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Average Distance of Trees1

Marek Cygan,a Micha�l Pilipczuka and Riste Škrekovskib
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Abstract

The Randić indexR(G) of a graphG is the sum of weights (deg(u) deg(v))−0.5

over all edges uv of G , where deg(v) denotes the degree of a vertex v . We prove
that for any tree T with n1 leaves R(T ) ≥ ad(T ) + max(0,

√
n1 − 2) , where

ad(T ) is the average distance between vertices of T . As a consequence we
resolve the conjecture R(G) ≥ ad(G) given by Fajtlowicz in 1988 for the case
when G is a tree.

1 Introduction

In chemical graph theory topological indices belong to the set of molecular descriptors

that are calculated based on the molecular graph of a chemical compound. In 1975

Milan Randić [11] introduced a topological connectivity index R(G) of a graph G

defined as the sum of weights (deg(u) deg(v))−0.5 over all edges uv of G , i. e.,

R(G) =
∑

uv∈E(G)

1√
deg(u) deg(v)

1This work was supported by bilateral project BI-POL/10-11-004 and by Slovenian ARRS Re-
search Program P1-0297.
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where deg(v) is the degree of a vertex v . Randić has shown that there exists a corre-

lation of the Randić index with several physico–chemical properties of alkanes such as

boiling points, chromatographic retention times, enthalpies of formation, parameters

in the Antoine equation for vapor pressure, surface areas and others. More informa-

tion about Randić index can be found in a survey [7] by Li and Shi or in a book [8]

by Li and Gutman.

The Wiener index is a distance-based topological index defined as the sum of

distances between all pairs of vertices in a graph and is denoted by W (G) . It was the

first topological index in chemistry [13], introduced in 1945. Since then, the Wiener

index has been used to explain various chemical and physical properties of molecules.

However the Wiener index can be cubic in the number of vertices of a graph, hence

for the sake of simplicity we use the average distance instead

ad(G) = W (G)/

(
n

2

)
.

For a one vertex graph K1 we assume R(K1) = ad(K1) = 0 .

For the last two decades researchers are investigating extremal values and relations

between topological indices. In 1988 Fajtlowicz [5] stated the following conjecture

based on the computer program Graffiti.

Conjecture 1.1. For all connected graphs G , R(G) ≥ ad(G) .

Very recently Li and Shi [9] have proven Conjecture 1.1 when δ(G) ≥ n/5 and

n ≥ 15 . More recent results related to extremal values of the Randić index can be

found in [1, 3, 6, 14, 15].

In order to state the results of this paper let us introduce some notation. By

distG(u, v) we denote the length of the shortest path between vertices u and v in a

connected graph G . The length maxu,v distG(u, v) is a diameter of a graph G , which

we denote by diam(G) . In particular for trees the diameter is the length of the longest

simple path.

A star is a tree where at most one vertex is of degree greater than one. Note that

a tree with at most three vertices is a star. Also notice that stars are precisely the

trees with diameter at most two.

The main result of this paper is the following theorem.
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Theorem 1.2. For any tree T with n vertices and n1 leaves the following inequality

holds:

R(T ) ≥ ad(T ) + max(0,
√
n1 − 2) .

Moreover if we consider the limit when n goes to infinity, the inequality is sharp for

stars.

As a consequence we prove Conjecture 1.1 for the case when G is a tree.

2 Proof of Theorem 1.2

A vertex of degree one is called a pendent vertex or a leaf. By Tn,n1 we denote the set

of all trees with exactly n nodes and n1 pendent vertices.

First we define a special class of trees, which will be frequently used in our paper.

For a, b ≥ 1, n ≥ a + b + 2 by DC(n, a, b) we denote a double comet, which is a tree

composed of a path containing n− a− b vertices with a pendent vertices attached to

one of the ends of the path and b pendent vertices attached to the other end of the

path. Thus, DC(n, a, b) has n vertices and a+ b leaves, i. e., DC(n, a, b) ∈ Tn,a+b .

a b

n− a− b

Figure 1: A double comet DC(n, a, b) for n = 16, a = 5, b = 4.

We begin our proof with a lemma proving Theorem 1.2 for stars and paths.

Lemma 2.1. Let T ∈ Tn,n1 be a tree such that n1 ≤ 2 (a path) or n1 = n − 1 (a

star). Then R(T ) ≥ ad(T ) + max(0,
√
n1 − 2) .

Proof. If n ≤ 2 then the inequality trivially holds, hence we assume n ≥ 3 . If T is a

star then by direct calculations we obtain ad(T ) = 2− 2
n
and R(T ) =

√
n1 =

√
n− 1 ,

whereas if T is a path then ad(T ) = n+1
3

and R(T ) =
√
2 + n−3

2
. In both cases the

lemma holds.
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Consequently from now on we assume that T ∈ Tn,n1 where 3 ≤ n1 ≤ n − 2 ,

which means that we may use the following result proved by Liu et al. in Theorem 5

from [10].

Theorem 2.2. Let T ∈ Tn,n1 , where 3 ≤ n1 ≤ n− 2 . Then

R(T ) ≥ n− n1

2
+
√
n1 + (1−

√
2)

(
1√
2n1

+
1√
2

)
.

Corollary 2.3. Using the assumption n− 2 ≥ n1 ≥ 3 we obtain:

R(T ) ≥ n− n1

2
+
√
n1 − 0.462 .

The flow of the proof is as follows. Firstly we show that each tree can be trans-

formed into a double comet without decreasing the average distance and simultane-

ously preserving the number of vertices and leaves. Since in Corollary 2.3 we only

use n and n1 disregarding the actual structure of a tree it is enough to show that for

double comets we have n−n1

2
+
√
n1 − 0.462 ≥ ad(T ) + max(0,

√
n1 − 2) .

Lemma 2.4. Let T ∈ Tn,n1 , where 3 ≤ n1 ≤ n − 2 . There exists a double comet

T ′ = DC(n, a, b) for some a, b ≥ 1 , a + b = n1 such that ad(T ) ≤ ad(T ′) .

Proof. Let us assume that contrary. Let T ∈ Tn,n1 be a non-double-commet tree such

that for each double comet T ′ = DC(n, a, b) , where a, b ≥ 1, a + b = n1 we have

ad(T ′) < ad(T ) . Among all such trees from Tn,n1 we consider a tree with the largest

diameter diam(T ) .

Let d = diam(T ) and D = v1v2 . . . vd be a diameter of the tree T . Since T is

neither a star nor a double comet we have d ≥ 5 . Moreover, we know that v1, vd are

leaves and all neighbors of v2, vd−1 outsideD are pendents, because otherwise D would

not be a diameter. Furthermore, since T is not a double comet there exists a vertex

outside the diameter x 
∈ D that is a neighbor of some vertex vi for 3 ≤ i ≤ d − 2 .

Observe that after a removal of the edge xvi the tree T decomposes into exactly two

parts. Let us denote by Tx the part containing the vertex x and by TD the other

one. Similarly after removal of the edge vi−1vi the tree TD decomposes into two parts

TD1 , TD2 , where vi−1 ∈ V (TD1) and vi ∈ V (TD2) . Without loss of generality we may

assume, that |V (TD1)| ≤ |V (TD2)| , since otherwise we can reverse the diameter D .

-608-



Let T ′ be a tree T with the edge xvi removed and xv2 inserted (as in Fig. 2). We

claim ad(T ′) ≥ ad(T ) . Observe that distances between vertices within V (TD) and

within V (Tx) in both trees T, T ′ are the same. Now we consider distances between

vertices in V (TD) and V (Tx) . Let a ∈ V (TD) , b ∈ V (Tx) . Consider two cases:

• a ∈ V (TD1) , then distT ′(a, b) ≥ distT (a, b)− (i− 2)

• a ∈ V (TD2) , then distT ′(a, b) ≥ distT (a, b) + (i− 2) .

Since |V (TD1)| ≤ |V (TD2)| , we have W (T ′) ≥ W (T ) and so ad(T ′) ≥ ad(T ) . If

|V (Tx)| > 1 then diam(T ′) > diam(T ) , hence the lemma holds for T ′ because

diam(T ′) is larger. Which means that there exists a double comet T ′′ = DC(n, a, b) ,

where a + b = n1 , such that ad(T ′′) ≥ ad(T ′) ≥ ad(T ) , a contradiction. Thus we

know that |V (Tx)| = 1 . However we can continue in this manner moving pendent

neighbors of vertices vi for 3 ≤ i ≤ d − 2 ending up with a double comet, thus

completing the proof.

Obviously, the biggest value of ad(DC(n, a, b)) , where a + b = n1 , is obtained

when a , b are as close as possible to n1/2 , i. e., a = �n1

2
� and b = �n1

2
� . These

bounds are also observed in [4, 12] (see Theorem 31 in the survey [2]) but as the

papers [4, 12] may not be easy to access and as our proof is short, for the sake of

completness we decide to include it.

v1 v2 vdvi

x

Tx

v1 v2 vdvi

x

Tx

Figure 2: Ilustration of the transformation used in the proof of Lemma 2.4.

Lemma 2.5. Let T ∈ Tn,k be a double comet DC(n, a, b) for a, b ≥ 1 , where 3 ≤
a+ b = n1 ≤ n− 2 . Then

n− n1

2
+
√
n1 − 0.462 ≥ ad(T ) + max(0,

√
n1 − 2) .
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Proof. Firstly we calculate the average distance for the double comet T :(
n

2

)
ad(T ) = W (T )

= ab(n− n1 + 1) + 2

(
a

2

)
+ 2

(
b

2

)

+ (a + b)(n− n1)(n− n1 + 1)/2 +

(
n− n1 + 1

3

)

where ab(n− n1 + 1) + 2
(
a
2

)
+ 2

(
b
2

)
comes from distances between leaves, (a+ b)(n−

n1)(n−n1+1)/2 is the sum of distances between leaves and inner vertices and
(
n−n1+1

3

)
is the sum of distances between inner vertices. Using following inequalities:

2ab+ 2

(
a

2

)
+ 2

(
b

2

)
≤ (a+ b)2 = n2

1

ab ≤ n2
1

4(
n− n1 + 1

3

)
≤ (n− n1)

3

6

we obtain

ad(T )

(
n

2

)
≤ n2

1(n− n1 − 1)

4
+ n2

1 +
n1(n− n1)(n− n1 + 1)

2
+

(n− n1)
3

6

=
n2
1(n− n1)

4
+

3n2
1

4
+
n1(n− n1)

2

2
+
n1(n− n1)

2
+

(n− n1)
3

6
.

For the sake of simplicity we put x = n1, y = n− n1 .

ad(T )

(
n

2

)
≤ x2y

4
+

3x2

4
+
xy2

2
+
xy

2
+
y3

6

In order to prove the lemma it is enough to show the following inequality:

(
n

2

)
(
n− n1

2
+
√
n1 − 0.462−max(0,

√
n1 − 2)− ad(T )) ≥ 0 .

We multiply the expression by 4 , put x, y instead of n1, n − n1 and use the pre-

viously obtained inequality for ad(T )
(
n
2

)
.

4

(
n

2

)
(
n− n1

2
+
√
n1 − 0.462−max(0,

√
n1 − 2)− ad(T )) =

2(x+ y)(x+ y − 1)(
y

2
+ min(

√
x− 0.462, 1.538))− 4ad(T )

(
n

2

)
≥

2(x2 + y2 + 2xy − x− y)min(
√
x− 0.462, 1.538) + y3/3− 3xy − y2 − 3x2 .
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Now we consider two cases. Either n1 = x = 3 or n1 = x ≥ 4 . When x = 3 from

the above expression we obtain:

2(9 + y2 + 6y − 3− y)min(
√
3− 0.462, 1.538) + y3/3− 9y − y2 − 27 ≥
2.5(y2 + 5y + 6) + y3/3− y2 − 9y − 27 =

y3/3 + 1.5y2 + 3.5y − 12 .

Using the assumption n1 ≤ n − 2 which is equivalent to y ≥ 2 we obtain y3/3 +

1.5y2 + 3.5y − 12 ≥ 11/3 ≥ 0 .

Now we assume that x ≥ 4 , hence min(
√
x − 0.462, 1.538) ≥ 1.5 . Since x, y ≥ 2

then xy ≥ x+ y , and so we have:

2(x2+ y2+2xy−x− y)1.5+ y3/3− 3xy− y2− 3x2 = y3/3+2y2+3xy− 3(x+ y) ≥ 0

what ends the proof of the lemma.

In Lemma 2.1 we prove Theorem 1.2 for paths and stars whereas by Lemmas 2.4

and 2.5 together with Corollary 2.3 we obtain the inequality for all other trees, thus

completing the proof of Theorem 1.2.
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