 2}} - \frac{d_2 - 2}{15(26 + 6d_1 + 5d_1d_2 + 5d_2)} \left(3d_1 - 11 + \frac{2}{(d_1 - 2)^{3/2}} \right)
\]

- \[
= \frac{28d_2 - 40d_1d_2 + 80d_1 - 30\pi d_1 + 30\pi + 15\pi d_2d_1 - 56 - 15\pi d_2}{30(26 + 6d_1 + 5d_1d_2 + 5d_2)}.
\]

Now, for \(k = d_1 - d_2 \), we have that

1. if \(k = 1 \), when \(d_2 \geq 62 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).
2. if \(k = 2 \), when \(d_2 \geq 60 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).
3. if \(k = 3 \), when \(d_2 \geq 57 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).
4. if \(k = 4 \), when \(d_2 \geq 54 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).
5. if \(k = 5 \), when \(d_2 \geq 50 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).
6. if \(k = 6 \), when \(d_2 \geq 47 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).
7. if \(k = 7 \), when \(d_2 \geq 43 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).
8. if \(k = 8 \), when \(d_2 \geq 40 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).
9. if \(k = 9 \), when \(d_2 \geq 35 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).
10. if \(k = 10 \), when \(d_2 \geq 31 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).
(11) if \(k = 11 \), when \(d_2 \geq 24 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).

(12) if \(k = 12 \), when \(d_2 \geq 3 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) < 0 \).

For smaller \(d_2 \), we consider the following inequality

\[E(T_a) - E(T_b) \leq \frac{2}{\pi} \cdot g(d_1, d_2, x) < 0 \]

where

\[
g(d_1, d_2, x) = \int_0^{\sqrt{d_1 - 2}} \frac{1}{x^2} \log \left(1 + \frac{(d_2 - 2)x^6(x^2 - (d_1 - 2))}{B_1 + B_2} \right) dx + \int_{\sqrt{d_1 - 2}}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{(d_2 - 2)x^6(x^2 - (d_1 - 2))}{B_1 + \frac{B_2}{1+x^2}} \right) dx.
\]

By direct calculations, using a computer with the Maple programm, we can get that

1. if \(k = 1 \), when \(6 \leq d_2 \leq 61 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} g(d_1, d_2, x) < 0 \).
2. if \(k = 2 \), when \(5 \leq d_2 \leq 59 \), \(E(T_a) - E(T_b) < 0 \).
3. if \(k = 3 \), when \(4 \leq d_2 \leq 56 \), \(E(T_a) - E(T_b) < 0 \).
4. if \(4 \leq k \leq 11 \), when \(3 \leq d_2 \leq 53 \), \(E(T_a) - E(T_b) < 0 \).

Then, from all the above results, we get the following conclusion: for all \(t \geq 4 \),

1. if \(k = 1 \), when \(d_2 \geq 6 \), \(E(T_a) - E(T_b) < 0 \).
2. if \(k = 2 \), when \(d_2 \geq 5 \), \(E(T_a) - E(T_b) < 0 \).
3. if \(k = 3 \), when \(d_2 \geq 4 \), \(E(T_a) - E(T_b) < 0 \).
4. if \(4 \leq k \leq 12 \), when \(d_2 \geq 3 \), \(E(T_a) - E(T_b) < 0 \).

If \(t = 3 \), we have \(m^+(P_{t-4}, x) = m^+(P_{t-1}, x) = 0 \). By a similar method as above, we can get the same result.

The proof is now complete.

Next we consider the case \(k \geq 13 \).

Lemma 3.3 Among trees with \(n \) vertices and two vertices of maximum and second maximum degree \(d_1 \) and \(d_2 \), let \(k = d_1 - d_2 \), if \(k \geq 13 \), \(d_2 \geq 3 \), then the maximal energy tree is the graph \(T_b \), where \(t = n + 4 - 2d_1 - 2d_2 \geq 3 \).
Proof. In Lemma 3.2 we proved that if \(t \geq 4, d_2 \geq 3 \), \(E(T_a) - E(T_b) < \frac{2}{\pi} f(d_1, d_2) \). Let \(d_1 = d_2 + k \), then \(f(d_1, d_2) = h(d_2, k) \). We first want to show that \(h(d_2, k) \) is monotonically decreasing in \(k \).

\[
h(d_2, k) = \frac{2(d_2 - 2)}{3(d_2 + k + 3)\sqrt{d_2 + k - 2}} - \frac{d_2 - 2}{15(26 + 6(d_2 + k) + 5(d_2 + k)d_2 + 5d_2)} \left(3(d_2 + k) - 11 + \frac{2}{(d_2 + k - 2)^{3/2}} \right) = \frac{28d_2 - 40(d_2 + k)d_2 + 80(d_2 + k) - 30\pi(d_2 + k)}{30(26 + 6(d_2 + k) + 5(d_2 + k)d_2 + 5d_2)} + \frac{30\pi + 15\pi d_2(d_2 + k) - 56 - 15\pi d_2}{30(26 + 6(d_2 + k) + 5(d_2 + k)d_2 + 5d_2)}.
\]

The derivative of \(h(d_2, k) \) on \(k \) is

\[
h'(d_2, k) = h_1 + h_2 + h_3 + h_4 + h_5 + h_6,
\]

where

\[
h_1 = -\frac{2(d_2 - 2)}{3(d_2 + k + 3)^2\sqrt{d_2 + k - 2}},
\]

\[
h_2 = -\frac{d_2 - 2}{3(d_2 + k + 3)(d_2 + k - 2)^{3/2}},
\]

\[
h_3 = -\frac{30\pi - 40d_2 + 15d_2\pi + 80}{780 + 330d_2 + 180k + 150(d_2 + k)d_2},
\]

\[
h_4 = \frac{108d_2 - 56 - 30\pi(d_2 + k) - 40(d_2 + k)d_2 + 15d_2\pi(d_2 + k) + 30\pi - 15d_2\pi + 80k}{(780 + 330d_2 + 180k + 150(d_2 + k)d_2)^2} \cdot (180 + 150d_2),
\]

\[
h_5 = -\frac{\frac{d_2 - 2}{5} - \frac{d_2 - 2}{5(d_2 + k - 2)^{3/2}}}{26 + 11d_2 + 6k + 5(d_2 + k)d_2},
\]

\[
h_6 = \left(\frac{\frac{2}{15(d_2 + k - 2)^{3/2}} + \frac{3d_2 + 15}{15}}{26 + 11d_2 + 6k + 5(d_2 + k)d_2} \right) (d_2 - 2)(5d_2 + 6)
\]

Clearly, \(h_1, h_2 \leq 0 \),

\[
h_3 + h_4 = -\frac{264d_2 - 170d_2^2 + 90d_2\pi + 75d_2^2\pi + 1208 - 480\pi}{15(5d_2^2 + 5d_2k + 11d_2 + 6k + 26)^2} < 0.
\]
Moreover,
\[
\frac{h_5 + h_6}{m} = (2(d_2 + k - 2) + (3d_2 + 3k - 11)(d_2 + k - 2)^{5/2})(5d_2 + 6) \\
- 3(26 + 11d_2 + 6k + 5(d_2 + k)d_2)((d_2 + k - 2)^{5/2} - 1) \\
= (-70d_2^3 - 140d_2^2k + 136d_2^2 - 70d_2k^2 - 8d_2k + 296d_2 - 144k^2 + 576k - 576) \\
\cdot \sqrt{d_2 + k - 2 + 25d_2^2 + 25d_2 + 25d_2k + 30k + 54} < 0 ,
\]
where
\[
m = \frac{d_2 - 2}{15(d_2 + k - 2)^{5/2}(26 + 11d_2 + 6k + 5(d_2 + k)d_2)^2} > 0 .
\]
Thus,
\[
h_5 + h_6 < 0 .
\]
Therefore,
\[
h'(d_2, k) < 0 ,
\]
and hence
\[
h(d_2, k)
\]
is monotonically decreasing in
\[
k.
\]
Then, for any
\[
d_2 \geq 3 , k \geq 13 ,
\]
\[
f(d_1, d_2) = h(d_2, k) < h(d_2, 12) < 0 .
\]
Thus
\[
E(T_a) - E(T_b) < 0 .
\]

If
\[
t = 3 ,
\]
we have
\[
m^+(P_{t-4}, x) = m^+(P_{t-1}, x) = 0 .
\]
By a similar method as above, we can get the same result.

From Lemmas 3.2 and 3.3, we can get the following result immediately.

Theorem 3.4 Among trees with
\[
n
\]
vertices and two vertices of maximum and second maximum degree
\[
d_1
\]
and
\[
d_2
\], if
\[
d_1 \geq 7
\]
and
\[
d_2 \geq 3
\], then the maximal energy tree is the graph
\[
T_b .
\]

Now we have proved that for most cases,
\[
T_b
\]
has the maximal energy among trees with
\[
n
\]
vertices and two vertices of maximum and second maximum degree. Only the following six special cases are left undetermined:
\[
(d_1, d_2) = (4, 3) , (5, 4) , (5, 3) , (6, 5) , (6, 4) , (6, 3) .
\]
Before solving them, we give two lemmas [12] about the properties of the signless matching polynomial
\[
m^+(P_t, x)
\]
for our later use.

Lemma 3.5 For
\[
t \geq -1
\], the polynomial
\[
m^+(P_t, x)
\]
has the following form
\[
m^+(P_t, x) = \frac{1}{\sqrt{1 + 4x^2}}(\lambda_1^{t+1} - \lambda_2^{t+1}) ,
\]
where
\[
\lambda_1 = \frac{1 + \sqrt{1 + 4x^2}}{2}
\]
and
\[
\lambda_2 = \frac{1 - \sqrt{1 + 4x^2}}{2} .
\]
Lemma 3.6 Suppose \(t \geq 4 \). If \(t \) is even, then
\[
\frac{2}{1 + \sqrt{1 + 4x^2}} < \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} \leq 1. \tag{6}
\]
If \(t \) is odd, then
\[
\frac{1}{1 + x^2} \leq \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} < \frac{2}{1 + \sqrt{1 + 4x^2}}. \tag{7}
\]
Note that
\[
\lim_{t \to \infty} \frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} = \frac{2}{1 + \sqrt{1 + 4x^2}}.
\]
Therefore, in view of Ineq. (6), if \(t \) is even and sufficiently large, then for some \(x \), there exists some \(\frac{2}{1 + \sqrt{1 + 4x^2}} < \Theta' < 1 \), such that \(\Theta' \) becomes an upper bound for \(\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} \).

Analogously, in view of Ineq. (7), if \(t \) is odd and sufficiently large, then for some \(x \) there exists some \(\frac{1}{1 + x^2} < \Theta'' < \frac{2}{1 + \sqrt{1 + 4x^2}} \), such that \(\Theta'' \) becomes a lower bound for \(\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} \).

By numerical testing we can find the proper \(\Theta' \) and \(\Theta'' \).

Now we are ready to deal with the case \(d_1 = 4, d_2 = 3 \).

Theorem 3.7 Among trees with \(n \) vertices and two vertices of maximum and second maximum degree \(d_1 = 4 \) and \(d_2 = 3 \), letting \(t = n + 4 - 2d_1 - 2d_2 \geq 3 \), the maximal energy tree is the graph \(T_b \) if \(t = 4 \), and the graph \(T_a \) otherwise.

Proof. By Eqs. (2), (3), (4) and (5), we have
\[
E(T_a) - E(T_b) = \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{m^+(T_a, x) - m^+(T_b, x)}{m^+(T_b, x)} \right) dx
\]
\[
= \frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{(d_2 - 2)x^6(x^2 - (d_1 - 2))}{B_1 + B_2\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)}} \right) dx. \tag{8}
\]

We first consider the case that \(t \) is odd and \(t \geq 5 \). By Eq. (8) and Lemma 3.6, we have
\[
E(T_a) - E(T_b)
> \frac{2}{\pi} \int_{\sqrt{2}}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{x^6(x^2 - 2)}{B_1 + B_2\frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx + \frac{2}{\pi} \int_{0}^{\sqrt{2}} \frac{1}{x^2} \log \left(1 + \frac{x^6(x^2 - 2)}{B_1 + B_2\frac{1}{1 + 2x^2}} \right) dx
> \frac{2}{\pi} \cdot 0.011179 > 0.
\]
If t is even, we want to find t and x satisfying that
\[
\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} < \frac{2}{1 + \sqrt{1 + 4x^2}}.
\] (9)

It is equivalent to solve
\[
\frac{\lambda_1^{t-3} - \lambda_2^{t-3}}{\lambda_1^{t-2} - \lambda_2^{t-2}} < -\frac{1}{\lambda_2} \quad \text{i.e.,} \quad \left(1 + \frac{\sqrt{1 + 4x^2}}{2x}\right)^{2t-6} > \sqrt{1 + 4x^2} - 1.
\]

Thus,
\[
2t - 6 > \log_{1 + \sqrt{1 + 4x^2}}(\sqrt{1 + 4x^2} - 1).
\]

Since for $x \in (0, +\infty)$, $1 + \sqrt{1 + 4x^2}$ is decreasing and $\sqrt{1 + 4x^2} - 1$ is increasing, we have that $\log_{1 + \sqrt{1 + 4x^2}}(\sqrt{1 + 4x^2} - 1)$ is increasing. Thus, if $x \in [\sqrt{2}, 5]$, then
\[
\log_{1 + \sqrt{1 + 4x^2}}(\sqrt{1 + 4x^2} - 1) \leq \log_{\sqrt{101} - 1}(1) < 23.
\]

Therefore, when $t \geq 15$, i.e., $2t - 6 > 23$, we have that Ineq. (9) holds for $x \in [\sqrt{2}, 5]$.

Now we calculate the difference of $E(T_a)$ and $E(T_b)$. When t is even and $t \geq 15$, from Eq. (8) we have
\[
E(T_a) - E(T_b)
\]
\[
> \frac{2}{\pi} \int_5^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{x^6(x^2 - 2)}{B_1 + B_2}\right) dx + \frac{2}{\pi} \int_{\sqrt{2}}^{5} \frac{1}{x^2} \log \left(1 + \frac{x^6(x^2 - 2)}{B_1 + B_2 - \frac{2}{1 + \sqrt{1 + 4x^2}}}\right) dx
\]
\[
+ \frac{2}{\pi} \int_0^{\sqrt{2}} \frac{1}{x^2} \log \left(1 + \frac{x^6(x^2 - 2)}{B_1 + B_2 - \frac{2}{1 + \sqrt{1 + 4x^2}}}\right) dx > \frac{2}{\pi} \cdot 0.001634 > 0.
\]

For $t = 3$ and any even t with $4 \leq t \leq 14$, by computing the energies of the two graphs directly by a computer with Maple program, we can get that $E(T_a) < E(T_b)$ for $t = 4$, and $E(T_a) > E(T_b)$ for the other cases.

The proof is thus complete.\[\]

The following theorem gives the result for the cases: $(d_1, d_2) = (5, 4), (5, 3), (6, 5), (6, 4), (6, 3)$.

Theorem 3.8 Among trees with n vertices and two vertices of maximum and second maximum degree d_1 and d_2, letting $t = n + 4 - 2d_1 - 2d_2 \geq 3,$
(i) for \(d_1 = 5, d_2 = 4 \), the maximal energy tree is the graph \(T_a \) if \(t \) is odd and \(3 \leq t \leq 45 \), and the graph \(T_b \) otherwise.

(ii) for \(d_1 = 5, d_2 = 3 \), the maximal energy tree is the graph \(T_a \) if \(t \) is odd and \(3 \leq t \leq 29 \), and the graph \(T_b \) otherwise.

(iii) for \(d_1 = 6, d_2 = 5 \), the maximal energy tree is the graph \(T_a \) if \(t = 3, 5, 7 \), and the graph \(T_b \) otherwise.

(iv) for \(d_1 = 6, d_2 = 4 \), the maximal energy tree is the graph \(T_a \) if \(t = 5 \), and the graph \(T_b \) otherwise.

(v) for \(d_1 = 6, d_2 = 3 \), the maximal energy tree is the graph \(T_b \) for any \(t \geq 3 \).

Proof. We consider the following cases separately:

(i) \(d_1 = 5, d_2 = 4 \).

If \(t \) is even, we want to find \(t \) and \(x \) satisfying that

\[
\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} < \frac{2.1}{1 + \sqrt{1 + 4x^2}}.
\]

(10)

It is equivalent to solve

\[2t - 6 > \log_{\frac{1 + \sqrt{1 + 4x^2}}{42}} \left(41 - \frac{42}{\sqrt{1 + 4x^2} + 1} \right).\]

If \(x \in [1, \sqrt{3}] \),

\[\log_{\frac{1 + \sqrt{1 + 4x^2}}{42}} \left(41 - \frac{42}{\sqrt{1 + 4x^2} + 1} \right) \leq \log_{\frac{1 + \sqrt{13}}{42}} \left(41 - \frac{42}{1 + \sqrt{13}} \right) < 13.\]

Therefore, when \(t \geq 10 \), i.e., \(2t - 6 > 13 \), we have that Ineq. (10) holds for \(x \in [1, \sqrt{3}] \).

Then, if \(t \) is even and \(t \geq 10 \), from Eq. (8) and Lemma 3.6 we have

\[
E(T_a) - E(T_b) < \frac{2}{\pi} \int_{\sqrt{3}}^{1+\infty} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 3)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx
\]

\[
+ \frac{2}{\pi} \int_{1}^{\sqrt{3}} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 3)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx
\]

\[
+ \frac{2}{\pi} \int_{0}^{1} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 3)}{B_1 + B_2} \right) dx < \frac{2}{\pi} \cdot (-0.000231) < 0.
\]
If \(t \) is odd, we want to find \(t \) and \(x \) satisfying that
\[
\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} > \frac{1.9}{1 + \sqrt{1 + 4x^2}}
\]
(11)
that is
\[
2t - 6 > \log_{1 + \sqrt{1 + 4x^2}} \left(39 - \frac{38}{\sqrt{1 + 4x^2} + 1} \right).
\]
Then we get that when \(t \geq 699 \), and \(x \in [\sqrt{3}, 190] \), the Ineq. (11) holds. Thus, if \(t \) is odd and \(t \geq 699 \), from Eq. (8) and Lemma 3.6 we have
\[
E(T_a) - E(T_b) < \frac{2}{\pi} \int_{\sqrt{3}}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 3)}{B_1 + B_2 \frac{1}{1 + \sqrt{1 + 4x^2}}} \right) dx + \frac{2}{\pi} \int_{\sqrt{3}}^{\sqrt{3}} \frac{1}{x^2} \log \left(1 + \frac{2x^6(x^2 - 3)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx < \frac{2}{\pi} \cdot (-1.41 \times 10^{-5}) < 0.
\]

For any even \(t \) with \(4 \leq t \leq 8 \) and any odd \(t \) with \(3 \leq t \leq 697 \), by computing the energies of the two graphs directly by a computer with Matlab program, we get that \(E(T_a) > E(T_b) \) for any odd \(t \) with \(3 \leq t \leq 45 \), and \(E(T_a) < E(T_b) \) for the other cases.

(ii) \(d_1 = 5, d_2 = 3 \).

If \(t \) is even and \(t \geq 4 \), from Eq. (8) and Lemma 3.6, we have
\[
E(T_a) - E(T_b) < \frac{2}{\pi} \int_{\sqrt{3}}^{+\infty} \frac{1}{x^2} \log \left(1 + \frac{x^6(x^2 - 3)}{B_1 + B_2 \frac{2}{1 + \sqrt{1 + 4x^2}}} \right) dx + \frac{2}{\pi} \int_{\sqrt{3}}^{\sqrt{3}} \frac{1}{x^2} \log \left(1 + \frac{x^6(x^2 - 3)}{B_1 + B_2} \right) dx < \frac{2}{\pi} \cdot (-1.224 \times 10^{-4}) < 0.
\]

If \(t \) is odd and \(t \geq 699 \), by the similar proof in (i), we get that \(E(T_a) - E(T_b) < \frac{2}{\pi} \cdot (-9.90 \times 10^{-4}) < 0 \).

For any odd \(t \) with \(3 \leq t \leq 697 \), by computing the energies of the two graphs directly with Matlab program, we get that \(E(T_a) > E(T_b) \) for any odd \(t \) with \(3 \leq t \leq 29 \), and \(E(T_a) < E(T_b) \) for the other cases.

(iii) \(d_1 = 6, d_2 = 5 \).
If \(t \) is even, by the similar method as used in (ii), we get that \(E(T_a) - E(T_b) < \frac{2}{\pi} \cdot (-0.018405) < 0 \).

If \(t \) is odd, similar to the proof in (i), we can show that when \(t \geq 27 \) and \(x \in [2, 22] \), the following inequality holds:

\[
\frac{m^+(P_{t-4}, x)}{m^+(P_{t-3}, x)} > \frac{1}{1 + \sqrt{1 + 4x^2}}.
\]

Hence, if \(t \) is odd and \(t \geq 27 \), we have

\[
E(T_a) - E(T_b) < 2\pi \cdot (-0.002914) < 0.
\]

For any odd \(t \) with \(3 \leq t \leq 25 \), by computing the energies of the two graphs directly, we can get that \(E(T_a) > E(T_b) \) for \(t = 3, 5, 7 \), and \(E(T_a) < E(T_b) \) for the other cases.

(iv) \(d_1 = 6, d_2 = 4 \).

If \(t \) is even, by the similar method as used in (ii), we get that \(E(T_a) - E(T_b) < \frac{2}{\pi} \cdot (-0.015171) < 0 \).

If \(t \) is odd and \(t \geq 27 \), by the similar proof as used in (iii), we get that \(E(T_a) - E(T_b) < \frac{2}{\pi} \cdot (-0.004557) < 0 \).

For any odd \(t \) with \(3 \leq t \leq 25 \), by computing the energies of the two graphs directly, we get that \(E(T_a) > E(T_b) \) for \(t = 5 \), and \(E(T_a) < E(T_b) \) for the other cases.

(v) \(d_1 = 6, d_2 = 3 \).

If \(t \) is even, by the similar method as used in (ii), we get that \(E(T_a) - E(T_b) < \frac{2}{\pi} \cdot (-0.009652) < 0 \).

If \(t \) is odd and \(t \geq 27 \), by the similar proof as used in (iii), we get that \(E(T_a) - E(T_b) < \frac{2}{\pi} \cdot (-0.004244) < 0 \).

For any odd \(t \) with \(3 \leq t \leq 25 \), by computing the energies of the two graphs directly, we get that \(E(T_a) < E(T_b) \) for all \(t \geq 3 \).

The proof is now complete.
References

