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Abstract

The paper is concerned with the inequality λM1(G)/n ≤ λM2(G)/m for the
first and second generalized Zagreb indices of (m n) - graphs. It was conjec-
tured that this inequality holds for general graphs, whenever λ is in the interval
[0

√
2/2], but the same was only partially proved. We prove that the inequality

holds for every (m n) - graph and for every λ from the interval (1/2
√
2/2].

1 Introduction

1.1 Definitions

In this paper graph has the meaning of a simple connected graph. Let G = (V,E)

be a graph with n = |V | vertices and m = |E| edges, and let denote the degree of a

vertex v ∈ V by d(v). The variable first and second Zagreb indices are defined as

λM1(G) =
∑
v∈V

(d(v))2λ , and λM2(G) =
∑
uv∈E

(d(u)d(v))λ

respectively, where λ ∈ R. A question that remains to be answered is whether and

when the following Inequality (1) holds?

λM1(G)

n
≤

λM2(G)

m
. (1)

Inequality (1) is known as generalized Zagreb indices inequality. From the definitions

above, we can observe that the order of magnitude for λM1(G) is O(n3), while the

order of magnitude for λM2(G) is O(mn2). Hence, λM1(G)/n and λM2(G)/m will
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have magnitudes of same order and, therefore, evaluation of (1) is more reasonable

approach than comparing λM1(G) and
λM2(G) directly. Assuming λ = 1, we take a

step backward from this generalization to the originally stated definitions for the first

and second Zagreb indices (introduced by I. Gutman and N. Trinajstić [1] in 1972)

and the Zagreb indices inequality. In this case, we simply write M1(G) and M2(G)

instead of 1M1(G) and
1M2(G). Now, let’s introduce a definition which refers to the

term of a chemical graph: A chemical graph is any simple connected graph G with

maximum vertex degree Δ(G) ≤ 4.

In order to obtain a clear notion about the herein analyzed problem, we are going

to expose several related results to this topic.

1.2 Known results and an open problem

In this section, we aim to give a brief idea about some of the already resolved issues

arising from Inequality (1). In sequel, if in a specified case some inequality does not

hold, but the reverse one (with reversed inequality sign) does, we may emphasize it

by stating opposite inequality, or opposite strict inequality in case of omitted equality

sign. Namely, the opposite of Inequality (1) is given by

λM1(G)

n
≥

λM2(G)

m
. (2)

At first, the AutoGraphiX system [2] proposed the following conjecture:

Conjecture 1. For all simple connected graphs G and λ = 1, Inequality (1) holds,

and the bound is tight for complete graphs.

In 2007, P. Hansen and D. Vukičević [3] disproved this claim for general graphs.

Actually, the above conjecture does not refer to the variable Zagreb indices because

the generalization happened later, but however, it was underlying motivation for many

further results. Remember that when we say graph, we mean a simple connected

graph. Notations and all other terms used in the below listed theorems, are in the

sense of the classical Graph Theory.

Theorem 1. [3] For all chemical graphs G and λ = 1, Inequality (1) holds.

Theorem 2. [4] For all trees T and λ = 1, Inequality (1) holds.
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Theorem 3. [5] For all unicyclic graphs G and λ = 1, Inequality (1) holds.

Theorem 4. [6] For all graphs G such that

Δ(G)− δ(G) ≤ 2 and λ = 1, Inequality (1) holds.

Theorem 5. [6] For all graphs G such that

Δ(G)− δ(G) ≤ 3 and δ(G) 
= 2 and λ = 1, Inequality (1) holds.

Theorem 6. [7] For all graphs G = (V,E) such that

∀v ∈ V , d(v) ∈ {[s, s+ �√s �] : s ∈ N} and λ = 1, Inequality (1) holds.

Theorem 7. [8] For all graphs G = (V,E) such that

∀v ∈ V , d(v) ∈ {[a, a+ s] : a ≥ s(s−1)
2

: s ∈ N} and λ = 1, Inequality (1) holds.

The last two theorems slightly differ from their original, and they are adapted here

for the purpose of this section. Now, let’s move to the generalized variant.

Theorem 8. [9] For all chemical graphs G and λ ∈ [0, 1], Inequality (1) holds.

Theorem 9. [10] For all trees T and λ ∈ [0, 1], Inequality (1) holds.

Theorem 10. [11] For all unicyclic graphs G and λ ∈ [0, 1], Inequality (1) holds.

Theorem 11. [12] For all unicyclic graphs G and λ ∈ (−∞, 0), Opposite inequality

(2) holds.

It has also been proved that for the distinct classes of graphs mentioned in the above

theorems, for λ ∈ (1,+∞) neither (1) nor (2) holds, i.e., the relationship of numerical

value between λM1(G)/n and λM2(G)/m is not defined [12].

Theorem 12. [13] For all graphs G such that Δ(G) − δ(G) ≤ 2 and λ ∈ [0, 1],

Inequality (1) holds.

Theorem 13. [13] For all graphs G such that Δ(G) − δ(G) ≤ 2 and λ ∈ (−∞, 0),

Opposite inequality (2) holds.

Theorem 14. [13] For all graphs G such that Δ(G) − δ(G) ≤ 3 and δ(G) 
= 2 and

λ ∈ [0, 1], Inequality (1) holds.

Theorem 15. [13] For all graphs G such that Δ(G) − δ(G) ≤ 3 and δ(G) 
= 2 and

λ ∈ (−∞, 0), Opposite inequality (2) holds.
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Theorem 16. [9] For all complete unbalanced bipartite graphs G and λ ∈ R\[0, 1],
Opposite strict inequality (2) holds.

Theorem 17. [15] For all graphs G and λ ∈ [0, 1
2
], Inequality (1) holds.

Theorem 18. [9] For all λ ∈ (
√
2
2
, 1], there is a graph G such that Opposite strict

inequality (2) holds.

From the last two theorems, the next question for general graphs makes sense:

What happens with Inequality (1) when λ ∈ (1
2
,
√
2
2
]? In other words, the same

question can be restated as in [9]:

Open problem 1. [9] Identify λ from the interval (1
2
,
√
2
2
] such that Opposite strict

inequality (2) holds.

2 Preliminaries

2.1 Karamata Inequality

Definition 1. Let (a, b) ⊆ R. A function f : (a, b) → R is said to be convex if for

each two points x, y ∈ (a, b) and each two nonnegative real numbers λx, λy satisfying

λx + λy = 1, the following inequality holds:

f(λxx+ λyy) ≤ λxf(x) + λyf(y) . (3)

The function f is concave if the function −f is convex. If in the previous inequality

(assuming x 
= y), the equality takes place only in the case when λx = 0 or λy = 0, then

the function f is said to be strictly convex. The function f is strictly concave if

the function −f is strictly convex. For concave functions, the next inequality is valid:

f(λxx+ λyy) ≥ λxf(x) + λyf(y) .

Now, let’s define a majorization relation for finite sequences of real numbers.

Definition 2.1. Let a = (ai)
n
i=1 and b = (bi)

n
i=1 be two (finite) sequences of real

numbers. We say that the sequence a majorizes the sequence b, and write

a � b or b ≺ a (4)

if there exist permutations i1i2 . . . in and j1j2 . . . jn of all indices of the elements of a

and b respectively, such that the following three conditions are simultaneously satisfied:
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i. ai1 ≥ ai2 ≥ . . . ≥ ain , and bj1 ≥ bj2 ≥ . . . ≥ bjn ;

ii.
∑m

k=1 aik ≥∑m
k=1 bjk , ∀m, 1 ≤ m ≤ n− 1 ;

iii.
∑n

k=1 aik =
∑n

k=1 bjk .

Next, we give a theorem which plays an essential role in the rest of this paper.

Theorem 2.1. [Karamata Inequality] Let (α, β) ⊂ R. Let a = (ai)
n
i=1 and b = (bi)

n
i=1

be two (finite) sequences of real numbers such that ai, bi ∈ (α, β) for all i = 1, 2, . . . , n.

If f : (α, β) → R is a convex function and a � b (in other words (3) and (4) hold),

then the following inequality is valid:

n∑
i=1

f(ai) ≥
n∑

i=1

f(bi) . (5)

2.2 Redefining Open problem 1

Now, we return to Open problem 1, confining to matters that are related to our

approach to this problem. Namely, it has been shown (see [9, 14]) that the difference

λM2(G)

m
−

λM1(G)

n
(6)

depends on a function in which the degrees of the vertices of a graph play the role

of variables. This function also depends on the parameter λ, and our interest is how

the function behaves with respect to the mentioned parameter. What is important

here is the sign of the expression (6) and, to this end, we are going to present some

connections to this difference in the following paragraph.

Let G = (V,E) be a (simple connected) graph and DG = {d(v) : v ∈ V } be the set

of the degrees of the all vertices of G. Let mi,j be the number of those edges from E

that connect vertices of degrees i and j. It is clear that i, j ∈ N, and mi,j = mj,i for

all pairs (i, j). As shown (see [9, 14]), the sign of the difference (6) can be expressed

by the following equivalence:

Sign

[
λM2(G)

m
−

λM1(G)

n

]
= Sign

[∑
i≤j
k≤l

λf(i, j, k, l)mi,jmk,l

]
, (i, j), (k, l) ∈ N

2 .
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In order to single out the parameter λ from the other variables, we write λf(i, j, k, l)

instead of f(i, j, k, l, λ). Since mi,j = 0 for all (i, j) /∈ D2
G (the same applies to mk,l),

the sum on the right side of the previous equality can be taken over all pairs (i, j)

and (k, l) from N
2, such that i ≤ j and k ≤ l. Clearly, mi,j and mk,l are positive

integers or 0, thus, it turns out that the function λf is a key factor for the sign of the

difference (6). This function is defined as

λf(α) = iλjλ
(
1

k
+

1

l

)
+ kλlλ

(
1

i
+

1

j

)
− i2λ−1 − j2λ−1 − k2λ−1 − l2λ−1 , (7)

where α = (i, j, k, l) ∈ N
4 and λ ∈ R. In Section 1.2, we listed a number of theorems

that actually refer to some restrictions on the variables i, j, k, l, and the parameter

λ, under which the function λf is nonnegative. Also, it was shown [8] that in general

case, whenever λf is negative for some fixed values ig, jg, kg, lg and λg, we have

a way to construct a graph Gg with DGg = {ig, jg, kg, lg}, such that for λ = λg,

Inequality (1) does not hold. From the previous fact and the list of theorems in

Section 1.2, we may conclude that for all i, j, k, l such that max{i, j, k, l} ≤ 4,

or max{i, j, k, l} − min{i, j, k, l} ≤ 2, or max{i, j, k, l} − min{i, j, k, l} ≤ 3 where

2 
= min{i, j, k, l}, we have 1f ≥ 0. What is more important to us, is that we have

λf ≥ 0 for all i, j, k, l when λ ∈ [0, 1
2
]. On the other hand, the last theorem from the

list says us that for λ ∈ (
√
2
2
, 1], we can always find i, j, k, l such that λf < 0. Hence,

the interval [0, 1
2
] could be at most extended to the interval [0,

√
2
2
], on which λf ≥ 0

would hold for any four positive integers i, j, k, l, and that is the assumption to be

proved. Thus, Open problem 1 is reduced to

Problem 2. Identify λ from the interval (1
2
,
√
2
2
] such that λf is negative for some

positive integers i, j, k, l.

3 Solution of Problem 2

Let X be the set (R+)4, ω = (x, y, p, q) be a point from X, and λ be a real number.

Define a function φ : X × R → R as

φ(ω, λ) = xλyλ
(
1

p
+

1

q

)
+ pλqλ

(
1

x
+

1

y

)
− x2λ−1 − y2λ−1 − p2λ−1 − q2λ−1 , (8)
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and for the sake of formal similarity with the notation in (7), denote λφ(ω) = φ(ω, λ).

Now, from (7) and (8) it is clear that λf is a restriction of λφ on N
4, i.e.,

λf = λφ|N4 . (9)

Some characteristics of the function λφ can be immediately perceived:

a. 0φ(ω) = 0 , ∀ω ∈ X ;

λφ is continuous in both variables ω and λ.

Further, the function λφ has an useful symmetry property with respect to the position

of x, y, p, q, i.e., for a fixed value of λ and an arbitrary point ω = (x, y, p, q) ∈ X,

obviously it is valid

b. λφ(x, y, p, q) = λφ(y, x, p, q) ;

λφ(x, y, p, q) = λφ(p, q, x, y) .

In accordance with Problem 2, our interest is limited in terms of the range of values

of λ. The interval which we consider is

I =
[1
2
,

√
2

2

]
.

Let’s define the sets:

Xr = {ω ∈ X : x ≤ y, p ≤ q, x = min{x, y, p, q}} ; Xω = {ω ∈ Xr : q < y} ;
Yr = {ω ∈ X : x ≤ y, p ≤ q, y = max{x, y, p, q}} ; Yω = {ω ∈ Yr : x < p} .

From Xr ⊂ X, for the images of Xr and X under the function λφ, we conclude that

λφ(Xr) ⊆ λφ(X), and by assertion b, for any point ω ∈ X, there is a point ωr ∈ Xr

(just a rearrangement of the values x, y, p, q), such that λφ(ω) = λφ(ωr), which means

λφ(Xr) ⊇ λφ(X). Further, from Xω ⊂ Xr, for the images of Xω and Xr under the

function λφ, we have λφ(Xω) ⊆ λφ(Xr). It is easy to see that an analogous inclusion

is valid for the sets Yω, Yr, X, and for their images λφ(Yω),
λφ(Yr),

λφ(X). We obtain:

λφ(Xω) ⊆ λφ(Xr) =
λφ(X) ; λφ(Yω) ⊆ λφ(Yr) =

λφ(X) . (10)

From this point, we consider the restrictions of the function λφ on the sets Xω, Xr,

and Yω, Yr, and according to (10), it is enough to show that for every λ ∈ I,

λφ|Xr(ω) ≥ 0 , or λφ|Yr(ω) ≥ 0 (11)
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holds for all ω. The definitions of the sets allow three possible situations for each of

the cases ω ∈ Xr, ω ∈ Yr, in terms of the relationship between x, y, p, q. Those are:

ω = (x, y, p, q) ∈ Xr : ω = (x, y, p, q) ∈ Yr :

1
′
x ≤ y ≤ p ≤ q 1

′′
p ≤ q ≤ x ≤ y

2
′
x ≤ p ≤ y ≤ q 2

′′
p ≤ x ≤ q ≤ y

3
′
x ≤ p ≤ q < y 3

′′
x < p ≤ q ≤ y

Note that the set of all points ω from Xr which coordinates x, y, p, q satisfy 1
′
or 2

′
,

and do not satisfy 3
′
, is the set Xr\Xω. Analogously, the set of all points ω from Yr

which coordinates x, y, p, q satisfy 1
′′
or 2

′′
, and do not satisfy 3

′′
, is the set Yr\Yω (to

see this, it is enough to recall the definitions of these sets). Furthermore, there is an

equivalence between the points from Xr\Xω and those from Yr\Yω in the next sense:

The point ωx = (x, y, p, q) ∈ Xr\Xω if and only if the point ωy = (p, q, x, y) ∈ Yr\Yω.
Even more, the coordinates of ωx satisfy 1

′
if and only if the coordinates of ωy satisfy

1
′′
and, the coordinates of ωx satisfy 2

′
if and only if the coordinates of ωy satisfy 2

′′
.

For the points ωx and ωy, the property b implies that λφ(ωx) =
λφ(ωy) and, hence,

the following two claims are equivalent. Here, we set them out in form of lemmas:

Lemma 1. Let ω = (x, y, p, q) ∈ Xr\Xω (x, y, p, q satisfy 1
′
or 2

′
) and λ ∈ [0, 1].

Then λφ(ω) ≥ 0 holds.

Lemma 2. Let ω = (x, y, p, q) ∈ Yr\Yω (x, y, p, q satisfy 1
′′
or 2

′′
) and λ ∈ [0, 1].

Then λφ(ω) ≥ 0 holds.

A proof of Lemma 1 will be given at the end of this paper. So, for now, we assume

that in cases 1
′
and 2

′
(1

′′
and 2

′′
), the inequality λφ ≥ 0 is valid for λ ∈ [0, 1].

Starting with case 3
′
, or with case 3

′′
, we have the next two choices respectively:

To consider λφ|Xω , or to consider λφ|Yω , which is the same in sense of our problem.

If we take the first of these two possibilities, the points which coordinates satisfy

x = p ≤ q < y are covered by 2
′′
, and by Lemma2, we have λφ ≥ 0 at these points.

Otherwise, if we decide to take the second possibility, the points which coordinates

satisfy x < p ≤ q = y are covered by 2
′
, and by Lemma1, we have λφ ≥ 0. Ignoring

these two sets of points, cases 3
′
and 3

′′
become identical. In this way, we also avoid

some further undefined expressions. Therefore, without loss of generality, we assume

x < p ≤ q < y . (12)
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Case 3
′
. Let ω = (x, y, p, q) ∈ Xω and λ ∈ R\{0}. Let’s fix λ, and make change of the

coordinates of ω by introducing a continuous bijective map gλ : Xω → R
4 such that

ω �→ ω′, which is given by gλ(ω) = (gx(ω), gy(ω), gp(ω), gq(ω)), where the components

gx, gy, gp, gq are real functions on Xω defined as gx(ω) = λ ln x, gy(ω) = λ ln y,

gp(ω) = λ ln p, gq(ω) = λ ln q, and for simpler further writing let denote x′ = gx(ω),

y′ = gy(ω), p
′ = gp(ω), q

′ = gq(ω). Remember that in this moment λ does not vary.

Now, with an analogous notation as above, we define a function λψ : gλ(Xω) → R as

λψ(ω′) = ep
′+q′−x′

λ + ep
′+q′− y′

λ + ex
′+y′− p′

λ + ex
′+y′− q′

λ −
−e2y′− y′

λ − e2q
′− q′

λ − e2p
′− p′

λ − e2x
′−x′

λ . (13)

The Jacobian of the map gλ is positive at every point (Jgλ(ω) = λ4

xypq
> 0 for all

ω ∈ Xω and λ 
= 0), which means that we can turn back to the original coordinates

at any moment and, hence, by elementary transformation of (13) we may check that

λφ(ω) = λψ(gλ(ω)) , ∀ω ∈ Xω . (14)

The last equality suggests to pay attention to the sign of the function λψ, which

would lead us to the same goal. Before we start, allow λ to vary over the whole range

of values. Then, for each separate λ, in the above presented manner, we are able to

construct the corresponding map gλ, after what (14) still applies for all (ω, λ, gλ(ω)).

Further, simplify the writing in (13), (14) by introducing the following substitutions:

a1 = p′ + q′ − x′

λ
= ln

(pq)λ

x
; a2 = p′ + q′ − y′

λ
= ln

(pq)λ

y
;

a3 = x′ + y′ − p′

λ
= ln

(xy)λ

p
; a4 = x′ + y′ − q′

λ
= ln

(xy)λ

q
;

b1 = 2y′ − y′

λ
= ln

y2λ

y
; b2 = 2q′ − q′

λ
= ln

q2λ

q
;

b3 = 2p′ − p′

λ
= ln

p2λ

p
; b4 = 2x′ − x′

λ
= ln

x2λ

x
;

λφ(ω) = λψ(gλ(ω)) = ea1+ea2+ea3+ea4−eb1−eb2−eb3−eb4 , ∀ω ∈ Xω, λ 
= 0 . (15)

Since ordering (12) holds for the points ω, due to the monotonicity of the logarithm

function, x′ < p′ ≤ q′ < y′ remains to hold for the points ω′. Now, let’s split our
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consideration on three cases by setting the following conditions:

• pq > xy ; λ ∈ [1
2
,+∞)

• pq < xy ; λ ∈ [1
2
,+∞)

• pq = xy ; λ ∈ [1
2
,+∞)

• Let pq > xy; λ ∈ [1
2
,+∞).

First, make several direct estimates referring to exponents ai, bi (i = 1, 2, 3, 4), which

will be valid whenever is pq > xy and λ ≥ 1
2
. Since (12) holds, we easily observe that

a1 = max{a1, a2, a3, a4} ; a3 ≥ a4 ; b1 > b2 ≥ b3 > b4 .

Under these conditions, the next three orderings are possible:

1◦ a1 ≥ a2 ≥ a3 ≥ a4

2◦ a1 ≥ a3 ≥ a2 ≥ a4

3◦ a1 ≥ a3 ≥ a4 ≥ a2

For ordering 1◦ to be true, an additional constraint is needed on λ, under which

a2 ≥ a3 will hold. Similarly, for ordering 2◦, the missing constraints are those under

which a3 ≥ a2 and a2 ≥ a4 will hold, and for ordering 3◦ that refers to a4 ≥ a2. All

these restrictions on λ are given by

S1 : a2 ≥ a3 ⇔ λ ≥ ln y
p

ln pq
xy

; S2 : a3 ≥ a2 ⇔ λ ≤ ln y
p

ln pq
xy

(= F1) ;

S3 : a2 ≥ a4 ⇔ λ ≥ ln y
q

ln pq
xy

; S4 : a4 ≥ a2 ⇔ λ ≤ ln y
q

ln pq
xy

(= F4) ,

where F1, F4 (and F2, F3, F5 below) are labels for simpler and shorter notation in

the sequel. Obviously, the values F1 and F4 are always positive. Further, looking to

provide the necessary conditions i, ii and iii of Definition 2.1, we are going to compare

the corresponding partial sums for each of the sequences 1◦, 2◦ and 3◦ (which elements
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appear in the above-specified order), with the partial sums of the sequence b = (bi)
4
i=1.

P1 : a1 ≥ b1 ⇔ ln
(pq)λ

x
≥ ln

y2λ

y
⇔ pq

xy
≥
(
y2

pq

)λ−1

,

thus, we can see for certain that this applies when λ ≤ 1 ;

P2 : a1 + a2 ≥ b1 + b2 ⇔ ln
(pq)2λ

xy
≥ ln

(qy)2λ

qy
⇔ p2λ

x
≥ y2λ

q
⇔ λ ≤ 1

2

ln q
x

ln y
p

(= F2) ;

P3 : a1 + a3 ≥ b1 + b2 ⇔ ln
(xpqy)λ

xp
≥ ln

(qy)2λ

qy
⇔ qy

xp
≥
(
qy

xp

)λ

⇔ λ ≤ 1 ;

P4 : a1 + a2 + a3 ≥ b1 + b2 + b3 ⇔

⇔ ln
(xy)λ(pq)2λ

xpy
≥ ln

(pqy)2λ

pqy
⇔ xλ

x
≥ yλ

q
⇔ λ ≤ ln q

x

ln y
x

(= F3) ;

P5 : a1 + a3 + a4 ≥ b1 + b2 + b3 ⇔

⇔ ln
(xy)2λ(pq)λ

xpq
≥ ln

(pqy)2λ

pqy
⇔ x2λ

x
≥ (pq)λ

y
⇔ λ ≤ ln y

x

ln pq
x2

(= F5) .

Values F2, F3, F5 are also positive. Since a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4 is

valid without any restriction on λ, it is not a limiting factor in sense of Definition 2.1.

Now, combining the conditions S1, . . . ,S4 and P1, . . . ,P5, we can cover all three pos-

sibilities 1◦, 2◦ and 3◦ in a way that assumptions i, ii and iii of Definition 2.1 always

remain satisfied. Namely, if we assume that the conditions S1P1P2P4 are simulta-

neously satisfied, then ordering 1◦ becomes true, and also the majorization we want

(a1, a2, a3, a4) � (b1, b2, b3, b4) is achieved. Similarly, if the conditions S2S3P1P3P4

(S4P1P3P5) are simultaneously satisfied, then ordering 2◦ (ordering 3◦) and the same

majorization a = (ai′)
4
i=1 � b = (bi)

4
i=1 are to be valid. The function er (r ∈ R) is

strictly convex. Thus, under the previous assumptions, we infer that Theorem2.1 can

be applied in (15), so by (5) it follows

S1P1P2P4 ∨ S2S3P1P3P4 ∨ S4P1P3P5 ⇒
4∑

i=1

(eai − ebi) ≥ 0 . (16)

The conditions from the left side of the previous implication can be overwritten as:
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Q1 : S1P1P2P4 ⇐⇒ λ ∈ A ∩ [1
2
, 1] where A = [F1,min{F2, F3}] ;

Q2 : S2S3P1P3P4 ⇐⇒ λ ∈ B ∩ [1
2
, 1] where B = [F4,min{F1, F3}] ;

Q3 : S4P1P3P5 ⇐⇒ λ ∈ C ∩ [1
2
, 1] where C = [1

2
,min{F4, F5}] .

The proof of this case shall be successfully accomplished if we can show the following:

I =
[1
2
,

√
2

2

]
⊆
⋂

pq>xy
ω∈Xω

(
(A ∪B ∪ C) ∩

[1
2
, 1
])

. (17)

It means that whenever λ ∈ I, at least one of the assumptions Q1, Q2, Q3 becomes

true, which implies (16) also to be true. Since in (17) the interval [ 1
2
, 1] has no other

impact except discarding the numbers greater than 1, we have only to show the next:

I ⊆ A ∪ B ∪ C , {ω ∈ Xω : pq > xy} . (18)

Now, we analyze the set (A ∪B ∪ C) ∩ [1
2
, 1]. Suppose that F2 < F3. Then it follows

1

2

ln q
x

ln y
p

<
ln q

x

ln y
x

⇒ p2 < xy ,

hence, combining with (12) we have

1 <
ln y

p

ln q
p

=
ln y

p

ln pq
p2

<
ln y

p

ln pq
xy

= F1 .

On the other hand, F3 < 1 always holds, thus under the previous assumption we get

F2 < F3 < F1, which means A = ∅, i.e., B∪A = [F4, F3]∪∅. Conversely, if F3 ≤ F2,

then the upper endpoint of A is F3. The assumption p ≤ q implies that we always

have F4 ≤ F1, so if we assume F1 ≤ F3, then B ∪ A = [F4, F1] ∪ [F1, F3] = [F4, F3].

Otherwise, if we now assume F3 < F1 to hold, then again B ∪ A = [F4, F3] ∪ ∅. In

this way, we show that B ∪ A = [F4, F3] in all cases. Next, it will be proved that

neither F5 ≤ F4 < F3 (F5 < F4 ≤ F3) nor F3 ≤ F4 < F5 (F3 < F4 ≤ F5) is possible.

In that order, let’s take the case F5 ≤ F4 < F3. Then we have

F5 ≤ F4 ⇔ ln
y

x
ln
pq

xy
≤ ln

y

q
ln
pq

x2
;

F4 < F3 ⇔ ln
y

q
ln
y

x
< ln

q

x
ln
pq

xy
. Now, sum the left and the right sides:

ln
pq

xy

(
ln
y

x
− ln

q

x

)
< ln

y

q

(
ln
p

x
+ ln

q

x
− ln

y

x

)
⇒ ln

pq

xy
ln
y

q
< ln

y

q
ln
pq

xy
⇒ 0 < 0 ,
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which is impossible. In the same manner we disprove the other cases, so it remains

to have only the next two conjunctions to be true:

F4 ≤ F3 ∧ F4 ≤ F5 ;

F4 > F3 ∧ F4 > F5 .

Remark. From the preceding contradiction, we observe F4 = F3 if and only if F4 = F5.

Further, from the definitions of F3 and F5, we note that both are always less than 1.

Thus, when the first of these two cases occurs, i.e., when we have the situation F4 ≤ F3

and F4 ≤ F5, it follows that (C∪B∪A)∩[1
2
, 1] = ([1

2
, F4]∪[F4, F3])∩[12 , 1] = [1

2
, F3]. In

this case, the important value is F3. When the second case occurs, i.e., when F4 > F3

and F4 > F5, it turns out that (C ∪ B ∪ A) ∩ [1
2
, 1] = ([1

2
, F5] ∪ ∅) ∩ [1

2
, 1] = [1

2
, F5].

Up to this point, it is still possible that the result is the empty set, but it does not

affect our conclusions. What is important here is that the set (C ∪ B ∪ A) ∩ [1
2
, 1]

depends solely on the values F3 and F5. Thus, we will end up this case by proving

the following two implications:

a∗ F4 ≤ F3 ∧ F4 ≤ F5 ⇒ F3 ≥
√
2

2

b∗ F4 > F3 ∧ F4 > F5 ⇒ F5 ≥
√
2

2

a∗ Let F4 ≤ F3 ∧ F4 ≤ F5.

As we showed, in this case (A ∪ B ∪ C) ∩ [1
2
, 1] = [1

2
, F3]. Suppose that there exist a

point (x, y, p, q) ∈ Xω and α ∈ (0,
√
2
2
], such that α > F3.

α > F3 ⇔ ln
y

x
>

1

α
ln
q

x
; ln

y

q
+ ln

q

x
>

1

α
ln
q

x
; ln

y

q
>

(
1

α
− 1

)
ln
q

x
.

α > F4 ⇔ ln
pq

xy
>

1

α
ln
y

q
; ln

p

x
+ ln

q

y
>

1

α
ln
y

q
; ln

p

x
>

(
1

α
+ 1

)
ln
y

q
.

Hence, α > F3 together with α > F4 imply the following:

ln
y

q
>

(
1

α
− 1

)
ln
q

x
≥
(
1

α
− 1

)
ln
p

x
>

(
1

α
− 1

)(
1

α
+ 1

)
ln
y

q
.

Since ln
y

q
> 0, finally we obtain: 1 >

1

α2
− 1 ; α >

√
2

2
.
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This contradicts the above assumption and, therefore, we conclude that whenever

F4 ≤ F3 holds, then
√
2
2

≤ F3 must also be valid. Hence, the inclusion which we want

I ⊆ A ∪ B ∪ C =
[1
2
, F3

]
(19)

is obtained, and that is what we intended to show. As it can be noted, the condition

F4 ≤ F5 is not used anywhere above, so the same proof can be applied for the next

case when F4 ≥ F3, to bound F4 from below. Therefore, we infer that the following

two implications must always be correct:

F3 ≥ F4 ⇒ F3 ≥
√
2

2
, and F4 ≥ F3 ⇒ F4 ≥

√
2

2
. (20)

b∗ Let F4 > F3 ∧ F4 > F5.

Then, we have (A ∪ B ∪ C) ∩ [1
2
, 1] = [1

2
, F5], and we now need to show that under

these conditions, F5 ≥
√
2
2

is valid. Suppose in contrary that there exist a point

(x, y, p, q) ∈ Xω and α ∈ (0,
√
2
2
], such that α > F5. Since F4 > F3, from (20) it is

F4 ≥
√
2
2

and, therefore, we have F4 ≥ α.

F4 ≥ α ⇔ ln
y

q
≥ α ln

pq

xy
= α

(
ln
p

x
+ ln

q

y

)
;

(
1

α
+ 1

)
ln
y

q
≥ ln

p

x
.

α > F5 ⇔ ln
p

x
+ ln

q

x
>

1

α
ln
y

x
=

1

α

(
ln
y

q
+ ln

q

x

)
. Now, replace ln

p

x
:

(
1

α
+ 1

)
ln
y

q
+ ln

q

x
>

1

α

(
ln
y

q
+ ln

q

x

)
;

ln
y

x
>

1

α
ln
q

x
; α >

ln q
x

ln y
x

= F3 .

It turns out that the condition F4 ≥ α > F5 implies α > F3. If we assume F3 > F5,

then there must be β such that F3 > β > F5, and from F4 > β > F5, as we showed, it

follows that β > F3, which is impossible. Hence, it has to be true that F5 ≥ F3, and
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together with the assumption α > F5, again we arrive at the following contradiction:
√
2

2
> F5 ⇔

√
2

2
ln
pq

x2
> ln

y

x
;

√
2

2
> F3 ⇔ ln

y

x
>

√
2 ln

q

x
. If we rewrite the same in one raw, we get

√
2 ln

√
pq

x
> ln

y

x
>

√
2 ln

q

x
, which is clearly impossible, since p ≤ q.

Thus, under the above conditions, we infer that our starting assumption was wrong

and, therefore, F5 ≥
√
2
2

must be valid. From this, we see that the inclusion we want

I ⊆ A ∪ B ∪ C =
[1
2
, F5

]
holds, and together with (19), implies that we also have (18), (17) and (16) as valid.

Before we move to the next case which will be proved in a quite analogous way, let’s

mention (to avoid confusion), we will keep a part of the previous labeling unchanged.

• Let pq < xy; λ ∈ [1
2
,+∞).

Again, make several direct estimates referring to exponents ai, bi (i = 1, 2, 3, 4), which

will be valid whenever is pq < xy and λ ≥ 1
2
. Since (12) holds, we easily observe that

a2 = min{a1, a2, a3, a4} ; a3 ≥ a4 ; b1 > b2 ≥ b3 > b4 .

Under these conditions, the next three orderings are possible:

1◦ a3 ≥ a4 ≥ a1 ≥ a2

2◦ a3 ≥ a1 ≥ a4 ≥ a2

3◦ a1 ≥ a3 ≥ a4 ≥ a2

For ordering 1◦ to be true, an additional constraint is needed on λ, under which

a4 ≥ a1 will hold. Similarly, for ordering 2◦, the missing constraints are those under

which a3 ≥ a1 and a1 ≥ a4 will hold, and for ordering 3◦ that refers to a1 ≥ a3. All

these restrictions on λ are given by

S1 : a4 ≥ a1 ⇔ λ ≥ ln q
x

ln xy
pq

; S2 : a1 ≥ a4 ⇔ λ ≤ ln q
x

ln xy
pq

(= G1) ;

S3 : a3 ≥ a1 ⇔ λ ≥ ln p
x

ln xy
pq

; S4 : a1 ≥ a3 ⇔ λ ≤ ln p
x

ln xy
pq

(= G4) ,
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where G1, G4 (and G3, G5, G2, G6 below) are labels for simpler and shorter notation

in the sequel. Clearly, the values G1 and G4 are always positive. Further, looking to

provide the necessary conditions i, ii and iii of Definition 2.1, we are going to compare

the corresponding partial sums for each of the sequences 1◦, 2◦ and 3◦ (which elements

appear in the above-specified order), with the partial sums of the sequence b = (bi)
4
i=1.

P1 : a3 ≥ b1 ⇔ ln
(xy)λ

p
≥ ln

y2λ

y
⇔ y

p
≥
(y
x

)λ
⇔ λ ≤ ln y

p

ln y
x

(= G3) ;

P2 : a1 ≥ b1 ⇔ ln
(pq)λ

x
≥ ln

y2λ

y
⇔ y

x
≥
(
y2

pq

)λ

⇔ λ ≤ ln y
x

ln y2

pq

(= G5) ;

P3 : a3 + a4 ≥ b1 + b2 ⇔ ln
(xy)2λ

pq
≥ ln

(qy)2λ

qy
⇔ y

p
≥
( q
x

)2λ
⇔ λ ≤ 1

2

ln y
p

ln q
x

(= G2) ;

P4 : a1 + a3 ≥ b1 + b2 ⇔ ln
(xpqy)λ

xp
≥ ln

(qy)2λ

qy
⇔ qy

xp
≥
(
qy

xp

)λ

⇔ λ ≤ 1 ;

P5 : a1 + a3 + a4 ≥ b1 + b2 + b3 ⇔

⇔ ln
(xy)2λ(pq)λ

xpq
≥ ln

(pqy)2λ

pqy
⇔ x2λ

x
≥ (pq)λ

y
⇔ λ ≤ ln y

x

ln pq
x2

(= G6) .

Here, G3, G5, G2, G6 are also positive. Since a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4

holds without any restriction on λ, it is not a limiting factor in sense of Definition 2.1.

Now, combining the conditions S1, . . . ,S4 and P1, . . . ,P5, we can cover all three pos-

sibilities 1◦, 2◦ and 3◦ in a way that assumptions i, ii and iii of Definition 2.1 always

remain satisfied. Namely, if we assume that the conditions S1P1P3P5 are simulta-

neously satisfied, then ordering 1◦ becomes true, and also the majorization we want

(a3, a4, a1, a2) � (b1, b2, b3, b4) is achieved. Similarly, if the conditions S2S3P1P4P5

(S4P2P4P5) are simultaneously satisfied, then ordering 2◦ (ordering 3◦) and the same

majorization a = (ai′)
4
i=1 � b = (bi)

4
i=1 are to be valid. The function er (r ∈ R) is

strictly convex. Thus, under the previous assumptions, we infer that Theorem2.1 can

be applied in (15), so by (5) it follows

S1P1P3P5 ∨ S2S3P1P4P5 ∨ S4P2P4P5 ⇒
4∑

i=1

(eai − ebi) ≥ 0 . (21)
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Directly, we can observe that whenever P1 is true or P2 is true, then P5 must also

be true. Namely, since pq < xy, we have

ln
pq

x2
< ln

y

x
, ln

pq

x2
< ln

y2

pq
,

which means that it is always G3 < G6 and G5 < G6. Therefore, P5 does not have

meaning when it is in conjunction with P1 or P2, and will not be taken into account.

The conditions from the left side of the implication (21) can be overwritten as follows:

Q1 : S1P1P3 ⇐⇒ λ ∈ A ∩ [1
2
, 1] where A = [G1,min{G2, G3}] ;

Q2 : S2S3P1P4 ⇐⇒ λ ∈ B ∩ [1
2
, 1] where B = [G4,min{G1, G3}] ;

Q3 : S4P2P4 ⇐⇒ λ ∈ C ∩ [1
2
, 1] where C = [1

2
,min{G4, G5}] .

The proof of this case shall be successfully accomplished if we can show the following:

I =
[1
2
,

√
2

2

]
⊆
⋂

pq<xy
ω∈Xω

(
(A ∪B ∪ C) ∩

[1
2
, 1
])

. (22)

It means that whenever λ ∈ I, at least one of the assumptions Q1, Q2, Q3 becomes

true, which implies (21) also to be true. Since in (22) the interval [ 1
2
, 1] has no other

impact except discarding the numbers greater than 1, we have only to show the next:

I ⊆ A ∪ B ∪ C , {ω ∈ Xω : pq < xy} . (23)

Let’s consider the set (A ∪B ∪ C) ∩ [1
2
, 1]. First, suppose G2 < G3. Then it follows

1

2

ln y
p

ln q
x

<
ln y

p

ln y
x

⇒ xy < q2 ,

hence, combining with (12) we have

1 <
ln q

x

ln q
p

=
ln q

x

ln q2

pq

<
ln q

x

ln xy
pq

= G1 .

On the other hand, G3 < 1 always holds, thus under the previous assumption we get

G2 < G3 < G1, which means A = ∅, i.e., B∪A = [G4, G3]∪∅. Conversely, ifG3 ≤ G2,

then the upper endpoint of A is G3. The assumption p ≤ q implies that we always

have G4 ≤ G1, so if we assume G1 ≤ G3, then B ∪A = [G4, G1]∪ [G1, G3] = [G4, G3].

Otherwise, if we now assume G3 < G1 to hold, then again B ∪ A = [G4, G3] ∪∅. In

this way, we show that B ∪ A = [G4, G3] in all cases. Next, it will be proved that
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neither G5 ≤ G4 < G3 (G5 < G4 ≤ G3) nor G3 ≤ G4 < G5 (G3 < G4 ≤ G5) is

possible. In that order, let’s take the case G5 ≤ G4 < G3. Then we have

G5 ≤ G4 ⇔ ln
y

x
ln
xy

pq
≤ ln

p

x
ln
y2

pq
;

G4 < G3 ⇔ ln
p

x
ln
y

x
< ln

y

p
ln
xy

pq
. Now, sum the left and the right sides:

ln
xy

pq

(
ln
y

x
− ln

y

p

)
< ln

p

x

(
ln
y

p
+ ln

y

q
− ln

y

x

)
⇒ ln

xy

pq
ln
p

x
< ln

p

x
ln
xy

pq
⇒ 0 < 0 ,

which is impossible. In the same manner we disprove the other cases, so it remains

to have only the next two conjunctions to be true:

G4 ≤ G3 ∧G4 ≤ G5 ;

G4 > G3 ∧G4 > G5 .

Remark. From the preceding contradiction, we see G4 = G3 if and only if G4 = G5.

Further, from the definitions of F3 and F5, we note that both are always less than 1.

Thus, when the first of these two cases occurs, i.e., when we have the situation F4 ≤ F3

and F4 ≤ F5, it follows that (C∪B∪A)∩[1
2
, 1] = ([1

2
, F4]∪[F4, F3])∩[12 , 1] = [1

2
, F3]. In

this case, the important value is F3. When the second case occurs, i.e., when F4 > F3

and F4 > F5, it turns out that (C ∪ B ∪ A) ∩ [1
2
, 1] = ([1

2
, F5] ∪ ∅) ∩ [1

2
, 1] = [1

2
, F5].

Up to this point, it is still possible that the result is the empty set, but it does not

affect our conclusions. What is important here is that the set (C ∪ B ∪ A) ∩ [1
2
, 1]

depends solely on the values F3 and F5. Thus, we will end up this case by proving

the following two implications:

c∗ G4 ≤ G3 ∧G4 ≤ G5 ⇒ G3 ≥
√
2

2

d∗ G4 > G3 ∧G4 > G5 ⇒ G5 ≥
√
2

2

c∗ Let G4 ≤ G3 ∧G4 ≤ G5.

As we showed, in this case (A ∪ B ∪ C) ∩ [1
2
, 1] = [1

2
, G3]. Suppose that there exist a
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point (x, y, p, q) ∈ Xω and α ∈ (0,
√
2
2
], such that α > G3.

α > G3 ⇔ ln
y

x
>

1

α
ln
y

p
; ln

y

p
+ ln

p

x
>

1

α
ln
y

p
; ln

p

x
>

(
1

α
− 1

)
ln
y

p
.

α > G4 ⇔ ln
xy

pq
>

1

α
ln
p

x
; ln

x

p
+ ln

y

q
>

1

α
ln
p

x
; ln

y

q
>

(
1

α
+ 1

)
ln
p

x
.

Hence, α > G3 together with α > G4 imply the following:

ln
p

x
>

(
1

α
− 1

)
ln
y

p
≥
(
1

α
− 1

)
ln
y

q
>

(
1

α
− 1

)(
1

α
+ 1

)
ln
p

x
.

Since ln
p

x
> 0, finally we obtain: 1 >

1

α2
− 1 ; α >

√
2

2
.

This contradicts the above assumption and, therefore, we conclude that whenever

G4 ≤ G3 holds, then
√
2
2

≤ G3 must also be valid. Hence, the inclusion which we want

I ⊆ A ∪B ∪ C =
[1
2
, G3

]
(24)

is obtained, and that is what we intended to show. As it can be noted, the condition

G4 ≤ G5 is not used anywhere above, so the same proof can be applied for the next

case when G4 ≥ G3, to bound G4 from below. Therefore, we infer that the following

two implications must always be correct:

G3 ≥ G4 ⇒ G3 ≥
√
2

2
, and G4 ≥ G3 ⇒ G4 ≥

√
2

2
. (25)

d∗ Let G4 > G3 ∧G4 > G5.

Then, we have (A ∪ B ∪ C) ∩ [1
2
, 1] = [1

2
, G5], and we now need to show that under

these conditions, G5 ≥
√
2
2

is valid. Suppose in contrary that there exist a point

(x, y, p, q) ∈ Xω and α ∈ (0,
√
2
2
], such that α > G5. Since G4 > G3, from (25) it is

G4 ≥
√
2
2

and, therefore, we have G4 ≥ α.

G4 ≥ α ⇔ ln
p

x
≥ α ln

xy

pq
= α

(
ln
x

p
+ ln

y

q

)
;

(
1

α
+ 1

)
ln
p

x
≥ ln

y

q
.
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α > G5 ⇔ ln
y

p
+ ln

y

q
>

1

α
ln
y

x
=

1

α

(
ln
y

p
+ ln

p

x

)
. Now, replace ln

y

q
:

ln
y

p
+

(
1

α
+ 1

)
ln
p

x
>

1

α

(
ln
y

p
+ ln

p

x

)
;

ln
y

x
>

1

α
ln
y

p
; α >

ln y
p

ln y
x

= G3 .

It turns out that the condition G4 ≥ α > G5 implies α > G3. If we assume G3 > G5,

then there must be β such that G3 > β > G5, and from G4 > β > G5, as we showed, it

follows that β > G3, which is impossible. Hence, it has to be true that G5 ≥ G3, and

together with the assumption α > G5, again we arrive at the following contradiction:√
2

2
> G5 ⇔

√
2

2
ln
y2

pq
> ln

y

x
;

√
2

2
> G3 ⇔ ln

y

x
>

√
2 ln

y

p
. If we rewrite the same in one raw, we get

√
2 ln

y√
pq

> ln
y

x
>

√
2 ln

y

p
, which is clearly impossible, since p ≤ q.

Thus, under the above conditions, we infer that our starting assumption was wrong

and, therefore, G5 ≥
√
2
2

must be valid. From this, we see that the inclusion we want

I ⊆ A ∪B ∪ C =
[1
2
, G5

]
holds, and together with (24), implies that we also have (23), (22) and (21) as valid.

• Let pq = xy; λ ∈ [1
2
,+∞).

This case is much simpler. According to (12), the following orderings hold for all λ:

a1 > a3 ≥ a4 > a2 ; b1 > b2 ≥ b3 > b4 .

Again, looking for the necessary conditions i, ii and iii of Definition 2.1, we may use

the known relations from the previous two cases, and having pq = xy, simplify them:

a1 ≥ b1 holds for λ ≤ 1 ;

a1 + a3 ≥ b1 + b2 holds for all λ ;

a1 + a3 + a4 ≥ b1 + b2 + b3 holds for λ ≤ 1 ;

a1 + a3 + a4 + a2 = b1 + b2 + b3 + b4 holds for all λ .
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Therefore, the majorization (a1, a3, a4, a2) � (b1, b2, b3, b4) is achieved when λ ∈ [1
2
, 1].

Since the function er (r ∈ R) is strictly convex, the conditions under which it is

possible Theorem2.1 to be applied in (15) are obtained for this interval.

From the last and the previous two cases, we conclude that λφ|Xω(ω) ≥ 0 is valid

for all λ ∈ I. This conclusion together with Lemma1 give us also the validity of (11),

which was to be proved. �
Since in [13], the proof of Lemma 1 is short, we include it for the sake of completeness.

• Proof of Lemma 1. [13] Let ω = (x, y, p, q) ∈ Xr\Xω.

Thus, either ordering 1
′
or ordering 2

′
appears as valid. It is easy to verify that the

function λφ defined by (8), can be represented in the following form:

λφ(ω) = (xλ−1 − yλ−1)(yλ − xλ) + (pλ−1 − qλ−1)(qλ − pλ) +

+ 1
xypq

[xp(q − y) + yq(p− x)](pλqλ − xλyλ) .

Obviously, when λ ∈ [0, 1], all differences on the right side in the above equality are

nonnegative, which proves the lemma. �

After all, we are in position to answer the question from which we started: There

is no value of λ within the interval I, such that λφ would be negative at some point

(x, y, p, q) ∈ (R+)4. Since λf is given by (9), we now establish the following theorem:

Theorem 19. For all graphs G and λ ∈ (1
2
,
√
2
2
], Inequality (1) holds.
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[15] V. Andova, M. Petruševski, Variable Zagreb indices and Karamata’s inequality,

MATCH Commun. Math. Comput. Chem. 65 (2011) 685–690.

-668-


