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Abstract

Ranking objects means pairwise comparing their features, mostly using certain
parameters, for example real–valued functions, the values of which allow to put
the objects in a certain order. However, due to the ordinal character of ranking
not all slight numerical differences in the values of features should be considered as
relevant. The possible appearance of data noise may support the idea to robustify
the order relations. For this reason, elements of fuzzy order theory are used in
the present paper that allow stepwise to relax the requirements on the influence of
numerical differences of feature values. The methods described are applied to the
ranking of refrigerants based upon their ozone depletion potential, global warming
potential and atmospheric lifetime. It is found that trifluoroiodomethane, dimethyl
ether and ammonia are the least environmentally problematic substances for a wide
range of relaxation in their environmental properties. Pentafluorodimethyl ether,
mooted as replacement of problematic refrigerants, turns out to be a problematic
substance for different levels of data relaxation, which raises questions regarding its
environmental impact.

Introduction

Ranking a set X of objects x according to their features is mostly based on a set of pa-

rameter values, usually real numbers. In chemical and environmental rankings, objects

usually are chemical compounds or polluted sites, whose features are toxicity and con-

centration levels, to name but a few (Bruggemann and Münzer, 1993, [1]). For example,
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a refrigerant x can be evaluated according to its ozone depletion potential (ODP), its

global warming potential (GWP) and its atmospheric lifetime (ALT). In this case we can

associate to x the triple

(ODP (x), GWP (x), ALT (x))

of real numbers, and these triples define a canonical order on the set X of refrigerants if

these numbers are available for every x. The following items explain the procedure.

— To begin with, we note that we cannot distinguish the quality of two refrigerants

that have the same parameter values. Therefore, refrigerants with the same values

are considered equivalent. This means that instead of x we in fact consider its equiv-

alence class x, consisting, possibly, of several objects, all with the same parameter

values. Note that we can work with any of the elements in an equivalence class, for

example with the element x of x. The set of equivalence classes will be indicated as

X = {x | x ∈ X}.
— In order to prepare the interpretation of parameter values as fuzzy subsets, we

should like to have the parameter values contained in the interval [0, 1], consisting

of the real numbers between 0 and 1. Moreover smaller parameter values should be

interpreted as the better ones. For this reason we use the following transformation

of data, if necessary.

Let q be one of the parameters. We distinguish two cases: Either the smaller values

are the better ones, in which case we leave q as it is and say that q is properly

oriented. In the other case we need a reorientation of the parameter, multiplying

by −1. Moreover, we may need a shift, so that the values of the shifted parameter

are nonnegative. Finally, dividing by the maximal value of the possibly reoriented

and possibly shifted parameter, we arrange that the new values are contained in the

interval [0, 1]. The following transformations, including in one step reorientation,

shift and normalization, guarantees that the new parameter q′ has its values in [0, 1]

and is properly oriented.

– In the first case, when q was properly oriented already, we put

q′(x) =
q(x)−min(q)

max(q)−min(q)
,
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where min(q) = min{q(y) | y ∈ X} and max(q) = max{q(y) | y ∈ X}, the
minimal and the maximal values of q that occur.

– In the second case, when q is not yet properly oriented, we use the transfor-

mation

q′(x) =
max(q)− q(x)

max(q)−min(q)
.

We call this transformation the normalization of data.

— After the normalization of data, we consider a refrigerant x as at least as good as y

if the following is true:

ODP (x) ≤ ODP (y) and GWP (x) ≤ GWP (y) and ALT (x) ≤ ALT (y).

We indicate this by writing x ≤ y, and we note that in this case also x′ ≤ y′, for

any other representatives of x′ ∈ x and y′ ∈ y. Hence, the relation ≤ on X yields

the relation

{(x,y) | x ≤ y}

on the set X, consisting of the pairs (x,y) with x′ ≤ y′, for every x′ ∈ x and y′ ∈ y.

It is obvious that this relation ≤ has the following properties:

– For each class x we have that x ≤ x, i.e. the relation is reflexive.

– Moreover, if x ≤ y and y ≤ z hold, then also x ≤ z is true, the relation is

transitive.

– Finally, if x ≤ y and y ≤ x, then x = y, therefore the relation is also antisym-

metric.

These three properties mean that the relation ≤ on X is a partial order, we call it

the canonical partial order (CPO), obtaining the partially ordered set (poset, for

short) (X,≤), with its partial order

CPO = {(x,y) | x ≤ y}.

This partial order is basic for the following argumentation and most sensitive with

respect to numerical differences and hence eventually to data noise. We should

carefully note that ≤ is not always a partial order on X, because it is not necessarily

antisymmetric. For this reason we introduced equivalence classes.
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Objects x, y ∈ X, for which neither x ≤ y nor y ≤ x hold, are said to be incompa-

rable, denoted by x‖y, the same with classes x,y ∈ X, for which neither x ≤ y nor

y ≤ x is true.

— It is obvious that the aforementioned concepts can easily be generalized to the

ranking of general sets X of objects, where we have, say, a set of n real–valued

parameters p1, . . . , pn, that we can assume to be normalized. The objects form

equivalence classes x, and to the object x as well as to the other elements in that

class, there corresponds the n–tuple

p(x) = (p1(x), . . . , pn(x))

of real numbers pi(x), the parameter or feature values, and we assume that these

tuples of parameter values are at hand. They are collected in the table

IB =

1 . . . i . . . n
...

...
...

...
...

...
x p1(x) . . . pi(x) . . . pn(x)
...

...
...

...
...

...

that forms our information basis IB and which is all what we are going to use in

our evaluation.

— The rows of the information basis give the canonical partial order CPO of equiva-

lence classes, defined by

x ≤ y ⇐⇒ p1(x) ≤ p1(y) and p2(x) ≤ p2(y) and . . . and pn(x) ≤ pn(y),

with x ∈ x, y ∈ y. But we ought to make clear that this partial order has serious

drawbacks. It is quite sensitive concerning numerical differences in data:

– It is quite sensitive concerning numerical differences in data: Slight deviations

of a value pi(x) may change the equivalence class, and therefore the order

relation, too. We have to keep this lack of robustness under control!

– The canonical partial order is not necessarily a total order, as objects may occur

that are incomparable as far as their features are concerned. But if decisions

have to be made according to an evaluation, people prefer a total (or linear)

order in which every object can be compared with every other one, as even the

existence of partial orders is not very well known or at least far from being

popular.
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Therefore, in a most primitive — albeit very popular — approach we may be

tempted to use a weighted combination of parameters, i.e. instead of the sequence

p(x) = (p1(x), p2(x), . . . , pn(x)) consider a ‘suitable’ linear combination

P (x) = w1 · p1(x) + w2 · p2(x) + . . .+ wn · pn(x),

using reasonable weights wi, and claiming that x is at least as good as y if P (x) ≤
P (y). Since the n–tuple p(x), consisting of n real numbers, is replaced in this way

by a single real number P (x), there are no longer incomparabilities, and so a linear

or total order of sets of equivalence classes is obtained, where there is only one set of

best classes of refrigerants, comprising the classes with smallest parameter value P

(or a set of best refrigerants, the elements x of that best classes). Correspondingly,

if the best classes do not contain each refrigerant, there is also a set of second best

classes, and so on. But the approach of a weighted sum of features is obviously

a manipulation which might be dangerous, a prejudice (Munda, 2008, [11]). The

main difficulty is the selection of the weights wi which is often highly subjective (for

methods to obtain weights directly from data see OECD, 2008, [13]).

An approach that allows to take into account the sensitivity of partial order relations

concerning numerical differences in data, without performing questionable feature combi-

nations is to use the concept of fuzzy relations, fuzzy preorders and fuzzy partial orders.

Fuzzy relations contain the given canonical order and further relations that form a se-

quence of orders, starting from the CPO and becoming coarser and coarser — since

equivalence classes are collected successively into bigger classes — until finally all objects

are equivalent and have trivially the same rank. The advantage is that this method is

based on concepts from fuzzy order theory in the following manner.

Fuzzy relations, preorders and partial orders

The equivalence classes x of the elements in X = {x, y, z, . . .} are to be ranked according

to their feature values, expressed as values of certain parameters p1, . . . , pn, real numbers,

collected in the information basis IB, shifted (so that they are nonnegative), normalized

(so that they are contained in the interval [0, 1]) and reoriented (so that they are ‘the

smaller, the better’), if necessary.
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In order to keep the sensitivity of the partial order relations with respect to slight nu-

merical differences of the data under control, we are going to interpret the measurements

as fuzzy subsets and introduce helpful concepts from fuzzy order theory in the following

way:

Measurements as fuzzy subsets

We replace the equivalence classes x by fuzzy subsets4 x̃ of {1, . . . , n}, expressed in terms

of the parameter values,

x̃: {1, . . . , n} → [0, 1]: i �→ pi(x).

Less formally, the degree of the number i being an element of the fuzzy set x̃ is the feature

value pi(x) of x. These fuzzy subsets of the set {1, . . . , n} form the rows of the information

basis IB.

Now, we take from the theory of fuzzy sets that x̃ is contained in ỹ if and only if the

degree of i, as a member of x̃, is less than or equal to the degree of i, being a member of

ỹ. In formal terms, and using the symbol ⊆ also in the fuzzy case:

x̃ ⊆ ỹ ⇐⇒ for each i we have that pi(x) ≤ pi(y).

This fits very well to our interest in evaluation: The objects in the class x are at least as

good as the objects in the class y if and only if the corresponding fuzzy sets contain each

other:

x ≤ y ⇐⇒ x̃ ⊆ ỹ.

This means that the concept of fuzzy subset corresponds to the canonical partial order on

the set of classes. But there is much more available in the theory of fuzzy subsets that

we can use. We follow the very clear description of these methods given by Naessens, De

Baets and De Meyer in [12].

The degree of subsethood

Containment of sets, as well as of fuzzy sets, is a ‘binary’ concept, either a fuzzy set x̃ is

contained in ỹ, or not. This concept can easily be softened (or ‘fuzzyfied’) by introducing

a degree of subsethood, which can be found in the standard literature on fuzzy sets, e.g. in

4A standard fuzzy subset of a set M is supposed to be a mapping from M to the interval [0, 1]
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the book by Klir and Yuan (1995, [9]). It was used by Van de Walle et al. (1995, [17])

and De Baets and De Meyer (2003, [4]). The degree SH(x̃, ỹ) of subsethood of x̃ in ỹ can

be defined5 in terms of fuzzy cardinalities6 by

SH(x̃, ỹ) =

⎧⎨
⎩

|x̃∩ỹ|
|x̃| if |x̃| 
= 0

1 otherwise,

=

⎧⎨
⎩

∑
i
min{pi(x),pi(y)}∑

i
pi(x)

if
∑

i pi(x) 
= 0

1 otherwise.

(This construction of the fuzzy subsethood was motivated by its analogy with conditional

probability (Kosko, 1991, [10]).)

A fuzzy preorder

We consider SH as a function on the cartesian square X̃2 = {(x̃, ỹ) | x,y ∈ X} of the set

of fuzzy subsets, namely as the mapping

SH: X̃2 → [0, 1]: (x̃, ỹ) �→ |x̃ ∩ ỹ|
|x̃| .

Thus, SH can be understood as a fuzzy subset of X̃2. SH(x̃, ỹ) is the degree of subsethood

of x̃ in ỹ. However, the main point is that this value is the degree, by which x is better

than y, and this is what we really want, a degree and not a crisp either/or.

We may also interpret SH as a fuzzy (binary) relation on X̃ with the following properties:

– The pair (x̃, ỹ) belongs to the relation SH with the degree SH(x̃, ỹ).

– It is reflexive, since SH(x̃, x̃) = 1, for all x̃ ∈ X̃.

– But it is not necessarily transitive, since this needs that a generalized transitivity

condition suitable for fuzzy order is to be fulfilled,

min{SH(x̃, ỹ), SH(ỹ, z̃) | ỹ ∈ X̃} ≤ SH(x̃, z̃).

For this reason, we consider the transitive closure SHT of SH that fulfills this condition

(see Klir and Yuan, 1995, [9], for applications see Haven, 1998, [7], also De Baets and De

Meyer, 2003, [4]). It is defined as follows:

SHT (x̃, z̃) = max{min{SH(x̃, ỹ), SH(ỹ, z̃)} | ỹ ∈ X̃}.
5There are various other ways of defining subsethood, an interesting axiomatic approach is described,

for example, in [8].
6The fuzzy cardinality |x̃| of the fuzzy set x̃ is defined to be the sum of the values of that mapping:

|x̃| =∑
i pi(x) while the (standard) fuzzy intersection x̃∩ ỹ is the fuzzy set with values min{pi(x), pi(y)}

and, correspondingly, it is of order |x̃ ∩ ỹ| =∑
i min{pi(x), pi(y)}.
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Relations that are reflexive and transitive are called preorders, and so we have obtained

a fuzzy preorder SHT on X̃, the transitive closure of the subsethood relation SH.

The cutsets of SHT

Having constructed the transitive closure SHT we arrive at the crucial point of our

discussion: We know that each fuzzy subset can be reconstructed from its cutsets, for

example SHT from its cutsets

SHT≥α = {(x̃, ỹ) ∈ X̃2 | SHT (x̃, ỹ) ≥ α}.

These cutsets are crisp subsets of X̃2, i.e. subsets in the classical sense, and, moreover,

they form a chain of subsets, since obviously

α ≤ β =⇒ SHT≥α ⊇ SHT≥β

is true. For example: SHT≥0 = X̃2. Less formally, two pairs (x̃, ỹ) and (x̃′, ỹ′) that are

contained in SHT≥β, for a β ≥ α, are also contained in SHT≥α.

It is easily seen that these cutsets are also preorders, and that each of them defines an

equivalence relation SHTE≥α, obtained by collecting pairs in order to obtain a symmetric

relation:

(x̃, ỹ) ∈ SHTE≥α ⇐⇒ (x̃, ỹ) ∈ SHT≥α and (ỹ, x̃) ∈ SHT≥α.

These equivalence relations form a chain, since also

α ≤ β =⇒ SHTE≥α ⊇ SHTE≥β

is true. In words, α ≤ β implies that SHE≥β refines SHE≥α, classes x̃ and ỹ that

are equivalent in SHE≥β are also equivalent with respect to SHE≥α. For example:

SHTE≥0 = {X̃2}, the equivalence relation consisting of a single class, since all the fuzzy

subsets x̃ and ỹ are pairwise equivalent.

The α-cuts are important since each one of them permits to assess the order relationships

between the objects to rank at certain levels of data relaxation linked to α (Haven, 1998,

[7]). Thus, the higher the α-value, the lower the data relaxation. De Baets used the

following helpful formulation for this interesting fact:

‘Incomparability disappears at the cost of increasing indifference’

The maximum α-value yields the canonical partial order, whereas the minimum α-value

leads to a data relaxation such that all objects become equivalent.

-588-



The partial orders corresponding to the cutsets

The final step is the evaluation of the partial orders obtained from the cutsets.

The equivalence relations form a chain under refinement, and each of these equivalence

relations SHTE≥α yields a partial order ≤α, defined as follows: Denoting the equivalence

class of x̃ in SHTE≥α by [x̃]α we have that

[x̃]α ≤α [ỹ]α ⇐⇒ (x̃, ỹ) ∈ SHT≥α while (ỹ, x̃) /∈ SHT≥α.

For example, as SHT≥0 consists of a single class, its Hasse diagram consists of a single

vertex.

As a relevant environmental example of application of this procedure, let us consider the

data matrix of 18 refrigerants.

An application: Ranking of refrigerants

In a recent study 40 refrigerants were ranked with respect to their ozone depletion poten-

tial, global warming potential, and atmospheric lifetime (Restrepo et al., 2008, [15, 16]).

In those publications the focus was on the application of the concept of stability fields (sta-

bility fields are of interest when composite indicators are to be discussed, see Bruggemann

et al., 2008, [3]).

Here, for demonstration, 18 most hazardous refrigerants (Table 1) were studied according

to the mentioned properties. For sake of simplicity of notation (and the size of the

tables) we replace the objects xi ∈ X, their equialence classes xi ∈ X as well as the

corresponding fuzzy subsets x̃i ∈ X̃ by the labels i that they have in a set of altogether

40 refrigerants considered in [15, 16]. This is possible since the equivalence classes are

singletons, xi = {xi}.
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Table 1. Labels, molecular formulas and non–proprietory names of the refrigerants

studied.
Label Molecular formula Non–proprietory name

1 CCl3F R11
2 CCl2F2 R12
6 C2H3Cl2F R141b
7 C2H3ClF2 R142b
8 CHF3 R23
16 C3H8 R290
21 CO2 R744
22 CBrClF2 R12B1
23 C4F8 RC318
29 C2HF5O HFE–125
32 CH3Cl R40
33 C2Cl3F3 R113
35 C2Cl2F4 R114
36 CF3I R13I1
37 C2H6O —
38 NH3 R717
39 C2H3F3O HFE–143
40 C3H3F5O HFE–245

The labels correspond to those used in [16]. The following table is our information basis,

containing the results of measurements:

Table 2. Parameter values for the chosen refrigerants, where ODP, GWP and ALT

stand for ozone depletion potential, global warming potential and atmospheric lifetime,

respectively.

IB =

Label ODP GWP ALT

1 1 4680 45
2 0.82 10720 100
6 0.12 713 9.3
7 0.065 2270 17.9
8 0.0004 14310 270
16 0 20 0.041
21 0 1 120
22 5.1 1300 11
23 0 10000 3200
29 0 14800 165
32 0.02 16 1.3
33 0.9 6000 85
35 0.85 9800 300
36 0 1 0.1
37 0 1 0.015
38 0 0 0.25
39 0 656 5.7
40 0 697 4

The normalized properties of these 18 refrigerants are shown in Table 3.
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Table 3. Normalized property values of the 18 refrigerants studied, the data matrix.

S =

Label ODP GWP ALT
1 0.19608 0.31622 0.01406
2 0.16078 0.72432 0.03125
6 0.02353 0.04818 0.00290
7 0.01275 0.15338 0.00559
8 0.00008 0.96689 0.08437
16 0 0.00135 0.00001
21 0 0.00007 0.03750
22 1 0.08784 0.00343
23 0 0.67568 1
29 0 1 0.05156
32 0.00392 0.00108 0.00040
33 0.17647 0.40541 0.02656
35 0.16667 0.66216 0.09375
36 0 0.00007 0.00003
37 0 0.00007 0
38 0 0 0.00007
39 0 0.04432 0.00178
40 0 0.04709 0.00125

Here come the tables of the subsethood degrees (Table 4) and that of its transitive closure,

SHT (Table 5).
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Table 4. The matrix of subsethood degrees SH(i, j).

1
2

6
7

8
16

21
22

23
29

32
33

35
36

37
38

39
40

1
1.
0

0.
93
3

0.
14
2

0.
32
6

0.
62
8

0.
00
3

0.
02
7

0.
54
6

0.
62
7

0.
62
7

0.
01

0.
96
3

0.
94
4

0.
0

0.
0

0.
0

0.
08
8

0.
09
2

2
0.
53
6

1
.0

0.
08
1

0.
18
7

0.
82
5

0.
00
1

0.
03
4

0.
27
5

0.
77
1

0.
82
5

0.
00
6

0.
64
7

0.
93
2

0.
0

0.
0

0.
0

0.
05

0.
05
3

6
1.
0

1
.0

1
.0

0.
85
6

0.
68
6

0.
01
8

0.
04

1.
0

0.
68
5

0.
68
5

0.
07
2

1.
0

1.
0

0.
00
1

0.
00
1

0.
00
1

0.
61
8

0.
64
8

7
1.
0

1
.0

0.
37
2

1.
0

0.
92
6

0.
00
8

0.
03
3

0.
60
6
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92
6
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92
6

0.
03
1
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0
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0
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00
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0
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8
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31
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7
19
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04
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15
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0
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00
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6
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08
7
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3
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96
9
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00
1

0.
41
1
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71
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0
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0
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04
4
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04
6

16
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0

1
.0

1
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0
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0

1
.0
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05
9
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0
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0
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0

0.
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1
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0
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0
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05
9

0.
05
1

0.
00
7

1.
0
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0
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0.
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8
34

0.
07
9
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1
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0
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0
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1.
0

1.
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3
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9
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3
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2
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2
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04
9
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03
5

22
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3
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2
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8
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5
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08
4
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00
1

0.
00
3
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0
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08
4
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08
4
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00
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24
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23
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0

0.
0

0.
0
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04
2
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04
4

23
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19
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4
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0.
03
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09
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45
4
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00
1

0.
02
2

0.
05
4

1.
0

0.
43
4
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00
1

0.
25
8

0.
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9
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9
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0
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6
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1
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1
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0
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28
9
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08
7
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0
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27
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27
4
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0
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0
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0
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9
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01
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01
3
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27
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27
4
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9
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12
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28
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00
2
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04
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0.
00
9
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9
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08
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6

0.
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9
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00
1

0.
04
1

0.
28

0.
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9

0.
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4

0.
00
6

0.
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9

1.
0

0.
0

0.
0

0.
0

0.
05

0.
05
2

36
1.
0

1
.0

1
.0

1.
0

1.
0

0
.8

1
.0

1.
0

1.
0

1.
0

1.
0

1.
0
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0
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0

0.
7
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3
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0
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3
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0
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0
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0
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1
.0
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0
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0
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0
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0
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0
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0
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0
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0
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0

3
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1.
0

1
.0

1
.0

1.
0

1.
0

0.
14
3

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
42
9

0.
0

1.
0

1.
0

1.
0

39
1.
0

1
.0

1
.0

1.
0

1.
0

0.
03

0.
04

1.
0

1.
0

1.
0

0.
03
2

1.
0

1.
0

0.
00
2

0.
00
2

0.
00
2

1.
0

0.
98
9

40
1.
0

1
.0

1
.0

1.
0

1.
0

0.
02
8

0.
02
7

1.
0

1.
0

1.
0

0.
03
1

1.
0

1.
0

0.
00
2

0.
00
1

0.
00
1

0.
94
3

1.
0
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Table 5. The matrix of transitive closure SHT of the subsethood relation SH, containing

the values SHT (i, j).

1
2

6
7

8
16

21
22

23
29

32
33

35
36

37
38

39
40

1
1.
0

0.
96
3

0.
32
6

0.
32
6

0.
82
5

0.
07
2

0.
07
2

0.
54
6

0.
81
9

0.
82
5

0.
07
2

0.
96
3

0.
96
3

0.
05
9

0.
05
9

0.
05
9

0.
32
6

0.
32
6

2
0.
64
9

1
.0

0.
32
6

0.
32
6

0.
82
5

0.
07
2

0.
07
2

0.
54
6

0.
81
9

0.
82
5

0.
07
2

0.
64
9

0.
93
2

0.
05
9

0.
05
9

0.
05
9

0.
32
6

0.
32
6

6
1.
0

1
.0

1
.0

0.
85
6

0.
85
6

0.
07
2

0.
07
2

1.
0

0.
85
6

0.
85
6

0.
07
2

1.
0

1.
0

0.
05
9

0.
05
9

0.
05
9

0.
64
8

0.
64
8

7
1.
0

1
.0

0.
37
2

1.
0

0.
92
6

0.
07
2

0.
07
2

0.
60
6

0.
92
6

0.
92
6

0.
07
2

1.
0

1.
0

0.
05
9

0.
05
9

0.
05
9

0.
37
2

0.
37
2

8
0.
64
9

0.
7
19

0
.3
26

0.
32
6

1.
0

0.
07
2

0.
07
2

0.
54
6

0.
72
3

0.
96
9

0.
07
2

0.
64
9

0.
71
9

0.
05
9

0.
05
9

0.
05
9

0.
32
6

0.
32
6

16
1.
0

1
.0

1
.0

1.
0

1.
0

1
.0

0.
08
7

1.
0

1.
0

1.
0

0.
80
1

1.
0

1.
0

0.
05
9

0.
05
9

0.
05
9

1.
0

1.
0

2
1

0.
70
9

0.
9
26

0
.3
26

0.
32
6

1.
0

0.
07
2

1.
0

0.
54
6

1.
0

1.
0

0.
07
2

0.
70
9

1.
0

0.
05
9

0.
05
9

0.
05
9

0.
32
6

0.
32
6

22
0.
26
3

0.
2
63

0
.2
63

0.
26
3

0.
26
3

0.
07
2

0.
07
2

1.
0

0.
26
3

0.
26
3

0.
07
2

0.
26
3

0.
26
3

0.
05
9

0.
05
9

0.
05
9

0.
26
3

0.
26
3
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0.
45
4

0.
4
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0
.3
26

0.
32
6

0.
45
4

0.
07
2

0.
07
2

0.
45
4

1.
0

0.
45
4

0.
07
2

0.
45
4

0.
45
4

0.
05
9

0.
05
9

0.
05
9

0.
32
6

0.
32
6
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0.
64
9

0.
7
19

0
.3
26

0.
32
6

0.
96
9

0.
07
2

0.
07
2

0.
54
6

0.
72
3

1.
0

0.
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2

0.
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9

0.
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9

0.
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9

0.
05
9

0.
05
9

0.
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6

0.
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6

32
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0

1
.0

1
.0

1.
0

0.
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6

0.
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2

0.
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7

1.
0

0.
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6

0.
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6

1.
0

1.
0

1.
0

0.
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9

0.
05
9

0.
05
9

0.
64
8

0.
64
8
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0.
83
3

0.
9
74

0
.3
26

0.
32
6

0.
82
5

0.
07
2

0.
07
2

0.
54
6

0.
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9

0.
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5

0.
07
2

1.
0

0.
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4

0.
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9

0.
05
9

0.
05
9

0.
32
6

0.
32
6
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0.
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9

0.
9
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0
.3
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0.
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6
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5

0.
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2

0.
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2

0.
54
6

0.
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9

0.
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5
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07
2

0.
64
9
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0
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9
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9
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05
9
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6
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6
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0

1
.0

1
.0

1.
0

1.
0

0
.8

1
.0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
7

0.
3

1.
0

1.
0
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1.
0

1
.0

1
.0

1.
0

1.
0

1
.0

1
.0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
3

1.
0

1.
0
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1.
0
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.0

1
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1.
0

1.
0

0.
42
9

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
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9

0.
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9

1.
0

1.
0

1.
0
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1.
0

1
.0

1
.0

1.
0

1.
0

0.
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2

0.
07
2

1.
0

1.
0

1.
0

0.
07
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1.
0

1.
0

0.
05
9

0.
05
9

0.
05
9

1.
0

0.
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9
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0

1.
0

1
.0

1
.0

1.
0

1.
0

0.
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2

0.
07
2

1.
0

1.
0

1.
0
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07
2

1.
0

1.
0

0.
05
9

0.
05
9

0.
05
9

0.
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3

1.
0
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The following 33 α-cuts resulted: 0.059; 0.072; 0.087; 0.202; 0.263; 0.3; 0.326; 0.372; 0.429;

0.454; 0.546; 0.606; 0.648; 0.649; 0.7; 0.709; 0.719; 0.723; 0.8; 0.801; 0.819; 0.825; 0.833;

0.856; 0.926; 0.932; 0.943; 0.963; 0.969; 0.974; 0.984; 0.989; 1.

Each α-cut induces an equivalence relation and gives a partial order as described above.

In order to assess the effect of data relaxation, we selected eleven values α ∈ [0, 1], namely

1, 0.9, 0.8, . . . , 0.1 and 0. The cutsets SHT≥α can be obtained from the following matrix

(Table 6), obtained from the matrix with its entries SHT (i, j) given above by restricting

attention to one decimal only:

Table 6. The matrix obtained from the above matrix SHT (i, j) by restricting the entries

to the first decimal place.

1 2 6 7 8 16 21 22 23 29 32 33 35 36 37 38 39 40

1 1.0 0.9 0.3 0.3 0.8 0.0 0.0 0.5 0.8 0.8 0.0 0.9 0.9 0.0 0.0 0.0 0.3 0.3
2 0.6 1.0 0.3 0.3 0.8 0.0 0.0 0.5 0.8 0.8 0.0 0.6 0.9 0.0 0.0 0.0 0.3 0.3
6 1.0 1.0 1.0 0.8 0.8 0.0 0.0 1.0 0.8 0.8 0.0 1.0 1.0 0.0 0.0 0.0 0.6 0.6
7 1.0 1.0 0.3 1.0 0.9 0.0 0.0 0.6 0.9 0.9 0.0 1.0 1.0 0.0 0.0 0.0 0.3 0.3
8 0.6 0.7 0.3 0.3 1.0 0.0 0.0 0.5 0.7 0.9 0.0 0.6 0.7 0.0 0.0 0.0 0.3 0.3
16 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.8 1.0 1.0 0.0 0.0 0.0 1.0 1.0
21 0.7 0.9 0.3 0.3 1.0 0.0 1.0 0.5 1.0 1.0 0.0 0.7 1.0 0.0 0.0 0.0 0.3 0.3
22 0.2 0.2 0.2 0.2 0.2 0.0 0.0 1.0 0.2 0.2 0.0 0.2 0.2 0.0 0.0 0.0 0.2 0.2
23 0.4 0.4 0.3 0.3 0.4 0.0 0.0 0.4 1.0 0.4 0.0 0.4 0.4 0.0 0.0 0.0 0.3 0.3
29 0.6 0.7 0.3 0.3 0.9 0.0 0.0 0.5 0.7 1.0 0.0 0.6 0.7 0.0 0.0 0.0 0.3 0.3
32 1.0 1.0 1.0 1.0 0.9 0.2 0.0 1.0 0.9 0.9 1.0 1.0 1.0 0.0 0.0 0.0 0.6 0.6
33 0.8 0.9 0.3 0.3 0.8 0.0 0.0 0.5 0.8 0.8 0.0 1.0 0.9 0.0 0.0 0.0 0.3 0.3
35 0.6 0.9 0.3 0.3 0.8 0.0 0.0 0.5 0.8 0.8 0.0 0.6 1.0 0.0 0.0 0.0 0.3 0.3
36 1.0 1.0 1.0 1.0 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.3 1.0 1.0
37 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 1.0 1.0
38 1.0 1.0 1.0 1.0 1.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.4 1.0 1.0 1.0
39 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.9
40 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.9 1.0

Their corresponding equivalence relations and partial orders will be given. To begin with,

we show the equivalence relations, they are contained in the next table:
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Table 7. The (tree of) equivalence relations SHTE≥α turns out to be the following.

α
=

1
{3
6}

{3
7
}

{3
8
}

{2
1}

{1
6
}

{3
2
}

{2
2}

{7
}

{6
}

{3
9
}

{4
0}

{2
3}

{1
}

{3
3}

{8
}

{2
9}

{2
}

{3
5}

α
=

.9
{3
6}

{3
7
}

{3
8
}

{2
1}

{1
6
}

{3
2
}

{2
2}

{7
}

{6
}

{3
9

40
}

{2
3}

{1
}

{3
3}

{8
29
}

{2
3
5}

α
=

.8
{3
6}

{3
7
}

{3
8
}

{2
1}

{1
6
}

{3
2
}

{2
2}

{7
}

{6
}

{3
9

40
}

{2
3}

{1
33
}

{8
29
}

{2
3
5}

α
=

.7
{3
6

37
}

{3
8
}

{2
1}

{1
6
}

{3
2
}

{2
2}

{7
}

{6
}

{3
9

40
}

{2
3}

{1
33
}

{8
29

2
3
5}

α
=

.6
{3
6

37
}

{3
8
}

{2
1}

{1
6
}

{3
2
}

{2
2}

{7
}

{6
39

40
}

{2
3}

{1
33

8
29

2
3
5}

α
=

.5
{3
6

37
}

{3
8
}

{2
1}

{1
6
}

{3
2
}

{2
2}

{7
}

{6
39

40
}

{2
3}

{1
33

8
29

2
3
5}

α
=

.4
{3
6

37
}

{3
8
}

{2
1}

{1
6
}

{3
2
}

{2
2}

{7
}

{6
39

40
}

{2
3

1
33

8
29

2
3
5}

α
=

.3
{3
6

37
38
}

{2
1}

{1
6
}

{3
2
}

{2
2}

{7
6

39
40

23
1

33
8

29
2

3
5
}

α
=

.2
{3
6

37
38
}

{2
1}

{1
6
}

{3
2
}

{2
2

7
6

39
40

23
1

33
8

29
2

3
5
}

α
=

.1
{3
6

37
38
}

{2
1}

{1
6
}

{3
2
}

{2
2

7
6

39
40

23
1

33
8

29
2

3
5
}

α
=

.0
{3
6

37
38

21
16

32
22

7
6

39
40

23
1

33
8

29
2

3
5
}

It is worth mentioning the transitions from α = 0.5 to α = 0.6 as well as from α = 0.1 to

α = 0.2, where the number and sort of equivalence classes remain. Whereas the transition

α = 0.1 to α = 0.2 does not change anything, the transition from α = 0.5 to α = 0.6

keeps the equivalence classes unchanged, but changes the order relations: Specifically the

comparabilities of the refrigerant no 22, i.e. of CBrClF2 (refrigerant R12B1) are changed.
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In order to prepare the corresponding partial orders, we have to check Table 6. For

example, the entry (1, 36) is 0, i.e. (1, 36) /∈ SHT≥α, for α > 0, while the entry (36, 1) is

1, i.e. (1, 36) ∈ SHT≥α, for each α. This proves

[36]α <α [1]α, for all α > 0.

Here are a few examples:

α = 0 yields a partial order consisting of a single element, since there is a single equivalence

class in SHTE≥0 only:

� [1] = {1, 2, 6, 7, 8, . . . , 39, 40}

SHTE≥0.1 as well as SHTE≥0.2 consist of four classes, the Hasse diagram looks in both

cases as follows:

� [36] = {36, 37, 38}

�[16] = {16, 32} � [21] = {21}

� [1] = {1, 2, 6, 7, 8, 22, 23, 29, 33, 35, 39, 40}

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

SHTE≥0.3 yields the following Hasse diagram:

�

� �

�

�

�

[36] = {36, 37, 38}

[16] = {16}

[32] = {32} [21] = {21}

[1] = {1, 2, 6, 7, 8, 23, 29, 33, 35, 39, 40}
[22] = {22}

�
�
�
�
�
�

�
�
�

�
�
��

�
�
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All the needed calculations, starting with the correctly oriented data matrix until the

final Table 7, can be performed applying the software package PyHasse. We obtain the

various partial orders corresponding to the α-cuts. PyHasse is a software package and

freely available on request. It is written in the language Python. Additional information

on PyHasse, which is steadily under development, can be found in Voigt et al, 2010, [18]

and in Bruggemann and Voigt, 2009, [2].

In the following there are screenshots, also obtained by an application of PyHasse. They

show the Hasse diagrams of the partial orders. The nodes of the Hasse diagrams are

labeled by the numbers of representatives of the classes, i.e. by numbers of the refrigerants

that represent the various classes. Relatively good chemicals are at the bottom, relatively

bad chemicals are at the top of the diagrams. Hence the minimal and maximal elements

of the poset are of special concern.
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The final screenshot shows the canonical partial order CPO:
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Summary

In this manuscript we have ranked refrigerants according to three environmental proper-

ties, however the method can easily be extended to more properties, not only to environ-

mental ones, but to chemical, physical, thermodynamic and technical ones. By the partial

order methodology together with fuzzy concepts and the software package PyHasse we

compared 18 refrigerants and one of the main results is obtained by checking the Hasse

diagrams and the tree of equivalence classes (Table 7) that the refrigerants with the labels

36, 37 and 38 are the recommended ones, when the environmental aspects ozone deple-

tion potential, global warming potential and atmospheric lifetime are considered. The

three refrigerants are trifluoroiodomethane, dimethylether and ammonia. The chemical

pentafluorodimethyl ether which is suggested as a replacement of hazarduous refrigerants

is strikingly often a maximal element (i.e. a maximal element for different levels of data

relaxation). Therefore this chemical must be considered as a problematic one — at least

with respect to environmental hazards. Besides the possibility to perform to a large ex-
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tend comparisons among the 18 refrigerants without the need of subjective weightings,

we note the following items:

— The generality of the procedure allows also the application to other fields seeking

for rankings, for example in the selection of biodiverse ecosystems for governmen-

tal protection or in different areas such as the assessment of research institutions,

scientists and publications.

— PyHasse provides corresponding software that allows to submit an information basis

containing feature values of the objects that should be ranked. The feature values

are assumed to be real numbers, parameter values of the objects. We suppose that

the information basis is complete, i.e. that the feature values are known for each

object, and completely. The output of the special module fuzzyHD12.py of PyHasse

which is of relevance here, is a set of partial orders corresponding to the user defined

cutsets.

— The approach considered here needs still further research. For example, the following

questions arise:

— How can we find a best cutset? Recently De Loof et al., suggested a method

based on a ‘linearity index’, [5].

— The normalization can be considered as an application of an operator f on

the parameters pi. The subsethood degree depends on f and hence the final

SHT–matrix depends also on f . Even the number of α-cuts may change if

f is modified. Furthermore, many other transformations are possible. For

instance the normalization used here is sensitive to statistical outliers and is

therefore statistically not a robust one. The α-cuts will depend on how the

transformation is done and hence outliers may influence the fuzzy analysis.

The transformations must be selected in dependence of the context and the

distributional properties of each feature.

— Partial orders have the great advantage that we do not need to find weights

for the attributes. Here, however, the subsethood degree sums the minimal

values of the pi which implies some usually unwanted compensations among

the attributes. Therefore other approaches are of interest to robustify the
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partial order relations. In a paper of Fattore an elegant method is introduced,

which is based on membership–functions derived from the linear extensions of

the partial order (Fattore, 2008, [6]).

— Another application of fuzzy techniques in environmental sciences can be found

in Pudenz et al. (2000, [14]), where fuzzy clustering was used to compare

ecosystems. The authors characterize cluster membership by two parameters:

Crucial membership and the number of clusters. In the future it will be of

high interest to try to relate these ideas with the data relaxation treated in the

current manuscript.

Anyway, this is a lucid, reasonable and general procedure for evaluation of objects of any

kind according to (real) feature values, and the appropriate software (PyHasse) is easily

available.
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