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Abstract

The atom–bond connectivity (ABC) index of a graph G is defined as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv

where E(G) is the edge set and du , dv are, respectively, the degrees of the vertices u and v in
G . In this paper, we present some sharp lower and upper bounds on ABC . In addition, we give
a characterization of the maximum and minimum ABC index and the corresponding extremal
graphs among all unicyclic graphs, resp. unicyclic chemical graphs.

1 Introduction

The connectivity index, χ , is topological index and it was introduced in 1975 by Milan

Randić [3] who has shown this index to reflect molecular branching. However, many

physico–chemical properties are dependent on factors rather different than branching. In

order to take this into account, but at the same time to keep the spirit of the Randić

index, Ernesto Estrada et al. [2] proposed a new topological index, named atom-bond

connectivity (ABC) index. It displays an excellent correlation with the heat of formation
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of alkanes [2, 7]. This index is defined as follows:

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv

where E(G) is the set of edges and du , dv are the degrees of vertices u and v in G ,

respectively.

Recall that a connected graph is known as a molecular graph if its maximum degree

is at most four. Furtula et al. [1] determined the minimum and maximum values of this

index for molecular trees and showed that the star is the unique tree with the maximum

ABC index when the number of vertices is given. Kinkar Ch. Das [4] gave the upper and

lower bounds for the ABC index of general graphs using parameters such as the number of

vertices, edges, pendent vertices and the minimal non-pendent vertices. Recently, Rundan

Xing [5] showed the upper bound for ABC index of trees with a perfect matching and

fixed maximum degree, respectively. In this paper, we present some sharp lower and

upper bounds on ABC index of graphs and give a characterization of the maximum and

minimum ABC index and the corresponding extremal graphs among all unicyclic graphs,

resp. unicyclic chemical graphs.

2 The lower bound on ABC index

For a connected graph G of order n with m edges, the maximum vertex degree is denoted

by Δ , the number of pendent vertices by p and the number of non-pendent edges having at

least one end-vertex of degree 2 by l . Denote by xij the number of edges of G connecting

vertices of degree i and j , where 1 ≤ i ≤ j ≤ Δ. Denote by ni the number of vertices

with degree i in G for i = 1, 2, . . . , Δ . Let ij =
√

i+j−2
ij

. If V (G) is the disjoint union

of two non-empty set V1(G) and V2(G) such that every vertex in V1(G) has degree r and

every vertex in V2(G) has degree s (r > s) , then G is an (r, s)−semiregular graph. The

modified second Zagreb index M∗
2 (G) is equal to the sum of the products of the reciprocal

of the degrees of pairs of adjacent vertices of the underlying molecular graph G , that is,

M∗
2 (G) =

∑
vivj∈E(G)

1
didj

.

Lemma 2.1. Let xy =
√

x+y−2
xy

=
√

1
x

+ 1
y
− 2

xy
, where x ≥ 1 . Then 2x =

√
2

2
.

Proof. The proof is obvious.

Lemma 2.2. Let xy =
√

x+y−2
xy

. If x ≤ y , then 1x ≤ 1y .
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Proof. If x ≤ y , then y−1
y

− x−1
x

= y−x
xy

≥ 0 . Hence 1y − 1x =
√

y−1
y

−
√

x−1
x

≥ 0 .

Lemma 2.3. ( [5]) Let f(x, y) =
√

x+y−2
xy

=
√

1
x

+ 1
y
− 2

xy
, where x , y ≥ 1 . If y ≥ 2 is

fixed, then f(x, y) is decreasing for x .

Corollary 2.4. Let xy =
√

x+y−2
xy

. If y ≥ 2 is fixed, then 2y ≥ xy for x (x ≥ 2) .

Proof. By Lemma 2.3, if y ≥ 2 is fixed, then xy is deceasing for x , where x ≥ 2 . Hence

2y ≥ xy .

Let Γ be the class of connected graphs G whose all the edges have at least one end-

vertex of degree 2 .

Let Γ∗ be the class of connected graphs G , which there is at least one edge whose

two end-vertices’ degree are both Δ , and all other edges have at least one end-vertex of

degree 2 .

Let Γ∗∗ be the class of graph H = (V, E) such that H is connected graph of minimum

vertex degree δ = 2 with q edges vivj ∈ E(G) such that di = dj = Δ(≥ 3) and the

remaining m − q edges vivj ∈ E(H) such that di = 2 or dj = 2 or di = dj = 2 , where Δ

is the maximum vertex degree and q is given by q = mΔ
Δ+2

√
Δ−1

.

Theorem 2.5. Let G be a simple connected graph with m edges, maximum vertex degree

Δ , p pendent vertices. Denote by l the number of non-pendent edges having at least one

end-vertex of degree 2 . Then

ABC(G) ≥
√

2(p + l)

2
+ (m − p − l)

√
2Δ − 2

Δ
.

The equality holds if and only if G is a regular graph or G ∈ Γ or G ∈ Γ∗ or G ∼= Cn or

G ∼= Pn .

Proof. By Lemmas 2.1, 2.2, 2.3, we have

ABC(G) =
∑

2≤i≤Δ

x1i1i +
∑

2≤i≤Δ

x2i2i +
∑

3≤i≤j≤Δ

xijij

≥ (
∑

2≤i≤Δ

x1i)12 + (
∑

2≤i≤Δ

x2i)2Δ + (
∑

3≤i≤j≤Δ

xij)ΔΔ

=

√
2(p + l)

2
+ (m − p − l)

√
2Δ − 2

Δ
.

Now we consider the equality. The equality holding if and only if x1i = 0 (3 ≤ i ≤ Δ) ,

xij = 0 (3 ≤ i ≤ j ≤ Δ and (i, j) �= (Δ, Δ)) .
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Case 1:Δ = 2 .

If x22 �= 0 and x12 = 0 , then G ∼= Cn . If x22 �= 0 and x12 �= 0 , then G ∼= Pn .

If x22 = 0 and x12 �= 0 , then G ∼= P2 .

Case 2:Δ ≥ 3 .

If xΔΔ = 0 and x12, x22, . . . , x2Δ are not all zero, then G ∈ Γ .

If xΔΔ �= 0 and x12 = x22 = · · · = x2Δ = 0 , then G is a regular graph.

If xΔΔ �= 0 and x12, x22, . . . , x2Δ are not all zero, then G ∈ Γ∗ .

Theorem 2.6. ( [4]) Let G be a simple connected graph of order n with m edges, p

pendent vertices, maximum vertex degree Δ and minimum non-pendent vertex degree δ1 .

Then

ABC(G) ≥ p

√
1 − 1

δ1

+

√
4(m − p)(n − 2M∗

2 (G) − p(1 − 1
Δ

))
√

(Δ − 1)(δ1 − 1)
√

Δδ1(
1
Δ

√
Δ − 1 + 1

δ1

√
δ1 − 1)

.

where M∗
2 (G) is the modified second Zagreb index of G . Moreover, the equality holds

if and only if G is isomorphic to a (Δ, 1)−semiregular graph or G is isomorphic to a

regular graph or G ∈ Γ∗∗ .

Remark 1. In this note, Theorem 2.5 has given another bound and it is obviously better

than that in Theorem 2.6 in parameters and values, which is an improvement of the bound.

We give an example as follows:
�

��� � �

� �� �

From the above graph G , we know M∗
2 (G) = 7

3
. By Theorem 2.6, we have ABC(G) ≥

35
9

√
2 . However, by Theorem 2.5, we have ABC(G) ≥ 22

5

√
2 > 35

9

√
2 .

Corollary 2.7. Let G be a simple connected graph with m edges and maximum vertex

degree Δ . Then

ABC(G) ≥ m

√
2Δ − 2

Δ
.

The equality holds if and only if G is a regular graph or G ∼= Cn or G ∼= Pn .
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Proof. By Theorem 2.5, we have

ABC(G) ≥ (

√
2

2
−

√
2Δ − 2

Δ
)(p + l) + m

√
2Δ − 2

Δ
≥ m

√
2Δ − 2

Δ
.

The equality holds if and only if G is a regular graph or G ∼= Cn or G ∼= Pn .

Corollary 2.8. Let G∗ be a simple connected chemical graph with m edges. Then

ABC(G∗) ≥
√

6m

4
.

The equality holds if and only if G∗ is a 4−regular graph.

Proof. Since Δ ≤ 4 , by Corollary 2.7, it is obvious that ABC(G∗) ≥
√

6m
4

. The equality

holds if and only if G∗ is a 4−regular graph.

Theorem 2.9. ( [4]) Let G be a simple connected graph with m edges and maximum

vertex degree Δ . Then

ABC(G) ≥ 2
7
4 m

√
Δ − 1

Δ
3
4 (
√

Δ +
√

2)

with equality holding if and only if G ∼= Pn .

Remark 2. Since

m

√
2Δ − 2

Δ
− 2

7
4 m

√
Δ − 1

Δ
3
4 (
√

Δ +
√

2)
= m

√
Δ − 1

√
2(Δ

1
4 − 2

1
4 )2

Δ(
√

Δ +
√

2)
≥ 0

the lower bound for ABC index of the graph G given in Corollary 2.7 is an improvement

of the bound given in Theorem 2.9.

3 The upper bound on ABC index

Let Ψ1 be the class of connected graphs G , which there is at least one edge whose two

end-vertices’ degrees are both 3 , and all pendent vertices are adjacent to the maximum

degree vertices, and all other edges have at least one end-vertex of degree 2 .

Let Ψ2 be the class of connected graphs G , whose all pendent vertices are adjacent to

the maximum degree vertices and all other edges have at least one end-vertex of degree

2 .

-673-



Theorem 3.1. Let G be a connected graph with m edges, maximum vertex degree Δ ,

p pendent vertices. Denote by l the number of non-pendent edges having at least one

end-vertex of degree 2 . Then

ABC(G) ≤ p

√
1 − 1

Δ
+

√
2

2
l +

2(m − p − l)

3
.

The equality holds if and only if G is isomorphic to a 3−regular graph or G ∈ Ψ1

or G ∈ Ψ2 .

Proof. By Lemmas 2.1, 2.2, 2.3, we have

ABC(G) =
∑

2≤i≤Δ

x1i1i +
∑

2≤i≤Δ

x2i2i +
∑

3≤i≤j≤Δ

xijij

≤ (
∑

2≤i≤Δ

x1i)1Δ + (
∑

2≤i≤Δ

x2i)2Δ + (
∑

3≤i≤j≤Δ

xij)33

= p

√
1 − 1

Δ
+

√
2

2
l +

2(m − p − l)

3
.

Now we consider the equality. The equality holding if and only if x1i = 0 (2 ≤ i ≤
Δ − 1) , xij = 0 (4 ≤ i ≤ j ≤ Δ) and x3i = 0 (4 ≤ i ≤ Δ) .

Case 1:x33 �= 0 .

If x1Δ = x22 = · · · = x2Δ = 0 , then we get that G is isomorphic to a 3-regular graph.

If x1Δ, x22, · · · , x2Δ are not all zero, we get G ∈ Ψ1 .

Case 2:x33 = 0 . If x1Δ, x22, · · · , x2Δ are not all zero, then we get G ∈ Ψ2 .

Lemma 3.2. ( [5]) Let i, j and Δ be positive integers with i ≤ j ≤ Δ and Δ ≥ 3 . Let

h(i, j, Δ) = 2(
√

2
2

−
√

1 − 1
Δ

)(1
i

+ 1
j
− 1

2
− 1

Δ
) +

√
i+j−2

ij
−

√
2

2
. Then h(i, j, Δ) < 0 for

(i, j) �= (1, Δ), (2, Δ) .

Let Ψ∗∗ be the set of connected graphs whose all the edges have one end-vertex of

degree Δ and the other end-vertex degree is 1 or 2 .

Theorem 3.3. Let G be a connected graph of order n with m edges and maximum degree

Δ , where 2 ≤ Δ ≤ n − 1 . Then

ABC(G) ≤
√

1 − 1

Δ
(2n − m − 2m

Δ
) +

√
2(m +

m

Δ
− n)

with the equality if and only if G ∈ Ψ∗∗ , with m ≡ 0 (mod Δ) .
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Proof. Since G is a graph of order n with m edges and maximum degree Δ , we have

n1 + n2 + · · · + nΔ = n

n1 + 2n2 + · · · + ΔnΔ = 2m∑
2≤i≤Δ

x1i = n1

∑
1≤j≤Δ and j �=i

xij + 2xii = ini (i = 2, 3, . . . , Δ) .

Suppose

w1 =
∑

2≤i≤Δ−1

x1i

w2 =
∑

1≤j≤Δ−1 and j �=2

x2j + 2x22

wi =
∑

1≤j≤Δ and j �=i

xij + 2xii (i = 3, 4, . . . , Δ)

wΔ =
∑

3≤j≤Δ−1

xjΔ + 2xΔΔ

i. e.,

w1 = n1 − x1Δ

w2 = 2n2 − x2Δ

wi = ini (i = 3, 4, · · · , Δ − 1)

wΔ = ΔnΔ − x1Δ − x2Δ .

Then we have ∑
1≤i≤Δ

wi = 2m − 2(x1Δ + x2Δ)

∑
1≤i≤Δ

1

i
wi = n − (1 +

1

Δ
)x1Δ − (

1

2
+

1

Δ
)x2Δ .

It follows that

x1Δ = 2n − m − 2m

Δ
−
∑

1≤i≤Δ

(
2

i
− 1

2
− 1

Δ
)wi

= 2n − m − 2m

Δ
−

∑
1≤i≤j≤Δ, (i,j) �=(1,Δ)(2,Δ)

(
2

i
+

2

j
− 1 − 2

Δ
)xij

x2Δ = 2m +
2m

Δ
− 2n +

∑
1≤i≤Δ

(
2

i
− 1 − 1

Δ
)wi

= 2m +
2m

Δ
− 2n +

∑
1≤i≤j≤Δ, (i,j)�=(1,Δ)(2,Δ)

(
2

i
+

2

j
− 2 − 2

Δ
)xij .
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Hence by Lemma 3.2, we have

ABC(G) =

√
Δ − 1

Δ
(2n − m − 2m

Δ
) +

√
2

2
(2m +

2m

Δ
− 2n)

+
∑

1≤i≤j≤Δ , (i,j)�=(1,Δ)(2,Δ)

h(i, j, Δ)xij

≤
√

Δ − 1

Δ
(2n − m − 2m

Δ
) +

√
2(m +

m

Δ
− n) .

The equality holds if and only if xij = 0, where (i, j) �= (1, Δ), (2, Δ) , then x1Δ =

2n − m − 2m
Δ

, x2Δ = 2m + 2m
Δ

− 2n , with m ≡ 0 (mod Δ ) , i. e., G ∈ Ψ∗∗ .

Let Ψ∗ be the class of graphs G that are connected, whose vertices are degree of at

least two and all the edges have at least one end-vertex of degree 2 .

Theorem 3.4. ( [4]) Let G be a simple connected graph of order n with m edges, p pendent

vertices, maximum vertex degree Δ and minimum non-pendent vertex degree δ1 . Then

ABC(G) ≤ p

√
1 − 1

Δ
+

m − p

δ1

√
2(δ1 − 1)

with equality holding if and only if G is isomorphic to a (Δ, 1)-semiregular graph or G is

isomorphic to a regular graph or G ∈ Ψ2 or G ∈ Ψ∗ .

Remark 3. Comparing with the upper bound in Theorem 3.4, the bound given in The-

orem 3.3 has fewer parameters and is sometimes better than the previous one. So it is

significative as a new bound. We give an example as follows.

�

�

�

� �

From the above graph G , by Theorem 3.4, we have ABC(G) ≤ 7
√

2
2

. By Theorem

3.3, we have ABC(G) ≤ 15
√

2−√
3

4
< 7

√
2

2
.

4 On the ABC index of unicyclic graph U and uni-

cyclic chemical graph U ∗

A unicyclic graph U is a connected graph in which the number of edges equals the number

of vertices. In a unicyclic graph U , the length of the cycle is called its girth, denoted by
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g . A unicyclic chemical graph U∗ is the unicyclic graph that has no vertex with degree

greater than 4 .

Let U∗
g (p) be a unicyclic graph, which is obtained from a cycle of length g by attaching

p pendent vertices to one vertex of the cycle.

Theorem 4.1. Let U be a unicyclic connected graph of order n and girth g . Then

ABC(U) ≤ (n − g)

√
n − g + 1

n − g + 2
+

√
2

2
g

with the equality if and only if U ∼= U∗
g (n − g) .

Proof. Since 2 ≤ Δ ≤ n − g + 2 , by Lemma 3.1, we have

ABC(U) ≤ p

√
1 − 1

Δ
+ (

√
2

2
− 2

3
)l +

2(n − p)

3

≤ p

√
1 − 1

n − g + 2
+

√
2

2
(n − p)

= p

√
n − g + 1

n − g + 2
+

√
2

2
(n − p) .

Therefore,

ABC(U) ≤ p

√
n − g + 1

n − g + 2
+

√
2

2
(n − p) (0 ≤ p ≤ n − g) .

We consider the function f(x) = x
√

n−g+1
n−g+2

+
√

2
2

(n−x) , since f ′(x) ≥ 0 , then ABC(U) ≤

(n − g)
√

n−g+1
n−g+2

+
√

2
2

g . The equality holds if and only if U ∼= U∗
g (n − g) .

Corollary 4.2. Let U be a unicyclic connected graph of order n . Then

ABC(U) ≤ (n − 3)

√
n − 2

n − 1
+

3
√

2

2

with equality holding if and only if U ∼= U∗
3 (n − 3) .

Proof. Since 3 ≤ g ≤ n , by Theorem 4.1, we have ABC(U) ≤ (n− g)
√

n−g+1
n−g+2

+
√

2
2

g . We

consider the function f(x) = (n − x)
√

n−x+1
n−x+2

+
√

2
2

x (3 ≤ x ≤ n) . Since f
′
(x) < 0 , then

ABC(U) ≤ (n − 3)

√
n − 2

n − 1
+

3
√

2

2

with equality holding if and only if U ∼= U∗
3 (n − 3) .

From Corollary 4.2, we conclude that U∗
3 (n − 3) achieves the maximal ABC index

among all unicyclic graphs of order n .
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Theorem 4.3. Let U be a unicyclic connected graph of order n and maximum vertex

degree Δ . Then

ABC(U) ≥ n
√

2Δ − 2

Δ

with equality holding if and only if U ∼= Cn .

Proof. The proof follows directly from Corollary 2.7.

Let Φ1 be the class of unicyclic chemical graphs U∗ whose maximum vertex degree is

4 and the vertices of degree 4 are adjacent to the vertices of degree 2 or leaves and the

degrees of all other vertices are 2 or 3 .

Corollary 4.4. Let U∗ be a unicyclic chemical connected graph of order n with p pendent

vertices. Denote by l the number of non-pendent edges having at least one end-vertex of

degree 2 . Then

ABC(U∗) ≤ (

√
3

2
− 2

3
)p + (

√
2

2
− 2

3
)l +

2n

3

with equality holding if and only if U∗ ∈ Φ1 .

Proof. Since Δ ≤ 4 , by Theorem 3.1, we have

ABC(U∗) ≤ p

√
1 − 1

Δ
+

√
2l

2
+

2(n − p − l)

3
≤ (

√
3

2
− 2

3
)p + (

√
2

2
− 2

3
)l +

2n

3
.

The equality holds if and only if U∗ ∈ Φ1 .

Let Φ2 be the class of unicyclic chemical connected graphs U∗ whose all pendent

vertices are adjacent to the vertices of degrees are 4 and all other edges have at least one

end-vertex of degree 2 .

Theorem 4.5. Let U∗ be the unicyclic chemical connected graph of order n with p pendent

vertices. Then

ABC(U∗) ≤
√

2

2
n +

p

2
(
√

3 −
√

2)

with the equality holding if and only if U∗ ∈ Φ2 .
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Proof. By Lemmas 2.1, 2.2, 2.3 and Corollary 2.4, we have

ABC(U∗) = x1212 + x1313 + x1414 + x2222 + x2323 + x2424 + x3333 + x3434 + x4444

= x1313 + (p − x12 − x13)14 +

√
2

2
(x12 + x22 + x23 + x24) + x3333 + x3434

+ (n − p − x22 − x23 − x24 − x33 − x34)44

= p14 + n44 − p44 + (13 − 14)x13 + (

√
2

2
− 14)x12 + (

√
2

2
− 44)x22

+ (

√
2

2
− 44)x23 + (

√
2

2
− 44)x24 + (33 − 44)x33 + (34 − 44)x34

≤ p14 + n44 − p44 + (

√
2

2
− 44)x22 + (

√
2

2
− 44)x23 + (

√
2

2
− 44)x24

+ (33 − 44)x33 + (34 − 44)x34

≤ p14 + n44 − p44 + (

√
2

2
− 44)(x22 + x23 + x24 + x33 + x34)

≤ p14 + n44 − p44 + (

√
2

2
− 44)(n − p)

=

√
2

2
n +

p

2
(
√

3 −
√

2) .

Then ABC(U∗) ≤
√

2
2

n + p
2
(
√

3 −
√

2) with the equality if and only if x12 = x13 =

x33 = x34 = x44 = 0 and x14, x22, x23, x24 are not all zero, that is, U∗ ∈ Φ2 .

Let Γ∗
Δ=4 be the class of unicyclic chemical connected graph U∗ whose maximum vertex

degree is 4 and U∗ ∈ Γ or U∗ ∈ Γ∗ .

Theorem 4.6. Let U∗ be a unicyclic chemical connected graph of order n with p pendent

vertices. Denote by l the number of non-pendent edges having at least one end-vertex of

degree 2 . Then

ABC(U∗) ≥ (

√
2

2
−

√
6

4
)(p + l) +

√
6

4
n

with equality holding if and only if U∗ ∈ Γ∗
Δ=4 .

Proof. Since Δ ≤ 4 , applying Theorem 2.5, we have

ABC(U∗) ≥
√

2(p + l)

2
+ (n − p − l)

√
2Δ − 2

Δ
≥ (

√
2

2
−

√
6

4
)(p + l) +

√
6

4
n .

The equality holds if and only if x13 = x14 = x33 = x34 = 0 and x12, x22, x23, x24, x44 are

not all zero and the maximum vertex degree of U∗ is 4 , that is, U∗ ∈ Γ∗
Δ=4 .
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