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Abstract Ranking chemicals according to their potential environmental hazard is a well
accepted preparatory step in risk assessment. A study of Halfon et al. ranked pesticides by
applying simple tools on the partially ordered set (poset) induced by chemical properties as
proxies for their groundwater contamination hazard. In this contribution, we present some
developments in the field of partial order theory which prove to be helpful in applications
where a ranking is needed. Whereas in the former study a classification of the pesticides
in only four classes was obtained, in the current contribution tools are used that aim
at a greater differentiation to support decision makers and to allow for comparison with
monitoring results. In order to quantify how close the result of each tool is to a ranking
of the pesticides, a linearity index is introduced.

1 Introduction

In 1996 Halfon et al. [1] assessed the environmental hazard of 50 pesticides used in Italy

by ranking them on the basis of the Hasse diagram representing the poset induced by

their chemical properties. Fifteen years later, it is interesting to see which new tools have

been developed that could help in ranking these and other pesticides according to their

potential environmental hazard.
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Halfon et al. obtained a classification of the pesticides in four classes that coincided

reasonably well with monitoring results. Our aim is to achieve a greater differentiation,

as in general a decision maker would like to obtain, without subjective assumptions, a

ranking, i.e. a linear ordering of the pesticides. Although not all presented tools will

guarantee the completeness of the resulting ordering, for each of them it will hold that

a pair of pesticides that is ordered with respect to each other will not contradict the

order relation of the underlying poset. We will provide enlightening example applications

for a subgroup of 17 pesticides that are characterized by a high usage. Note that since

the usage of these pesticides is one of the main factors determining their environmental

impact, a selection on this basis seems natural.

The fate of agricultural pesticides following their application is determined by their

physico-chemical properties in combination with properties of the soil, such as microbial

population density, organic carbon concentration and humidity. A relevant question is

thus how the pesticide disperses in the soil and when an impact on ground and surface

water is to be expected. The likely fate of pesticides in soils can be determined by means

of deterministic transport models (see e.g. [2,3]). The use of such mathematical models is

nowadays accepted in risk assessment as for instance the well-known EUSES model [4–7]

and the former E4CHEM model [8–10] show.

Next to the precise knowledge of the chemical properties of the dispersing compounds,

transport models require detailed knowledge of soil and climate, which is expensive and

time consuming to acquire. Hence, before detailed and expensive field studies are per-

formed, the availability of a ranking of the pesticides with respect to their leaching poten-

tial may be helpful in identifying the most harmful substances which affect ground and

surface water.

2 Material and methods

2.1 Data set of pesticides

In the study of Halfon et al. [1], originally 50 pesticides were selected for further exam-

ination. As characteristic quantities for the unknown leaching potential they used the

following criteria: persistence, water solubility, vapour pressure and yearly usage. In the

present contribution, we limit ourselves to the subset of pesticides with a usage of more

than 300 tons per year in the years 1986 and 1987 in Italy. The names of these 17 pes-
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pesticide identifier persistence water −vapour usage
solubility pressure

(days) (mg/L) (m Pa) (tons/y)
alachlor a0 15 240 −1.87 1537
atrazine a4 60 33 −0.039 725
azinphosmethyl p0 10 29 −0.027 422
captan b3 2.5 5.1 −0.011 557
carbaryl b4 10 120 −0.16 590
2,4-D (pH < 5) c5 8 620 −1400 314
dimethoate d9 7 39800 −3.33 446
mancozeb h2 70 6 0 3465
metham-Na i0 7 963000 −2.7× 10−6 5075
TCA i4 21 1200000 0 889
methylbromide i5 55 13400 −2.43× 108 3984
metolachlor i7 90 530 −4.18 544
propanil k6 1 200 −5.3 694
thiram m1 15 30 −1.33 1180
ziram n0 30 65 −1.3× 10−3 3151
zineb n1 30 10 −0.01 2359
dinocab s1 5 4 −5.3× 10−3 432

Table 1: The subset of 17 pesticides together with their identifier and properties.

ticides, together with their identifiers, persistence, physico-chemical and usage data are

shown in Table 1. The half-life in soil of a pesticide acts as a proxy for its persistence,

its water solubility as a measure for its ability to be transported by the water flow in

the pores of the soil and its vapour pressure prefixed with a negative sign as a measure

for its tendency to remain in the soil. Note that the leaching potential of a pesticide

increases when the half-life or water solubility increases, while it decreases for an increase

in vapour pressure. The vapour pressure is therefore prefixed with a negative sign, so

that all attributes have the same orientation towards leaching potential. Although one

could argue that the determination of half-life in soils is rather uncertain due to its high

sensitivity to humidity, temperature, etc., we will stick to the original figures published

in the paper of Halfon et al. [1] to be able to contrast their results with ours.

2.2 Theoretical framework

Let us denote a set of n objects as P and assume that each object x ∈ P can be de-

scribed by an attribute vector q(x) = (q1(x), q2(x), . . . , qm(x)), where qi(x) ∈ Qi for

i ∈ {1, . . . ,m}. We furthermore assume that each Qi is equipped with a linear order
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Figure 1: The Hasse diagram of the poset (Ω,≤) corresponding to the 17 attribute vectors
in Table 1.

relation ≤i. The set of objects P equipped with the relation ≤ defined by

x ≤ y ⇔ (∀i ∈ {1, . . . ,m})(qi(x) ≤ qi(y)) (1)

is called a preordered set or pre-poset and denoted by (P,≤).

Note that each attribute i can be considered as a criterion: if qi(x) ≤ qi(y), then x

is as most as good as y with respect to criterion i. If for two elements x, y ∈ P neither

x ≤ y nor y ≤ x, the elements x and y are called incomparable, denoted as x || y. Remark

that if for two distinct objects x, y ∈ P it holds that qi(x) = qi(y), for all i ∈ {1, . . . ,m},
equivalence classes arise since at the same time x ≤ y and y ≤ x.

In each equivalence class in (P,≤) only one representative element can be retained

such that a new (reduced) pre-poset (Pr,≤r) is obtained. As x ≤r y and y ≤r x imply

x = y, the relation ≤r is a partial order relation and (Pr,≤r) is called a partially ordered

set or poset. Every poset can be conveniently represented by a directed graph, called a

Hasse diagram, in which each element is represented by a vertex and where a directed

edge is drawn from x to y if x <r y and no third element z is present in (Pr,≤r) such

that x <r z <r y. Remark that we write x <r y if x ≤r y and y �≤r x. The additional

convention is made that each edge is directed upward and as such it is unnecessary to

indicate the direction of the edge.

Let us denote the set of pesticides in Table 1 as Ω. Since no two pesticides have an

identical attribute vector, equipping the set Ω with the relation ≤ as defined in (1) yields

a poset (Ω,≤). The Hasse diagram of this poset is shown in Figure 1. Note that vertices

situated at the top of the Hasse diagram correspond to pesticides that seem to be the most

hazardous according to their leaching potential, while vertices situated at the bottom of
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the diagram correspond to pesticides that seem to be the least hazardous. If no path

following upward edges between two vertices is present, the pesticides corresponding to

the vertices are incomparable.

Incomparable elements are generally considered as obstacles in obtaining a ranking

of the objects. The tools presented in this contribution therefore aim at transforming a

given pre-poset (P,≤) into a new pre-poset (P,≤′) with less incomparabilities. All tools

will furthermore have the common property that (P,≤′) is an extension of (P,≤), which

means that x ≤ y implies that x ≤′ y for x, y ∈ P . In other words, all comparabilities

originally present in ≤ are preserved in ≤′.

Strategies to resolve incomparabilities frequently rely on the selection of a common

scale for all criteria. Although this facilitates the construction of a ranking of the elements,

finding such a common scale is controversial due to the subjectivity involved (see for

instance [11–16]). In this contribution we will restrict ourselves to methods that do not

require such subjective choices.

As the aim is to reduce incomparabilities in the pre-poset (P,≤) as much as possible

it is desirable to be able to quantify how close an extension of (P,≤) is to a ranking.

Although at first glance the number of comparabilities might be a useful quantification,

a pre-poset consisting of a single equivalence class turns out to be void of incomparable

elements. It is clear that such a trivial ordering is undesirable due to the complete lack of

differentiation. We therefore suggest as a suitable alternative the linearity index, mapping

a pre-poset (P,≤) to the number of pairs of different elements that are comparable but

do not reside in the same equivalence class, divided by n− 1, in order to obtain a number

between 0 and n. Note that a linearity index of 0 implies that no elements are comparable

without being equivalent, i.e. that the pre-poset is an antichain with possible equivalence

classes. On the other hand, a linearity index of n implies that all elements are comparable

and that no elements reside in the same equivalence class, i.e. that the pre-poset is a linear

ordering or ranking. Since the poset (Ω,≤) of 17 pesticides has 40 couples (x, y) for which

x < y or x > y, its linearity index L(Ω) equals 40/16 = 2.5.

2.3 Ranking based on average ranks

First, let us reduce the given pre-poset (P,≤) to a poset (Pr,≤r) by retaining an arbitrary

representative element for each equivalence class. As all elements in an equivalence class
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will play an identical role in what follows, there is no need to differentiate between such

elements.

When repeatedly assigning an arbitrary order to a pair of incomparable elements and

transitively closing, eventually one obtains an extension of (Pr,≤r) that is linearly ordered.

Since to each poset corresponds a manifold of such linear extensions, the question arises

which extension the decision maker should choose. A popular approach is to compute the

average rank ρ(x) each element x ∈ Pr occupies over all possible linear extensions of the

poset. As the average rank is a real number, its ordering induces a linear ordering on the

elements with possible ties that is, due to the fact that x ≤r y implies ρ(x) ≤ ρ(y), an

extension of the poset. Such an extension is called a weak order extension of the poset.

A straightforward method to compute the average ranks of the elements enumerates

all linear extensions of the poset. However, because of its exponential nature, the num-

ber of linear extensions quickly grows very large, thus often rendering their enumeration

computationally intractable. In order to overcome this problem an algorithm to compute

the average ranks based on the so-called lattice of ideals representation of a poset that

avoids enumerating all linear extensions has been developed by some of the present au-

thors [17, 18]. A subset I ⊆ Pr is called an ideal of (Pr,≤r) if it holds for all x ∈ I that

y ≤r x implies y ∈ I. It can be shown that the set of ideals equipped with set inclusion as

order relation is a special poset, namely a distributive lattice called the lattice of ideals.

Furthermore, there is a one-to-one correspondence between any path from the unique

source (i.e. the smallest ideal, and thus the empty set) to the unique sink (i.e. the largest

ideal, and thus the poset itself) and a linear extension of the original poset. Instead of

enumerating all linear extensions of a poset the algorithm only requires the construction

of the lattice of ideals to derive the average ranks.

Finally, once the weak order extension based on the averaged ranks is obtained, all

objects residing in the same equivalence class are assigned the same position in the ranking.

Remark furthermore that the attribute values of the elements of the pre-poset do not come

into play. Hence, the Hasse diagram of the poset suffices as input for this method.

Although the number of ideals of a poset is substantially lower than its number of linear

extensions, because of its exponential nature one usually still has to resort to algorithms

approximating the average ranks for posets consisting of more than 30 elements. Although

approximative algorithms based on the Markov chain Monte Carlo method to compute
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the average ranks exist [19], to guarantee a reasonable accuracy their computation time

is still substantial for larger posets.

The so-called local partial order model [20–23] allows for a simple approximation of the

average rank of an element x ∈ Pr by considering all elements that are incomparable to x

as isolated elements, i.e. elements that are incomparable to all other elements of (Pr,≤r).

When we denote the number of elements incomparable to x as U(x), the number of

elements smaller than x as S(x) and the total number of elements of (Pr,≤r) as N , the

average rank of x ∈ Pr is approximated as

ρ̃(x) =
[S(x) + 1] [N + 1]

N + 1− U(x)
.

By ordering the elements of (Pr,≤r) according to their approximated average rank,

a weak order relation is obtained. However, the approximation is quite crude and of-

ten produces large equivalence classes due to symmetries in the structure of the poset.

Nonetheless, it can be easily proven that the weak order relation induced by the approxi-

mated average ranks is an extension of (Pr,≤r). Indeed, consider two elements x, y ∈ P for

which x <r y. We need to show that ρ̃(x) ≤ ρ̃(y). Suppose that ρ̃(x) ≥ ρ̃(y) (ρ̃(x) > ρ̃(y)

would be sufficient), then we need to obtain a contradiction.

Let us denote the number of elements that are incomparable to x but smaller than y as

λ and the number of elements that are incomparable to y but larger than x as μ. This

allows to write

U(y) = U(x)− λ+ μ ≥ U(x)− λ

and furthermore that

S(y) ≥ S(x) + λ+ 1 .

It then follows that

[S(y) + 1] [N + 1]

N + 1− U(y)
≥ [S(x) + λ+ 2] [N + 1]

N + 1− U(x) + λ
.

Expressing that ρ̃(x) ≥ ρ̃(y) yields

[S(x) + 1] [N + 1]

N + 1− U(x)
≥ [S(y) + 1] [N + 1]

N + 1− U(y)
. (2)

In order for (2) to hold, it is therefore required that

[S(x) + 1] [N + 1]

N + 1− U(x)
≥ [S(x) + λ+ 2] [N + 1]

N + 1− U(x) + λ
,
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which can be simplified to

λ [S(x) + U(x)−N ] ≥ N + 1− U(x) .

Since S(x) + U(x) − N < 0 this would imply that N + 1 − U(x) ≤ 0, which is clearly

impossible. We have thus proven that x <r y implies that ρ̃(x) < ρ̃(y).

2.4 Fuzzifying the pre-poset

Incomparabilities in the pre-poset (P,≤) can originate from small numerical differences in

attribute values which could be considered as unimportant when ranking the objects. In

order to accommodate for the presence of differences one can establish a fuzzy pre-poset

by replacing the relation ≤ by a fuzzy inclusion relation (see e.g. [24, 25]). A detailed

study of fuzzy and order-theoretical concepts applied on refrigerants can be found in [26].

In this contribution we will use the fuzzy inclusion relation suggested by Kosko [27].

First, we normalize the attribute vectors q(x) for x ∈ P by calculating for each i ∈
{1, . . . ,m}

mi = min
x∈P

qi(x) ,

Mi = max
x∈P

qi(x)

and

q̄i(x) =
qi(x)−mi

Mi −mi

,

such that we obtain q̄(x) = (q̄1(x), q̄2(x), . . . , q̄m(x)). We define the fuzzy inclusion relation

SH, which expresses the degree of subsethood of x in y, by

SH(x, y) =
m∑
i=1

min(q̄i(x), q̄i(y))/
m∑
i=1

q̄i(x) . (3)

Remark that for any x, y ∈ P the value SH(x, y) lies in the interval [0, 1] and that if x < y,

implying q̄(x) < q̄(y), it follows that SH(x, y) = 1.

When computing SH(x, y) for all x, y ∈ P , a square matrix M , representing a fuzzy

relation, is obtained. Since all elements on the diagonal equal 1, the matrix M contains

at most n(n − 1) + 1 different values. For each such value α ∈ [0, 1], a new matrix Mα

can be computed using the α-cut operation:

Mα(i, j) =

{
1 , if M(i, j) ≥ α

0 , otherwise
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The matrix Mα corresponds to a new preorder relation when it fulfills the transitivity

property of a preorder, i.e. if Mα(x, y) = 1 and Mα(y, z) = 1 imply Mα(x, z) = 1. In

order to obtain a preorder relation we therefore only need to transitively close the matrix

Mα, which is commonly done using the Floyd-Warshall algorithm listed in Algorithm 1,

though other algorithms exist [24, 28].

Algorithm 1 The Floyd-Warshall algorithm applied on Mα.

1: for k = 1 to n do
2: for i = 1 to n do
3: for j = 1 to n do
4: Mα(i, j) ← max(Mα(i, j),min(Mα(i, k),Mα(k, j))

Remark that the larger α, the smaller the numerical differences that are considered

as important and thus influence the preorder relation. Correspondingly, the smaller α,

the larger the numerical differences that are considered as unimportant and the larger

the equivalence classes become. As we aim to obtain an extension that is as close to a

ranking as possible, we choose an α-cut which leads to a maximal linearity index.

Since the operations of cutting and transitive closure commute when the relation is

reflexive (as it is in our case), we are allowed to compute the min-transitive closure of the

fuzzy relation before the cutting operation [24] using Algorithm 1 directly on M . From an

algorithmic point of view this is advantageous, as it is possible for the transitive closure

to reduce the number of different elements in M and thus the number of α-cuts that have

to be considered.

Finally, we remark that the pre-poset (P,≤′) obtained by this approach is guaranteed

to be an extension of (P,≤). It suffices to argue that neither cutting nor transitively

closing can remove a 1 that was originally present in the matrix M , and that a fortiori

all comparabilities in (P,≤) are retained.

2.5 Combining partial order relations

In this section we show how techniques to combine the information of several partial

order relations into a single relation can help in selecting an extension (P,≤′) of the pre-

poset (P,≤). First, we reduce the given pre-poset (P,≤) to a poset (Pr,≤r) by retaining

an arbitrary representative element for each equivalence class. The set of attributes of

(Pr,≤r) is partitioned into subsets Sj with j ∈ {1, . . . , k}.
Although in general each subset Sj of attributes induces a new pre-poset (Pr,≤j

r
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), the combination techniques require (Pr,≤j
r) to be posets. Therefore, we currently

have to restrict ourselves to partitions where all (Pr,≤j
r) with j ∈ {1, . . . , k} are posets.

Note, however, that when considering physico-chemical properties, which are inherently

continuous in nature, equivalences are rare or even non-existent as is the case in our data

set of 17 pesticides in Table 1.

The partial order relations ≤j
r with j ∈ {1, . . . , k} on Pr can be combined to form a

poset (Pr,≤′
r) by two extreme approaches: we can ask for the common comparabilities,

corresponding to an and -combination, or we can accept any comparability which appears

in at least one of the partial order relations, corresponding to an or -combination. Unfor-

tunately, the or -relation does not exclude cyclic relations like a > b, b > c, but c > a,

which contradicts the transitivity property of a partial order relation.

The algebraic method described by Rademaker [29–32] is conceived as an objective

transitivity-preserving or -relation for two posets, guaranteeing the output to be a poset

as well. By computing the intersection of the transitive closures of all maximal relations

R for which it holds that (1) R is an extension of the intersection and a restriction of

the union of the two posets, and (2) the transitive closure of R contradicts neither of the

two input posets, one finds a uniquely defined poset that lies in between the intersection

and the union of both input posets. This resulting poset is called the consistent union.

A variant to take into account one attribute subset being of greater importance than the

other, in effect extending one poset with another poset in a consistent and objective way,

is also formulated by Rademaker [29–32] and is called the prioritized consistent union.

Although some subjectivity is involved in this variant, there are no additional parameters

that have to be chosen. Further generalizations of these methods have been formulated

that are able to process multiple inputs, as well as more general input relations such as

preference relations [30].

Finally, the pre-poset (P,≤′) is obtained from (Pr,≤′
r) by defining x ≤′ y for x, y ∈ P

if r(x) ≤′
r r(y), where the function r maps an element x ∈ P to the representative

element r(x) of the equivalence class it belongs to. Finally, it is important to remark

that all methods presented in this section again guarantee that the pre-poset (P,≤′) is

an extension of (P,≤). Indeed, all posets (Pr,≤j
r) with j ∈ {1, . . . , k} are extensions

of (Pr,≤r) and the recombination techniques never introduce comparabilities that are

incompatible with (P,≤).
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pesticide identifier exact LPOM
TCA i4 14.90 16.00
ziram n0 14.82 15.43
metham-Na i0 13.46 15.00
mancozeb h2 12.17 13.50
alachlor a0 11.52 12.00
zineb n1 9.44 9.00
atrazine a4 9.00 9.00
methylbromide i5 9.00 9.00
metolachlor i7 9.00 9.00
2, 4-D (pH < 5) c5 7.45 6.00
carbaryl b4 7.45 6.00
thiram m1 7.41 6.00
azinphosmethyl p0 6.79 4.50
dimethoate d9 6.32 4.50
dinocab s1 5.17 3.00
propanil k6 5.04 3.60
captan b3 4.05 2.57

Table 2: The exact average ranks of the pesticides and their approximated average ranks
by the local partial order model (LPOM).

3 Results

3.1 Ranking based on average ranks

Although the poset (Ω,≤) of 17 pesticides has 638 881 855 200 linear extensions, i.e. pos-

sible rankings of the pesticides compatible with the relation ≤, the average ranks can be

easily computed using the lattice of ideals representation of (Ω,≤). The exact average

ranks together with their approximated values obtained by the local partial order model

(LPOM) are shown in Table 2.

Remark that both approaches rank TCA (i4) as the most hazardous pesticide. The

LPOM approximation, however, inverts the ranking of dinocab (s1) and propanil (k6).

While the weak order extension induced by the exact average ranks has only two equiv-

alence classes with more than one element, i.e. {a4, i5, i7} and {b4, c5}, and a linearity

index of 16.5, the weak order extension induced by the approximated average ranks has

three equivalence classes, i.e. {a4, i5, i7, n1}, {b4, c5,m1} and {p0, d9}, and a linearity

index of 15.625. It is clear that, in general, the exact average ranks will induce a ranking

with less equivalences and thus with a larger linearity index.
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3.2 Fuzzifying the pre-poset

First, for each pair of pesticides x, y ∈ Ω we calculate the degree of subsethood SH(x, y),

such that a fuzzy relation MS is obtained, and find its min-transitive closure M̂S using

the Floyd-Warshall algorithm listed in Algorithm 1 directly on MS. For each α-cut of

M̂S, the linearity index of the pre-poset is computed and plotted in Figure 2. For α < 0.5

the linearity indices are not shown on the plot, as the corresponding pre-posets degrade

to a single equivalence class and thus have a linearity index of 0. Note that the linearity

index shows a tendency to increase to the maximum value of 11.625 for α ≈ 0.97, after

which it quickly decreases to L(Ω) = 2.5 when α = 1.

As an illustration, the pre-poset obtained by cutting at α = 0.694 has a linearity index

of 5.625 and consists of three equivalence classes only. In contrast, the pre-poset obtained

by cutting at α = 0.97 has a linearity index of 11.625 and has only one non-trivial equiv-

alence class consisting of the pesticides b3, k6 and s1. We choose b3 as representative

pesticide for the non-trivial equivalence class to obtain a poset whose Hasse diagram

is depicted in Figure 3. Although the poset quite closely approaches a ranking, some

incomparabilities remain. Nevertheless, these incomparabilities are few and a high differ-

entiation between the pesticides is obtained, making the poset well suited for comparison

with results from field studies. Note that the pesticide TCA (i4), which is ranked highest

in the approach using the average ranks, is also a maximal element in this poset, albeit

in the presence of four other maximal elements.

3.3 Combining partial order relations

We partition the set of attributes into two subsets: persistence and usage on the one

side, and water solubility and vapour pressure on the other side. This partitioning can be

motivated by the fact that, contextually, usage and persistence may be considered the most

important criteria. As a combination technique for the two resulting posets, we therefore

use the prioritized consistent union where priority is given to the poset induced by the

persistence and usage criteria. Combining the poset induced by the persistence and usage

criteria in Figure 4 and the poset induced by the water solubility and vapour pressure

criteria in Figure 5 yields the poset shown in Figure 6. The latter poset has a linearity

index of 10.375. Observe that, due to the fact that priority is given to persistence and

usage, TCA (i4) is no longer ranked on top: it is now dominated by four other pesticides.
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Figure 2: A plot of the linearity index for each α-cut with α ≥ 0.5 of M̂S.
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Figure 3: The Hasse diagram of the poset obtained by cutting at α = 0.97 and choosing
b3 as representative element for the equivalence class {b3, k6, s1}.
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Figure 4: The poset induced by the persistence and usage criteria.
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Figure 5: The poset induced by the water solubility and vapour pressure criteria.

4 Discussion

In this paper, we have applied several methods from partial order theory, two recent and

one new, to support the risk assessment of the 17 pesticides from Table 1. For each

method we have proven that an extension of the pre-poset of pesticides is obtained, guar-

anteeing compatibility with the original preorder relation. Furthermore, each extension is

characterized by a higher linearity index than the original pre-poset, and is hence closer

to a ranking, in this way facilitating a risk assessment.

The first method ranks the pesticides on the basis of their average ranks. Since the

computation of the average ranks is computationally intractable for larger posets, one

often has to resort to approximative approaches. The exact average ranks of the pre-

poset of 17 pesticides, however, can still be computed using an approach based on the

so-called lattice of ideals representation of the corresponding poset. In this contribution,

we have used the local partial order model to obtain approximations of the average ranks

as an illustration. Although the approximative approach causes larger equivalence classes

to arise, both approaches have ranked TCA as the most hazardous pesticide for the data

set considered.

-226-



��

��

��

��

��

��

��

��

	�


�

��

�

��

�� ��

��

��

Figure 6: Prioritized consistent union of the poset induced by the persistence and usage
criteria (cf. Figure 4) and the poset induced by the water solubility and vapour pressure
(cf. Figure 5), where priority is given to the first poset.

The second method fuzzifies the pre-poset by introducing a degree of subsethood

aiming to discard small numerical differences which should be considered as unimportant

from a ranking point of view. Different choices for α can result in different pre-posets,

with possibly different values for the linearity index. By cutting at α = 0.97, a pre-poset

has been obtained where TCA is again a maximal element, next to, however, four other

maximal elements.

In the third method, the set of attributes is partitioned into subsets inducing new

pre-posets. These pre-posets are then recombined into a single poset that has a linearity

index that is at least as high as the linearity index of the poset corresponding to the full

set of attributes. As an illustration, we have partitioned the attributes of the data set of

pesticides into a subset consisting of usage and persistence and a subset consisting of water

solubility and vapour pressure. The two resulting posets have been combined using the

so-called prioritized consistent union, with priority being given to the poset corresponding

to usage and persistence. Not surprisingly, the less widely-used TCA is then no longer a

maximal element. Instead, three other pesticides arise as maximal elements which were,

however, also maximal elements in the second method.

In the paper of Halfon et al. [1] a validation was performed by verifying whether

the investigated pesticides had concentrations above 50 ng/L. It was shown that the

obtained classification into four classes closely matched monitoring results. In this paper

a classification is found that is much more discriminative. Whereas the pesticide TCA,

which is ranked highest by the first method, was not confirmed by the monitoring study,
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the other pesticides coincide pretty well with the results. The fact that the first method

ranks TCA highest can be explained by the large number of pesticides that are smaller

than TCA in the original pre-poset. Indeed, when the number of elements incomparable

to an element x, i.e. U(x), in the expression for ρ̃(x) is kept constant, ρ̃(x) is clearly

proportional to the number of elements smaller than x, i.e. S(x).

Finally, it should be mentioned that it is important not to rely on only one of the

three discussed methods. A poset as shown in Figure 1 has for example not enough

comparable elements to rely only on the order induced by the average ranks. It is therefore

necessary to infer additional information, obtained in the second method by neglecting

small numerical differences in the attribute values and by choosing the pre-poset which,

after the cutting operation, maximizes the linearity index. The third method can be

conveniently used to model preferences of the decision maker without the requirement of

tuning several parameters. Note that a real risk assessment study of the well-regulated

pesticides requires more attention to be paid to the indicators, for example by taking into

account the large uncertainty on the half-life of the pesticides. Hence, the results of the

analysis serve as an illustration of the tools rather than as a definite risk assessment of

these pesticides.
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poset ranking, Combin. Chem. High Throughput Screen. 11 (2008) 734–744.

-229-



[18] K. De Loof, H. De Meyer, B. De Baets, Exploiting the lattice of ideals representation

of a poset, Fund. Inform. 71 (2006) 309–321.

[19] R. Bubley, M. Dyer, Faster random generation of linear extensions, Discr. Math. 201

(1999) 81–88.

[20] R. Bruggemann, L. Carlsen, An improved estimation of averaged ranks of partial

orders, MATCH Commun. Math. Comput. Chem. 65 (2011) 383–414.
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