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Abstract
In this review paper:

e We develop new tenth algebraic order eight-step methods with vanished phase-lag and its
first, second, third, fourth and fifth derivatives.

e We study all alternative methods which satisfy the above requirements.

e We compare the eight-step method with well known multistep methods in the literature.

The study of the methods is based on error analysis, stability analysis and comparison with
other methods. The investigated methods are applied for the numerical integration of the radial
Schrodinger equation .
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1. INTRODUCTION

The radial Schrodinger equation can be written as:
y'(@) =10+ 1)/2* + V(2) — Ky(z). (1)

It is known from the literature that via the above boundary value problem, many
mathematical models in theoretical physics and chemistry, material sciences, quantum
mechanics and quantum chemistry, electronics etc. can be expressed (see for example [1]
- [4])-

For the above equation (1) we have the following definitions:

e The function W(z) = ((I+1)/22+V (z) is called the effective potential. This satisfies

W(x) — 0 as z — oo.
e The quantity k% is a real number denoting the energy.
e The quantity [ is a given integer representing the angular momentum.
e V is a given function which denotes the potential.

The boundary conditions are:

y(0) =0 2)
and a second boundary condition, for large values of x, determined by physical consider-
ations.

In the last decades, a large research on the development of numerical methods for the
approximate solution of the Schrédinger equation has been done. The construction of fast
and reliable numerical methods for the efficient solution of the Schrédinger equation and
related problems is the main aim and scope of this research (see for example [5] - [85]).

More specifically the last decade:

e Phase-fitted methods and numerical methods with minimal phase-lag of Runge-

Kutta and Runge-Kutta Nystrom type have been developed in [10]- [27].

e In [28] - [33] exponentially and trigonometrically fitted Runge-Kutta and Runge-

Kutta Nystrom methods are obtained.

e Multistep phase-fitted methods and multistep methods with minimal phase-lag are

developed in [38] - [60].
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e Symplectic integrators are studied in [61] - [80].

e Exponentially and trigonometrically multistep methods have been developed in [81]
- [108].

e Nonlinear methods have been studied in [109] and [110]

e Review papers have been written in [111] - [115]

e Special issues and Symposia in International Conferences have been created on this

subject (see [116] - [122])

The numerical methods for the approximate solution of the Schrédinger equation be-

long into two main categories:
1. Methods with constant coefficients
2. Methods with coefficients depending on the frequency of the problem 2.

The purpose of this paper is to produce tenth algebraic order eight-step methods with
vanished phase-lag and its first, second, third, fourth and fifth derivatives, to study all
the alternative methods which satisfy the above requirements and finally to compare the
eight-step method with well known multistep methods in the literature. We will apply
the new obtained methods together with other well known methods in the literature to
the numerical solution of the resonance problem of the radial Schrodinger equation. From
theoretical analysis and numerical applications, we will extract very useful conclusions.

More precisely, in this paper we will study a family of implicit symmetric eight-step
methods of tenth algebraic order. The logic for the development of the new family is
based on the requirement of vanishing the phase-lag and its first, second, third, fourth
and fifth derivatives. Based on the above logic, three methods of the above family will be
developed. The difference between these methods is the selection of free parameters of the
family of methods. So, in one of the them we select as free parameters the coefficients of
the right hand side of the family of methods. In the other two, we select as free parameters
the coefficients of the left hand side of the family of methods. For all of these methods,

we will present stability and error analysis. Finally, we will apply the new proposed

2When using a functional fitting algorithm for the solution of the radial Schrodinger equation, the
fitted frequency is equal to: \/|I(I+1)/22 + V (z) — k2|




-476-

methods to the eigenvalue and resonance problem of the radial Schrodinger equation. We
note that resonance problem is one of the most difficult problems arising from the radial
Schrédinger equation.

The paper is organized as follows:

e In Section 2, we present the theory of the new methodology.

e In Section 3, we present the development of the new family of methods.

e A comparative error analysis and its conclusions are presented in Section 4.

e In Section 5, we will investigate the stability properties of the new developed meth-
ods. In the same section a comparative analysis of the main properties of some well

known methods is also presented.
e In Section 6, numerical results are presented.
e Remarks and conclusions are discussed in Section 7.
e General comments are presented in Section 8.

e Finally in the Appendices we present the coefficients of all the methods obtained in

this paper and also the analytic expansions for the errors for several methods.

2. PHASE-LAG ANALYSIS OF SYMMETRIC MULTISTEP METHODS

For the numerical solution of the initial value problem

P = f(z,p) (3)

consider a multistep method with m steps which can be used over the equally spaced
intervals {z;}!", € [a,b] and h = |41 — 2], i =0(1)m — 1.

If the method is symmetric then a; = ap—; and b; = by, @ =0(1)|%].

When a symmetric 2k-step method, that is for ¢ = —k(1)k, is applied to the scalar

test equation

P =—w’p (4)
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a difference equation of the form
Ak(v) Pr+k +...+ Al(V) Pn+1 + AO(V) Pn +
+A (V) pp1 + o+ A(V) paok =0 (5)

is obtained, where v = wh, h is the step length and Ay(v), A1(v),..., Ax(v) are polyno-
mials of v.

The characteristic equation associated with (5) is given by:
AN+ L AV)AF A F AN AN =0 (6)

Theorem 1. [37] The symmetric 2k-step method with characteristic equation given

by (6) has phase-lag order v and phase-lag constant ¢ given by

42 r4ay _ 2A5(v) cos(kv)4..4+2 A;(v) cos(jv)+...4Ao(v)
—ev T+ OV = e ST A A (7)

The formula proposed from the above theorem gives us a direct method to calculate

the phase-lag of any symmetric 2 k- step method.

Remark 1. The First, Second, Third, Fourth and Fifth Derivatives of the phase-lag for

the multistep methods are computed based on the above direct formula (7).

3. THE NEW FAMILY OF EIGHT-STEP TENTH ALGEBRAIC ORDER
METHODS

3.1 The Method of the Family with Vanished Phase-lag and its First Four

Derivatives

Let us consider the following family of eight-step methods to integrate p” = f(z,p) :

4 4
Z a; (pn+i + pnfi) +aop, = h? |:Z bi (p;:,+i + p’L,;) + boph,

i=1

i=1

Let us also consider the following conditions :

(I,():O7 (11:*17 02:2, (13:*2, (14:1. (9)

For the above method to require:



-478-

e the maximum algebraic order and

e five free parameters, in order the phase-lag and its first, second, third and fourth

derivatives to be vanished.

Now we apply the above method to the scalar test equation (4) and we get the following

difference equation:

4
> AW (pn+7: + pm> + Agpn, =0 (10)

=1
where v = wh, h is the step length and A;(v), i = 0(1)4 are polynomials of v.

The characteristic equation associated with (10) can be written as:

> AW (x+ xi) FA0=0 (11)

where

Ay = v2b

A =—-14+v2l

Ay =24+v2D,

Ay = —2+4v2by
Ay =1+vby (12)

We apply now the direct formula for the computation of the phase-lag (7) for k = 4
and for A;, 7 =0, 1, ..., 4 given by (12). This leads to the following equation:

phl = |2 (1 +v?by) cos(4v) + 2 (—2 +v? b3> cos(3v) + 2 (2 +v? 1)2> cos(2v)

+2 (—1 42 b1> cos(v) + v b /(10 +32v2 by + 182 by + 8v2 by + 27 bl) (13)

The phase-lag’s first derivative is given by:
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phl = |:4 vbycos(4v) —8 (1 +v? b4> sin(4v) + 4 v bz cos(3v)
—6 (72 +v? b3> sin(3v) +4vbycos(2v) —4 (2 +v? b2> sin(2v)

+4vby cos(v) — 2 (—1 +v? b1> sin(v) + 2vb0:| /

(10+32v2 by + 182 by + 8v2 by + 277 bl) — |21 + v2by) cos(4v)

+2 <72 +v? bg) cos(3v) +2 (2 + v bg) cos(2v) + 2 (71 + v b1> cos(v)

+V2 1)0

(64vb4+36vb3 + 16vbz+4vbl>/
2
(10+32v2 by + 18v2 by + 8v2by + 22 bl)

The phase-lag’s second derivative is given by:

phi = {4 by cos(4v) —32vbysin(4v) — 32 <1 +v? b4> cos(4v) 4+ 4 b3 cos(3v)

—24vbsysin(3v) — 18 (—2 + v bg) cos(3v) 4+ 4 by cos(2v) — 16 v by sin(2v)

-8 (2 +v2 b2) cos(2v) + 4 by cos(v) — 8 vy sin(v) — 2 (71 +v2 bl) cos(v)

+2 bo

/So—2 [4\/ bycos(4v) —8 (1 +v? b4) sin(4v) 4+ 4 v bz cos(3v)
—6 <—2 +v2 bg) sin(3v) +4vbycos(2v) —4 (2 +v? bg) sin(2v)

+4v by cos(v) — 2 (71 + v bl) sin(v) + 2Vb0:|

(64Vb4 +36vbs + 16V by +4Vb1)/802 +2(2(1+v?by) cos(4v)

+2 (—2 +v? b3> cos(3v) +2 <2 +v? b2> cos(2v) + 2- <—1 +v? bl) cos(v)

2
+V2bg:| (64vb4+36vb3+16vb2+4vbl> /S0 = [2(1 +v?by) cos(4v)

+2 (72 +v2 b3) cos(3v) +2 <2 + v? bg) cos(2v) + 2 (71 +v? bl) cos(v)

+V2 bo

(64 by+ 3605 + 16by + 4 bl)/So2

So =104 32v2by + 18 v2 by + 8v2 by + 2v2 by

(14)

(15)
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The phase-lag’s third derivative is given by:

phl = |:48 bysin(4v) — 192v by cos(4v) + 128 (1 + v by) sin(4 v) — 36 by sin(3v)

—108v by cos(3v) + 54 (—2 +v? b3> sin(3v) — 24 by sin(2v)

—48v by cos(2v) + 16 (2 + v b2> sin(2v) — 12 by sin(v) — 12v by cos(v)

+2 (71 +v2 bl) sin(v):| /S2 — 3|4bycos(4v) — 32vbysin(4v)

—32 (1 v b4> cos(4v) + 4 by cos(3v) — 24 v by sin(3v)
—18 (—2 + v b3> cos(3v) 4+ 4 by cos(2v) — 16 v by sin(2v)

-8 <2 +v2 bg) cos(2v) + 4 by cos(v) — 8 vy sin(v) — 2 <71 +v2 bl) cos(v)

+2bg 81/822 +6 |4vbycos(4v) — 8 (1 +v? b4) sin(4v) + 4 v bz cos(3v)

—6 (—2 +v2 bg) sin(3v) +4vbycos(2v) —4 (2 +v2 bg) sin(2v)
+4v b cos(v) — 2 (71 +v? bl) sin(v) + 2ng] S12/85% -3 |:4Vb4 cos(4v)

-8 (1 +v2 b4> sin(4v) +4vbzcos(3v) — 6 <72 +v? bg) sin(3v)

+4vbycos(2v) —4 (2 +v? bz) sin(2v) + 4 v by cos(v)
2 : 2
2 (71 +v bl) sin(v) + 2vb0} (64b4 +36bs + 16by + 4171)/82

—6 |2 (1 +v2 b4) cos(4v) +2 <72 +v? bg) cos(3v) +2 (2 + v bg) cos(2v)

+2 (71 +v? bl) cos(v) + v by

S1%/85" 4+ 6 I:Q (1 + v b4) cos(4v)
+2 (—2 +v? b3) cos(3v) +2 <2 +v? b2> cos(2v) +2 <—1 +v? bl) cos(v)

2y |8y (64 by + 3603 + 16 by + 4 bl)/SQ3

Sl = 64Vb4+36Vb3+16Vb2+4Vb1

Sy =104 32v2by + 18 v by + 8v2 by + 2v2 by

The phase-lag’s fourth derivative is given by:

(17)
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p;ll = [—384 by cos(4v) + 1024 v by sin(4v) + 512 (1 + v by) cos(4 v)
216 b3 cos(3v) + 432V by sin(3v) + 162 (72 v b3) cos(3v)

—96 by co8(2v) + 128 v by sin(2v) + 32 (2 42 bz) c08(2v) — 24by cos(v)
+16 v by sin(v) + 2 (—1 + v b1> COS(V):| /Sq—4 |:—48 bysin(4v)

—192vbycos(4v) + 128 (1 + v b4> sin(4v) — 36 by sin(3v)
—108v by cos(3v) + 54 (72 v b3> sin(3v) — 24 by sin(2v)

—48v by cos(2v) + 16 (2 +v? bz) sin(2v) — 12b; sin(v) — 12v by cos(v)

+2 <71 +v? b1> Sin(v):| S6/S4% +12 |4 by cos(4v) — 32vbysin(4v)

—32 (1 +v? b4) cos(4v) 4+ 4bscos(3v) — 24 v by sin(3v)
—18 (—2 +v? b;;) cos(3v) 4+ 4bycos(2v) — 16 v by sin(2v)
-8 <2 + v b2> cos(2v) 4+ 4 by cos(v) — 8v by sin(v) — 2 (—1 +v? b1> cos(v)

+2 bo] S62/S4* — 6 |:4 bycos(4v) —32vbysin(4dv) — 32 (1 +v2 b4) cos(4v)

+4bgcos(3v) — 24vbssin(3v) — 18 (—2 +v? 1)3) cos(3v) 4 4 by cos(2v)

—16vbysin(2v) — 8 <2 +v? b2> cos(2v) + 4 by cos(v) — 8v by sin(v)

-2 (71 +v? b1> cos(v) + 2 by

S3/S,% — 24 [4 v by cos(4v)
2 . 2 .

-8 <1 +v b4> sin(4v) +4vbs cos(3v) — 6 <72 +v bg) sin(3v)

+4vbycos(2v) — 4 (2 +v? bz) sin(2v) + 4 v by cos(v)

-2 (71 +v? bl) sin(v) +2vbo | Se/Sa* + 24 [4v by cos(4v)

-8 (1 v b4) sin(4v) + 4vbs cos(3v) — 6 (72 v bg) sin(3v)

+4vbycos(2v) — 4 (2 +v2 bz) sin(2v) 4+ 4 v by cos(v)

24S5S¢* 36555628
S st
65 S52
S,?

-2 (—1 +v2 bl) sin(v) + 2vb0:| S Ss/S4% +

+
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S =64by +36b3 4+ 16by + 4 by

Sy =10+ 32v by + 18 v b3 + 8v7 by + 2v> by

S5 =2 (1 +v2by) cos(4v) + 2 (=2 + v?b3) cos(3v) + 2 (2 + v? by) cos(2V)
+2 (=14 v2by) cos(v) + v2 by

S =64vby+36vbs+16vby +4vh

We demand that the phase-lag and its first, second, third and fourth derivatives to be
equal to zero, i.e. we demand the satisfaction of the relations (13), (15), (16), (17) and
(18). Based on the above we obtain the coefficients mentioned in Appendix A.

The behavior of the coefficients is given in Figure 1.

The local truncation error of the new proposed method is given by:

58061 h'?

LTE = =5 033110

<y£}2>+5w2 g9 110w y® +10w® 49 4508 ¢y +01° y,?)) (19)

Remark 2. The method (8) with coefficients:

aO:O,a1:—1,a2:2a3:—2,a4:1
17273 280997 33961 173531 45767
bo=ocos b1 = y 02 = — , b3 = » by = (20)
72576 181440 181440 181440 725760
is called classical method and has local truncation error which is given by:
58061 h'2 .
LTE = ————— 1% 21
31933440 7 @)

3.2 The Method of the Family with Vanished Phase-lag and its First Five

Derivatives

Let us consider the following family of eight-step methods (8) to integrate p” = f(x,p).

Let us also consider the following conditions :

ap=0,a;=—-1,a3=-2, a4 =1. (22)

For the above method to require:

e the maximum algebraic order and
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Yy oYy

Figure 1: Behavior of the coefficients of the new proposed method given by (62)-(66) for
several values of v.
e six free parameters, in order the phase-lag and its first, second, third, fourth and

fifth derivatives to be vanished.

Now we apply the above method to the scalar test equation (4) and we get the differ-
ence equation (10).

The characteristic equation associated with (10) can be written as:
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4

3 A4 (x‘ + xf) +Ag=0 (23)
i=1
where
AO = V2 bo
A1 =—1+ V2 bl
Az = as + V2 bg
A3 = 72 + V2 b5
A4 =1 + V2 b4 (24)

We apply now the direct formula for the computation of the phase-lag (7) for k = 4
and for A;, 7 =0, 1, ..., 4 given by (24). This leads to the following equation:

phl =

2 (1 +v? b4) cos(4v) +2 (—2 +v? b3) cos(3v)

+2 (az +v? b2> cos(2v) + 2 <71 + v bl) cos(v) +v2by |/

<76+32v2b4+18v2b3+8a?+8v2b2+2v2b1> (25)

The phase-lag’s first derivative is given by:

phl = [4\/()4 cos(4v) —8 (1 + v b4) sin(4v) + 4 v bz cos(3v)
-6 (72 +v2h ) i s(2v) — 2, ) si
vih3 ) sin(3v) +4vbycos(2v) — 4 (az + v: by ) sin(2v)

+4v by cos(v) — 2 (—1 + v bl) sin(v) + 2ng}/

(—6 43277 by + 182 by + Say + 8v7 by + 2+ b1> - {2 (1 42 54) cos(4v)
+2 (72 +v? b3> cos(3v) + 2 <a2 + v b2> cos(2v) + 2 (71 +v? b1> cos(v)

2 by <64Vb4 4+ 36vhs + 16V by +4vb1)/

2
(—6+32v2b4+18v2b3+8a2+8v2bz+2v2b1> (26)
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The phase-lag’s second derivative is given by:

phl = {4 by cos(4v) —32vbysin(4v) — 32 (1 +v? 64) cos(4v) 4+ 4 b3 cos(3v)
—24vbysin(3v) — 18 (—2 + v b3) cos(3v) + 4 by cos(2v) — 16 v by sin(2v)

—87T cos(2v) 4+ 4 by cos(v) — 8vbysin(v) — 2 <71 +v? bl) cos(v) +2bg |/

T()*Q

4vbycos(4v) —8 (1 +v? b4) sin(4v) 4+ 4 v by cos(3v)
-6 <—2 + v b;;) sin(3v) +4vbycos(2v) — 4Ty sin(2v) 4+ 4 v by cos(v)

2 (—1 +v2b1> sin(v) + 2 v by (64vb4+36vb3+ 16V by +4vb1)/T§

+2 |2 (1 + v b4) cos(4v) +2 (72 +v? b3> cos(3v) +2T; cos(2v)

2 <
+2 (71+V2b1) cos(v) + vy (64Vb4+36vb3+ 16 v by +4vb1> /T3

—12 (1 +v? b4) cos(4v) +2 (72 +v? b3) cos(3v) + 2Ty cos(2v)

+2 (71 42 b1> cos(v) + v2 by (64b4 +36b; + 16 b, +4b1>/T02

To=—6+32v2by+ 18v2 by + 8ay + 8v2 by + 2v2 by

T1:a2+v2b2

The phase-lag’s third derivative is given by:

phl = [48 bysin(4v) — 192 v by cos(4v) + 128 (1 +v? b4) sin(4 v) — 36 by sin(3v)

—108v by cos(3v) + 54 (—2 +v2 b3> sin(3v) — 24 by sin(2v)
—48v by cos(2v) + 16 Ty sin(2v) — 12 by sin(v) — 12v by cos(v)
/Ty — 3

+2 <71 +v2 bl) sin(v) 4bycos(4v) —32vbysin(4v)

—32 <1 + v b4> cos(4v) +4bgcos(3v) — 24 vbysin(3v)

(27)
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—18 (72 +v? b3> cos(3v) +4bycos(2v) — 16 vhysin(2v) — 8Ty cos(2v)

+4by cos(v) — 8vbysin(v) — 2 (—1 +v? b1> cos(v) + 2by | To/T%

+6

4vbgcos(4v) —8 (1 +v? b4) sin(4v) + 4 v bz cos(3v)
—6 (—2 + v bg) sin(3v) + 4 vbycos(2v) — 4Ty sin(2v) + 4 v by cos(v)
-2 (71 +v? b1> sin(v) +2v by

T3/T3 — 3 |4vbycos(4v)

-8 (1 v b4) sin(4v) + 4vbs cos(3v) — 6 (—2 42 bg) sin(3v)

+4vbycos(2v) — 4 Tysin(2v) + 4 v by cos(v) — 2 (—1 + v b1> sin(v)

+2Vb0

(6401 + 3665 + 160, + 41, ) /T — 6

2 (1 +v2 b4) cos(4v)

+2 <72 +v2 bg) cos(3v) + 2Ty cos(2v) + 2 <71 +v2 b1> cos(v) +viby| T3/

Ty +6 |2 (1 +v? b4> cos(4v) + 2 <72 +v? b3> cos(3v) + 2T, cos(2v)

+2 (—1 v bl) cos(v) +v2ho | T (64 by +36bs + 16by + 4b1)/T§

Ty =64vby+36vbs+ 16vby +4vbh
Ty = —6+32v2by + 18v2 by + 8ay + 8v2 by + 2v2 1y

T4:(I,2+V2b2

The phase-lag’s fourth derivative is given by:

phl = {384 by cos(4v) + 1024 v by sin(4v) + 512 (1 v b4) cos(4v)

—216 by cos(3v) + 432 v by sin(3v) + 162 (72 v bg) cos(3v)

—96 by cos(2v) 4+ 128 v by sin(2v) + 3217 cos(2v) — 24 by cos(v)

+16v by sin(v) + 2 <71 +v? bl) cos(v)

/Tﬁ —4 |:48 b4 Sin(4 V)

—192v by cos(4v) + 128 (1 + v by) sin(4 v) — 36 b3 sin(3v)

—108v b3 cos(3v) + 54 (—2 +v? b3> sin(3v) — 24 by sin(2v)

(28)
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—48v by cos(2v) + 16 T7sin(2v) — 12 by sin(v) — 12v by cos(v)

+2 (71 + v b1> sin(v) | To/TE +12 |4bscos(4v) — 32v bysin(4v)

-32 (1 +v? b4> cos(4v) +4bscos(3v) — 24 vbssin(3v)

—18 (—2 +v? b3> cos(3v) +4bycos(2v) — 16 v by sin(2v) — 8T cos(2v)

+4by cos(v) —8vbysin(v) — 2 (—1 + v b1> cos(v) 4+ 20y | TE/TE

—6 |:4 bycos(4v) — 32vbysin(4v) — 32 (1 + v b4) cos(4v) 4 4 b3 cos(3v)
—24vbysin(3v) — 18 (72 v bg) cos(3v) + 4 by cos(2v) — 16v by sin(2v)

—8T7 cos(2v) + 4 by cos(v) — 8vbysin(v) — 2 (—1 +v? b1> cos(v) + 2by | T /T2

—24 [4vb4 cos(4v) — 8 (1 +v2 b4) sin(4v) +4vbscos(3v)
-6 (72 +v2 b3> sin(3v) +4vbycos(2v) — 4Ty sin(2v) + 4 v by cos(v)
T3 /Ty + 24

-2 (—1+v2 bl> sin(v) +2v by 4vbycos(4v)

-8 <1 + v b4> sin(4v) +4v bz cos(3v) — 6 (—2 + v b3) sin(3v)
+4vbycos(2v) — 4Ty sin(2v) +4v by cos(v) — 2 (71 + v bl) sin(v)

UTT 36T, T3 T N 6Ty T2

2vh, . .
b i 07 0¥

Ty Ts T3 +

(29)

T5 =64bs+ 3603+ 16 by +4 by

To=—6-+32v2by + 18v7 b3 + 8az + 8v2 by +2v° by

Tr = ay +v2iby

Ty =2(1 4 v?by) cos(4v) + 2 (=2 + v b3) cos(3v) + 2Ty cos(2 v)
+2 (=1 4 v2by) cos(v) + v2 by

To=064vby+36vbs+ 16vby+4vh

The phase-lag’s fifth derivative is given by:
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phl = |:2560 bysin(4v) + 5120 v by cos(4v) — 2048 (1 + v b4) sin(4v)
1080 by sin(3v) + 1620 v by cos(3v) — 486 (72 v bg) sin(3v)
+320 by sin(2v) 4 320 v by cos(2v) — 64 Ty sin(2v) + 40 by sin(v)

+20v by cos(v) — 2 (71 + v b1> sin(v)

/(Th2) — 5 |:384 by cos(4v)

11024 v by sin(4v) + 512 (1 v b4) cos(4v) — 216 b5 cos(3v)

+432v by sin(3v) + 162 (—2 v b;;) cos(3v) — 96 by cos(2v)

+128 v by sin(2v) + 32 Ty3 cos(2v) — 24 by cos(v) + 16 v by sin(v)

+2 <71 +v? bl) cos(v)

Ty /T + 20 | —48 by sin(4v) — 192 v by cos(4v)

+128 (1 +v? b4> sin(4v) — 36 by sin(3v) — 108 v by cos(3v)
+54 (—2 + v b3) sin(3v) — 24 by sin(2v) — 48 v by cos(2v) + 16 Tyz sin(2v)

—12by sin(v) — 12v by cos(v) + 2 (71 + v b1> sin(v) | TE/T5

~10 {—48 bysin(4v) — 192v by cos(4v) + 128 <1 +v? b4> sin(4v) — 36 by sin(3v)

—108 v by cos(3v) + 54 (72 + v bg) sin(3v) — 24 by sin(2v)
—48v by cos(2v) + 16 Ty sin(2v) — 12 by sin(v) — 12v by cos(v)
+2 (—1 + v bl) sin(v)

Tio/T? — 60 |4bycos(4v) — 32vbysin(4v)

—32 (1 + v b4) cos(4v) 4+ 4 bz cos(3v) — 24 v by sin(3v)
—18 <—2 +v? bg) cos(3v) +4bycos(2v) — 16 vbysin(2v) — 8 T3 cos(2v)

+4 by cos(v) — 8vbysin(v) — 2 (—1 +v? b1> cos(v) + 2by | T /T4,

-+60

4bycos(4v) —32vbysin(4dv) — 32 (1 +v? b4) cos(4v) 4+ 4 bs cos(3v)
—24vbysin(3v) — 18 <72 +v? bg) cos(3v) 4+ 4bycos(2v) — 16 v by sin(2v)

—8T13c08(2v) + 4by cos(v) — 8v by sin(v) — 2 <—1 +v? bl) cos(v) +2bg

T Tho/ T,
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12073 T 180T T3 T | 30ThsTE 12070 T

TP, T T, T,
| 240 T14 T131 TlO - 90 T14 Tll TlZO (30>
% T,

Tio=64by+36D3 + 160y + 4,

Ty, =64vby +36vbs+ 16vby +4vb

Tio = —6+32v by + 18v7 by + 8ay + 8v2 by + 2v2 by

Ty = as + v by

Ty =2(1+v2by) cos(4v) + 2 (=2 + v2b3) cos(3v) + 2Tz cos(2v)
+2 (=1 +v2by) cos(v) + v by

Tis = 4vbycos(4v) — 8 (1 +v2by)sin(4v) + 4vbscos(3v)
—6(—2+v2by)sin(3v) +4vbycos(2v) — 4 Ty3sin(2v) 4+ 4v by cos(v)

—2(=1+v2by)sin(v) +2vby

We demand that the phase-lag and its first, second, third, fourth and fifth derivatives
to be equal to zero, i.e. we demand the satisfaction of the relations (25), (26), (27), (28),
(29) and (30). Based on the above we obtain the coefficients mentioned in Appendix B.

The behavior of the coefficients is given in Figure 2.

The local truncation error of the new proposed method is given by:

58061 h'2

LTE = —31933110

<y7(32>+6w2 yﬁllo) +15w* ygf) +20u8 y%6)+15 w8 y,(f) +6wt° ygf) +w'? Un
(31)
4. COMPARATIVE ERROR ANALYSIS
We will investigate the error for the following methods:

e The eight-step eighth algebraic order method developed by Quinlan and Tremaine

[35] which is indicated as QT9

e The ten-step tenth algebraic order method developed by Quinlan and Tremaine [35]
which is indicated as QT11
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Figure 2: Behavior of the coefficients of the new proposed method given by (68)-(73) for
several values of v.

e The twelve-step twelfth algebraic order method developed by Quinlan and Tremaine
[35] which is indicated as QT13

e The eight-step eighth algebraic order method developed by Jenkins [36] which is
indicated as J9
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e The ten-step tenth algebraic order method developed by Jenkins [36] which is indi-
cated as J11

e The twelve-step twelfth algebraic order method developed by Jenkins [36] which is
indicated as J13*

e The classical eight-step method of the family of methods mentioned in paragraph 3
which is indicated as CL

e The method produced by Alolyan and Simos [57] which is indicated as PLD1

e The method produced by Alolyan and Simos [58] which is indicated as PLD12

e The method developed by Alolyan and Simos [59] which is indicated as PLD123a

e The method developed by Alolyan and Simos [59] which is indicated as PLD123b

e The method developed by Alolyan and Simos [59] which is indicated as PLD123c

e The method developed in paragraph 3.1 which is indicated as PLD1234

e The method developed in paragraph 3.2 which is indicated as PLD12345

The radial time independent Schrodinger equation is of the form

y'(x) = f(x)y(x) (32)
Based on the paper of Ixaru and Rizea [114], the function f(z) can be written in the

form:

flz)=g(x) +G (33)
where g(z) = V(z) — V. = g, where V. is the constant approximation of the potential and
G=1=V,—E.

Now we express the derivatives yﬁf )

;1 =2,3,4,..., which are terms of the local trun-
cation error formulae, in terms of equation (32). The expressions are presented as poly-
nomials of G.

We substitute the expressions of the derivatives, produced in the previous step, into

the local truncation error formulae.

3We note here that the correct coefficient is 25671199 instead of presented 25671198
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Based on the procedure described above and on the formulae:

yP = (V(x) = Vo + G) y(x)

9 = (5 V@) ¥l + 2 (V@) (e y(@)
+(V(z) = V. +G) (%2 y())

O (V@) () + 4 (s V() ()
(V@) (v

HE V@)@

FBV(a) ~ Vet G) (4 (@) (- V()
A(U() =~ Ve +6)y(e) (s Vi)

d2
+(V(z) = Vo +G)* (ﬁ y(@))...
we obtain the expressions mentioned below for the above methods.

We consider two cases in terms of the value of E:

e The Energy is close to the potential, i.e. G =V, — E &~ 0. So only the free terms of
the polynomials in G are considered. Thus for these values of GG, the methods are
of comparable accuracy. This is because the free terms of the polynomials in G, are

the same for the cases of the classical method and of the new developed methods.

e ¢G> 0or G«O0. Then | G| is a large number.

So, we have the following asymptotic expansions of the equations mentioned in [58]

and in (75)-(77).

The eight-step eighth algebraic order method developed by Quin-
lan and Tremaine [35] (see for details Alolyan and Simos [58])

45767
_ 10 [ _ 5
LTEqry = h ( 25760 y(z) G+ .. > (34)
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The ten-step tenth algebraic order method developed by Quinlan
and Tremaine [35](see for details Alolyan and Simos [58])

o 52559 o )
LTEQTH =h < 912384 y(.L’)G + ... (30)

The twelve-step twelfth algebraic order method developed by
Quinlan and Tremaine [35](see for details Alolyan and Simos [58])

16301796103
—p T !
LTEqrs = h < 590591304000 ¥ & +> "

The eight-step eighth algebraic order method developed by Jenk-
ins [36] (see Appendix B for details)

31511 -
LTE; 9 = h'° ()G + ... 37
19 (518400}(70) + > (37)

The ten-step tenth algebraic order method developed by Jenkins
[36] (see Appendix B for details)

3055417
LTE;y; = h'2 <53;2‘)2400 y(x) GO+ .. ) (38)
The twelve-step twelfth algebraic order method developed by
Jenkins [36] (see Appendix B for details)

(39)

Ty — b ( 12095034463 ) o )

237758976000

The Classical Method of the Family (see Remark 2 of paragraph
3) (see for details Alolyan and Simos [58])

LTEcL = h'? < O8U01 y(@) GO+ .. ) (40)

31933440 °



-494-

The method produced by Alolyan and Simos [57](see for details
Alolyan and Simos [57])

987037  d? 58061 d d
LTEpLor = h'? {( (@ 8(@)v(@) + 5 T

31933440 15966720 \qz &) (75 ¥(2))

(41)

58061 ,
31033440 &%) W”)) Gt

The method produced by Alolyan and Simos [58] (see for details
Alolyan and Simos [58])

58061 ) &?
LTEpipi2 = h'? {7983360 G <d£2 g(:r)) y(@)+... (42)

The first method developed by Alolyan and Simos in [59] (see for
details Alolyan and Simos [59])

[ 58061 [ d 58061 [ o3 d
LTE s =h2 |G | ——— | —g(2) | y(x —qg(x) |—y(z
PLD1232 = 11 [ 3661120 | a9 ™) | ¥ @)+ 3597680 | aws? @) ) v @)

3 (d' g@))y(w e @)y ) g )

+...| (43

725760 \ dat 1995840 7

The second and third methods developed by Alolyan and Simos
in [59] (see for details Alolyan and Simos [59])

2
|| 58061 (d 58061 &
LTEpLp123be = h {G [177408 dxg(f) y(r)+133056g(1)y(9€) -9 ()

1335403 [ d* 53061 [ d? d
+2661120 (Wg (I))y(x) + 66113 (Wg (I)> Y (1’)} +} (44)

The new proposed method developed in paragraph 3.1 (see Ap-
pendix B for details)

58061 d*
LTEpLpioss = h'? [GS (1995840 (%g (7)) y (:1:)) + ...
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The new proposed method developed in paragraph 3.2 (see Ap-
pendix B for details)

3
e (L 8()) () (5 8(2)

58061 & 58061  d
~ 332610 8 ¥(®) (7 8(%)) — 555765 (s (%)) ¥(2)

58061 (d5 @) (L gy — 081 (di
997920 " das &V Vg YY) T 99584 Va2

LTEprpi2sss = h'? [G2 {

g(@)?y(@)| + ...

From the above equations we have the following theorem:
Theorem 2. Based on the above error analysis and on formulae (34) - (45), we have:

e For the eight-step eighth algebraic order methods developed by Quinlan and Tremaine

[35] and Jenkins [36], the error increases as the fifth power of G

e For the ten-step tenth algebraic order method developed by Quinlan and Tremaine

[35] and Jenkins [36], the error increases as the sizth power of G

o For the twelve-step twelfth algebraic order method developed by Quinlan and Trema-

ine [35] and Jenkins [36], the error increases as the seventh power of G

e For the Classical Method of the Family (see [58] for more details) the error increases

as the sizth power of G

e For the method produced by Alolyan and Simos [57], the error increases as the fourth
power of G

e For the method produced by Alolyan and Simos [58], the error increases as the fourth
power of G but with smaller coefficient than the method of Alolyan and Simos [57]

e For the method produced in paragraph 3.1 of the paper Alolyan and Simos [59], the

error increases as the third power of G

e For the methods produced in paragraphs 3.2 and 3.3 of the paper Alolyan and Simos
[59], the error increases as the third power of G

e For the method developed in paragraph 3.1 of this paper, the error increases as the

third power of G
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e For the method developed in paragraph 3.2 of this paper, the error increases as the

second power of G

So, for the numerical solution of the time independent radial Schridinger equation the
new methods produced in this paper have the smallest error, especially for large values of
| G |=| V.— E|, since they are of tenth algebraic order for which also the error increases

as the second power of G.

5. STABILITY ANALYSIS

We apply two methods of the family of methods (8) developed in paragraphs 3.1 and

3.2 to the scalar test equation:

w// — _252,(/}7 (47)
where ¢ # w.

We thus obtain the following difference equation:

Ak(s) wn+k‘ +...+ AI(S) 1/)n+1 + AO(S) 1/)71 +
+AL(S) Yno1 4 oo+ Ap(8) Y =0 (48)

where s = th, h is the step length and Ag(s), Ai(s),..., Ar(s) are polynomials of s.

The characteristic equation associated with (48) is given by:

Ap(8) 0" 4+ Ar(s) 9 4 Ag(s) + AL(s) 07 + o4+ Ag(s)97F =0 (49)

Definition 1. (see [34]) A symmetric 2k-step method with the characteristic equation
gwen by (49) is said to have an interval of periodicity <O7 sS) if, for all s € <07 sg), the

roots z;, i = 1,2 satisfy

2=z <1, =34 (50)
where C(th) is a real function of th and s =th .

Definition 2. (see [3/]) A method is called P-stable if its interval of periodicity is equal

to | 0,00 |.
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Definition 3. A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,00) — S* only when the frequency of the phase fitting is the same as the

frequency of the scalar test equation, i.e. v = s.

In Figures 3, 4 we present the s — v plane for the methods developed in the paragraphs
3.1 and 3.2 respectively. A shadowed area denotes the s — v region where the method is

stable, while a white area denotes the region where the method is unstable.

Stability Region for the New Method Developed in Paragraph 3.1

[ 1 2 3 4 5 6 7 8 9
s (test problem)

Figure 3: s — v plane of the New Methods produced in section 3.1

Stability Region for the New Method Developed in Paragraph 3.2

4
s (test problem)

Figure 4: s — v plane of the New Methods produced in section 3.2

In the case that the frequency of the scalar test equation is equal to the frequency of

4where S is a set of distinct points
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phase fitting, i.e. in the case that v = s, and based on Figures 3, 4, it is easy to see that

the interval of periodicity of the new methods is given by the following Table I

Table 1: Intervals of Periodicity for the New Developed Methods

‘ Method H Interval of Periodicity H
PLD1234 (0,3‘3)
PLD12345 (0,3.7)

Remark 3. For the solution of the Schrdodinger equation the frequency of the exponential
fitting is equal to the frequency of the scalar test equation. So, it is necessary to observe

the surroundings of the first diagonal of the s — v plane.
From the above analysis we have the following theorem:

Theorem 3. o Method (8) with the coefficients (62) - (66) is of tenth algebraic
order, has the phase-lag and its first, second, third and fourth derivatives equals to

zero and has an interval of periodicity equals to: <O7 3.3).

o Method (8) with the coefficients (68) - (73) is of tenth algebraic order, has the phase-
lag and its first, second, third, fourth and fifth derivatives equals to zero and has an

interval of periodicity equals to: (0, 3.7).
Finally in Table II we present the characteristics of the methods developed and studied

in this paper.

6. NUMERICAL RESULTS
6.1 Eigenvalue problem of the Schrédinger Equation

We shall illustrate the new developed methods on the computation of the eigenvalues
of the radial time-independent Schrodinger equation. The Schrodinger equation (1) for

[ = 0 can be written in the form

5V V(= By, v € lat], ya) =y(b) =0 (51)
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Table 2: Basic Characteristics of the Methods Developed and Studied in this paper. We
note that AO is the Algebraic Order, CFAE is the Coefficient of the Maximum Power
of G in the Asymptotic Expansion and Order of G is the order of G in the Asymptotic
Expansion of the Local Truncation Error. /P is the Interval of Periodicity

‘ Method H AO Order of G CFAFE H
QT9 8 5 —0.06306079145 0,0.52
QT11 10 6 —0.05760622720 0,0. 17%
QT13 12 7 —0.05609812676 0 0. 046)

J9 8 5 0.06078510802 (0, 0.2>
JT11 10 6 0.05740847838 (0,0.05 )
JT13 12 7 0.05465633593 (o, 0.003))

CL 10 6 0001818188081 (0, 1.3)
PLD1 10 4 0.03090919738 <07 8.5264>

PLD12 10 4 0.007272752325 0,4.1
PLD123a 10 3 0.007272752325 0,8.6
PLD123b 10 3 0.02181825697 0,3.3
PLD123c 10 3 0.02181825697 0,2.4
PLD1234 10 3 0.02009100930 0,3.3
PLD12345 10 2 0.1745460558 0,3.7

where F is the energy eigenvalue, V(z) the potential, and y(z) the wave function. The
problems used are the harmonic oscillator, the doubly anharmonic oscillator and expo-
nential potential. For all problems we use w = \/B(z).

For comparison purposes we use the following methods:

e The Numerov’s method which is indicated as Method I

e The Exponentially-fitted two-step method developed by Raptis and Allison [82]
which is indicated as Method IT

e The Exponentially-fitted two-step P-stable method developed by Wang [95] which
is indicated as Method III

e The Exponentially-fitted four-step method developed by Raptis [83] which is indi-
cated as Method IV
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The eight-step eighth algebraic order method developed by Quinlan and Tremaine
[35] which is indicated as Method V

The ten-step tenth algebraic order method developed by Quinlan and Tremaine [35]

which is indicated as Method VI

The twelve-step twelfth algebraic order method developed by Quinlan and Tremaine

[35] which is indicated as Method VII

The classical eight-step method of the family of methods mentioned in Section 3

which is indicated as Method VIII
The method produced by Alolyan and Simos [57] which is indicated as Method IX
The method produced by Alolyan and Simos [58] which is indicated as Method X

The method produced in paragraph 3.1 of the paper Alolyan and Simos [59] which
is indicated as Method XI

The method produced in paragraph 3.2 of the paper Alolyan and Simos [59] which
is indicated as Method XII

The method produced in paragraph 3.3 of the paper Alolyan and Simos [59] which
is indicated as Method XIII

The eight-step eighth algebraic order method developed by Jenkins [36] which is
indicated as Method XIV

The ten-step tenth algebraic order method developed by Jenkins [36] which is indi-
cated as Method XV

The twelve-step twelfth algebraic order method developed by Jenkins [36] which is

indicated as Method XVI
The method produced in paragraph 3.1 of this paper which is indicated as Method
XVII

The method produced in paragraph 3.2 of this paper which is indicated as Method

XVIII
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6.2 The Harmonic Oscillator
The potential of the one dimensional harmonic oscillator is
1
V(z) = §kx2

we consider k = 1. The integration interval is [—R, R].

The exact eigenvalues are given by
1
En:n+§, n=0,1,2,...
In Figures 5, 6 and 7 we present the maximum absolute error logy (Err) where

Err = ‘Ecalculated - Eaccurate' (52)

for the eigenenergies i, E300, Fso0, for several values of NFE = Number of Function

Evaluations.

The integration interval is presented in the following Table 3 for the above eigenenergies

Table 3: Integration Interval R for several eigenvalues F,

‘ FEigenvalue H Integration Interval H
Ergo 16
E300 26
Esoo 33
Err for the Eigenvalue 100.5

Accuracy (Digits)

Figure 5: Accuracy (Digits) for several values of NFE for the eigenvalue Ejg for the
Harmonic Oscillator. The nonexistence of a value of Accuracy (Digits) indicates that for
this value of NFE, Accuracy (Digits) is less than 0
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Figure 6: Accuracy (Digits) for several values of NFE for the eigenvalue Ejy for the
Harmonic Oscillator. The nonexistence of a value of Accuracy (Digits) indicates that for
this value of NFE, Accuracy (Digits) is less than 0

NFE

Figure 7: Accuracy (Digits) for several values of NFE for the eigenvalue Esgp for the
Harmonic Oscillator. The nonexistence of a value of Accuracy (Digits) indicates that for
this value of NFE, Accuracy (Digits) is less than 0

6.3 The Resonance Problem of the Schrédinger Equation

As second problem for the illustration of the new methods obtained in Section 3 we
chose the application to the radial time independent Schrodinger equation.

Since our new methods are frequency dependent, in order to be applied to the radial
Schrodinger equation the value of parameter v is needed. For every problem of the radial

Schrodinger equation given by (1) the parameter v is given by

v=Vlg@)l = VIV(x) - E| (53)
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where V(z) is the potential and E is the energy.
6.4 Woods-Saxon potential

We use the well known Woods-Saxon potential given by

Ug Uz

with z =eap || 2 — Xo | /a| , uop = —50, a = 0.6, and X, = 7.0.

The behavior of Woods-Saxon potential is shown in the Figure 8.

The Woods-Saxon Potential

Figure 8: The Woods-Saxon potential.

It is well known that for some potentials, such as the Woods-Saxon potential, the
definition of parameter v is not given as a function of = but it is based on some critical
points which have been defined from the investigation of the appropriate potential (see
for details [84]).

For the purpose of obtaining our numerical results it is appropriate to choose v as

follows (see for details [84]):
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V=504 E, forx € [0,6.5— 2h],
V=375+FE, forx=65—nh
v = V—-25+FE, forx=6.5 (55)
V—=125+F, forx=6.5+nh
VE, for x € [6.5 4 2h, 15

6.5 The Resonance Problem

In this section we present the results from the application of well known methods
in the literature to the numerical solution of the radial time independent Schrodinger
equation (1) in the case of the Woods-Saxon potential (54). The numerical solution of
this problem is based on the approximation of the true (infinite) interval of integration
by a finite interval. For the purpose of our numerical illustration we take the domain of
integration as « € [0,15]. We consider equation (1) in a rather large domain of energies,
ie. E € [1,1000].

In the case of positive energies, /' = k?, the potential dies away faster than the term

D and the Schrodinger equation effectively reduces to

() + (k - ’“t”)m —0 (56)

xz

for x greater than some value X.
The above equation has linearly independent solutions kzj;(kxz) and kzny(kz) where
Ji(kz) and ny(kx) are the spherical Bessel and Neumann functions respectively. Thus the

solution of equation (1) (when 2 — oo ) has the asymptotic form

y(x) ~ Akaji(kx) — Bkan(kz)

l [
~ AC |sin (kx - ;) + tand;cos (kac - ;T)] (57)
where ¢; is the phase shift, that is calculated from the formula
S — S
tans, = Y2)S@1) —y(21)S(x2) (58)

Y(21)C (1) = y(22)C(22)
for x; and x» distinct points in the asymptotic region (we choose z; as the right hand
end point of the interval of integration and zo = z1 — h) with S(z) = kaji(kx) and
C(x) = —kamy(kx). Since the problem is treated as an initial-value problem, we need
Yo, Ui, © = 1(1)8 before starting an eight-step method. From the initial condition we

obtain yy. The other values can be obtained using the Runge-Kutta-Nystrom methods of
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Dormand et. al. (see [8]). With these starting values we evaluate at z1 of the asymptotic
region the phase shift ¢;.

For positive energies we have the so-called resonance problem. This problem consists
either of finding the phase-shift ¢; or finding those E, for £ € [1,1000], at which & = .
We actually solve the latter problem, known as the resonance problem when the
positive eigenenergies lie under the potential barrier.

The boundary conditions for this problem are:
y(0) = 0, y(x) = cos (\/Ex) for large z. (59)

Err for the Resonance 341.495874

Accuracy (Digits)

NFE

Figure 9: Accuracy (Digits) for several values of NFE for the eigenvalue Ey = 341.495874.
The nonexistence of a value of Accuracy (Digits) indicates that for this value of NFE,
Accuracy (Digits) is less than 0

We compute the approximate positive eigenenergies of the Woods-Saxon resonance
problem using the eighteen methods mentioned in section 6.1
The computed eigenenergies are compared with exact ones. In Figure 9 we present

the maximum absolute error logyg | Err | where

Err = ‘Enalculu,ted - Eaccurate' (60)

of the eigenenergy F, = 341.495874, for several values of NFE = Number of Function

Evaluations. In Figure 10 we present the maximum absolute error logio| Err | where

Err = ‘Ecalcula,ted - Eaccurate' (61)
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Err for the Resonance 989.701916

Accuracy (Digits)

NFE

Figure 10: Accuracy (Digits) for several values of NFE for the eigenvalue F3 =
089.701916. The nonexistence of a value of Accuracy (Digits) indicates that for this
value of NFE, Accuracy (Digits) is less than 0

of the eigenenergy F3 = 989.701916, for several values of NFE = Number of Function

Evaluations.

7. CONCLUSIONS
In the present paper

1. we have developed two eight-step methods of tenth algebraic order with phase-lag

and its derivatives equal to zero.

2. we have analyzed all the well known eight-step methods, well known ten-step meth-
ods and well known twelve-step methods together with some well known methods

of fourth and sixth algebraic order
We have applied the above mentioned methods to the

e cigenvalue problem of the one-dimensional Schrodinger equation and

e resonance problem of the radial Schrodinger equation.
Based on the results presented above we have the following conclusions:
e For the eigenvalue problem: The Exponentially-fitted two-step method developed

by Raptis and Allison [82] (denoted as Method II) is more efficient than the Nu-

merov’s Method (indicated as Method I) and has exactly the same behavior with the
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Exponentially-fitted two-step P-stable method developed by Wang [95] (indicated as
Method IIT). For the resonance problem: The Exponentially-fitted two-step method
developed by Raptis and Allison [82] (denoted as Method II) is more efficient than
the Numerov’s Method (indicated as Method I) and the Exponentially-fitted two-
step P-stable method developed by Wang [95] (indicated as Method IIT).

For both problems: The Exponentially-fitted two-step P-stable method developed
by Wang [95] (indicated as Method III) is more efficient than the Numerov’s method
(indicated as Method I).

For the eigenvalue problem: The Exponentially-fitted four-step method developed
by Raptis [83] (indicated as Method IV) is more efficient than the Numerov’ Method
(indicated Method I), the Exponentially-fitted two-step method developed by Raptis
and Allison [82] (indicated as Method II), the Exponentially-fitted two-step P-stable
method developed by Wang [95] (indicated as Method III), the eight-step method
developed by Quinlan and Tremaine [35] (indicated as Method V), the ten-step
method developed by Quinlan and Tremaine [35] (indicated as Method VI), the
twelve-step method developed by Quinlan and Tremaine [35] (indicated as Method
VII), the eight-step method developed by Jenkins [36] (indicated as Method XIV),
the ten-step method developed by Jenkins [36] (indicated as Method XV) and the
twelve-step method developed by Jenkins [36] (indicated as Method XVI). For the
resonance problem: The Exponentially-fitted four-step method developed by Rap-
tis [83] (indicated as Method IV) is more efficient than the Numerov’ Method (in-
dicated Method I), the Exponentially-fitted two-step method developed by Raptis
and Allison [82] (indicated as Method II), the Exponentially-fitted two-step P-stable
method developed by Wang [95] (indicated as Method III), the eight-step method
developed by Quinlan and Tremaine [35] (indicated as Method V) and the eight-step
method developed by Jenkins [36] (indicated as Method XIV).

For the eigenvalue problem: The ten-step eleventh algebraic order method developed
by Quinlan and Tremaine [35] (indicated as Method VI) is less efficient than the
Numerov’ Method (indicated Method I), the Exponentially-fitted two-step method
developed by Raptis and Allison [82] (indicated as Method II), the Exponentially-
fitted two-step P-stable method developed by Wang [95] (indicated as Method III),
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the Exponentially-fitted four-step method developed by Raptis [83] (indicated as
Method IV), the eight-step method developed by Quinlan and Tremaine [35] (indi-
cated as Method V) and the eight-step method developed by Jenkins [36] (indicated
as Method XIV). For the resonance problem: The ten-step eleventh algebraic or-
der method developed by Quinlan and Tremaine [35] (indicated as Method VI) is
more efficient than the Numerov’ Method (indicated Method 1), the Exponentially-
fitted two-step method developed by Raptis and Allison [82] (indicated as Method
IT), the Exponentially-fitted two-step P-stable method developed by Wang [95] (in-
dicated as Method III), the Exponentially-fitted four-step method developed by
Raptis [83] (indicated as Method IV), the eight-step method developed by Quinlan
and Tremaine [35] (indicated as Method V) and the eight-step method developed
by Jenkins [36] (indicated as Method XIV).

For the eigenvalue problem: The twelve-step method developed by Quinlan and
Tremaine [35] (indicated as Method VII) is less efficient than the eight-step method
developed by Quinlan and Tremaine [35] (indicated as Method V) and has the
same behavior with the ten-step method developed by Quinlan and Tremaine [35]
(indicated as Method VI). For the resonance problem: The twelve-step method
developed by Quinlan and Tremaine [35] (indicated as Method VII) gives for the
two bigger numbers of function evaluations the same approximately results with the
eight-step method developed by Quinlan and Tremaine [35] (indicated as Method
V) and the ten-step method developed by Quinlan and Tremaine [35] (indicated as
Method VI).

For the eigenvalue problem: The classical eight-step method of the family of methods
mentioned in paragraph 3 (indicated as Method VIII) is more efficient than the
Numerov’ Method (indicated as Method I), the eight-step method developed by
Quinlan and Tremaine [35] (indicated as Method V), the ten-step method developed
by Quinlan and Tremaine [35] (indicated as Method VI), the twelve-step method
developed by Quinlan and Tremaine [35] (indicated as Method VII), the eight-step
method developed by Jenkins [36] (indicated as Method XIV), the ten-step method
developed by Jenkins [36] (indicated as Method XV) and the twelve-step method
developed by Jenkins [36] (indicated as Method XVI). For the resonance problem:

The classical eight-step method of the family of methods mentioned in paragraph 3
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(indicated as Method VIII) is more efficient than the Numerov’ Method (indicated
as Method I), the Exponentially-fitted two-step method developed by Raptis and
Allison [82] (indicated as Method II), the Exponentially-fitted two-step P-stable
method developed by Wang [95] (indicated as Method III), the Exponentially-fitted
four-step method developed by Raptis [83] (indicated as Method IV), the eight-step
method developed by Quinlan and Tremaine [35] (indicated as Method V), the ten-
step method developed by Quinlan and Tremaine [35] (indicated as Method VI)
and the twelve-step method developed by Quinlan and Tremaine [35] (indicated as
Method VII).

For both problems: The method produced by Alolyan and Simos [57] (indicated as
Method IX) is more efficient than all the above methods indicated as Methods I -
VIII

For both problems: The method produced by Alolyan and Simos [58] (indicated as
Method X) is more efficient than all the above methods indicated as Methods I -
VIIL. For the eigenvalue problem: The method produced by Alolyan and Simos [58]
(indicated as Method X) has approximately the same behavior than the method
developed in [57] (indicated as Method IX). For the resonance problem: The method
produced by Alolyan and Simos [58] (indicated as Method X) is more efficient than
the method developed in [57] (indicated as Method IX)

For both problems: The methods developed in paragraphs 3.2 and 3.3 of the paper
Alolyan and Simos [59] (indicated as Methods XII and XIII respectively) have very
slow convergence and for this reason they more badly behaves than the Methods X

and XI especially for high number of function evaluations.

For the eigenvalue problem: (1) Energies Eipg and Esp: The method developed
in paragraph 3.1 of the paper Alolyan and Simos [59] (indicated as Method XI)
is more efficient than all the above methods indicated as Methods I - IX and the
other methods developed in [59] (indicated as Method XII and Method XIII). (2)
Energy Esopo: The method developed in paragraph 3.1 of the paper Alolyan and
Simos [59] (indicated as Method XI) is more efficient than all the above methods
indicated as Methods I - IX and the other methods developed in [59] (indicated as
Method XII and Method XIII) only for big number of function evaluations. For the
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resonance problem: The method developed in paragraph 3.1 of the paper Alolyan
and Simos [59] (indicated as Method XT) is more efficient than all the above methods
indicated as Methods I - IX and the other methods developed in [59] (indicated as

Method XII and Method XIII).

e For the resonance problem: The ten-step method developed by Jenkins [36] (indi-
cated as Method XV) and the twelve-step method developed by Jenkins [36] (indi-
cated as Method XVT) give for the bigger numbers of function evaluations the same
approximately results with the method developed in paragraph 3.3 of the paper
Alolyan and Simos [59]. We note that for the eigenvalue problem we have given our

conclusions for these methods above.

e For both problems: The method produced in paragraph 3.1 of this paper which is
indicated as Method XVII, is more efficient than all the above methods indicated

as Methods I - XVI

e For both problems: The method produced in paragraph 3.2 of this paper which is
indicated as Method XVIII, is more efficient than all the above methods indicated
as Methods I - XVII

8. GENERAL COMMENTS AND OPEN PROBLEMS

From the analysis presented above (comparative error analysis and comparative sta-
bility analysis) and from the numerical results presented above, the following summaries
for the numerical methods used for the approximate solution of the radial Schrodinger

Equation are excluded:

Remark 4. e The methods with phase-lag and its derivatives equal to zero are very

efficient for the numerical solution of the radial Schridinger Equation

e The methods with constant coefficients cannot be so efficient like the above mentioned

methods

e The multistep methods with constant coefficients and with big number of steps are

not efficient for the numerical solution of the radial Schridinger Equation
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e We must continue the research on the implicit multistep methods (with number of

steps k > 5). The direction must be on the vanishing of phase-lag and its derivatives

and the stability region

Based on the above remark we have the following open problems for the construction of

efficient multistep methods for the numerical solution of the radial Schrodinger Equation:

1. development of multistep methods with large interval of periodicity.

2. development of multistep methods with very good convergence properties.

All computations were carried out on a IBM PC-AT compatible 80486 using double

precision arithmetic with 16 significant digits accuracy (IEEE standard).

Appendix A

1
by = T 720v — 7176 sin(v) cos(v)® v? + 14232 sin(v) cos(v)* v?

—2304 sin(v) cos(v)® v — 7200 sin(v) cos(v)” vZ + 585 sin(v) cos(v)? v2

)
—2196sin(v) cos(v)? v? — 3924 cos(v) vZ sin(v) + 15432 sin(v) cos(v)? v2

—2112sin(v) cos(v)? v — 72 cos(v) v + 960 sin(v) cos(v)*
+5760 sin(v) cos(v)” 4 480 sin(v) cos(v)® — 13920 sin(v) cos(v)®
+3600 sin(v) cos(v)* 4 3840 sin(v) cos(v)® — 1260 sin(v) cos(v)?

4720 cos(v) sin(v) — 4608 cos(v)'?v + 512 cos(v)? v¥ — 3072 cos(v)’ v
+384 cos(v)'10v? — 8448 cos(v)® v — 612 v2 sin(v) + 2577 cos(v) v*
+1408 cos(v)® v + 1872 cos(v)” v* — 4032 cos(v)” v — 1008 cos(v)? v
+1668 cos(v)? v? — 592 cos(v)! v — 19488 cos(v)* v + 1982 cos(v
—4152 cos(v)? v — 2832 cos(v)® v* + 32832 cos(v)® v — 5368 cos(v

)3v3
)SVS

411328 cos(v)° v — 180sin(v) — 36 v3:| /(v6 (cos(v) + 1)si11(v)5)

(62)



by =

)
—135v?sin(v) + 75 cos(v) v¥ + 352 cos(v)® v — 32 cos(v)7 v¥ + 3360 cos(v)" v
3
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1

5 36 v 4 432sin(v) cos(v)® v? + 2748 sin(v) cos(v)* v? — 1344 sin (v) cos(v)®
vZ — 1440 sin(v) cos(v)" v* — 1701 sin(v) cos(v)* v? + 2229 sin(v) cos(v)® v2

—432 cos(v) vZsin(v) + 588 sin(v) cos(v)® v + 576 cos(v) v — 1200 sin(v) cos(v)*

—1440sin(v) cos(v)® + 240 sin(v) cos(v)® — 60 sin(v) cos(v)* 4 720 sin(v) cos(v)?

8y

—180 cos(v) sin(v) + 256 cos(v)® v* — 2688 cos(v)® v — 1536 cos(v

—576 cos(v)? v + 1035 cos(v)? v* — 975 cos(v)* v¥ + 684 cos(v)* v + 425 cos(v)? v*

by =

—3504 cos(v)* v — 196 cos(v)® v + 1392 cos(v)° v — 724 cos(v)® v*
+2256 cos(v)® v + 1920 sin(v) cos(v)® + 12v* sin(v) + 12sin(v) v* cos(v)®
—24 sin(v) v? cos(v)? 4 12 sin(v) cos(v)* v* 4 12sin(v) v cos(v)

—245in(v) cos(v)?v! 4+ 99+v3 /(V6 (cos(v) +1) sin(v)5> (63)

1

——1240v — 2592 sin(v) cos(v)® v* + 3294 sin(v) cos(v)* v — 2736 sin(v)

24

cos(v)" v2 + 435 sin(v) cos(v)? vZ — 72sin(v) cos(v)? v — 1176 cos(v) v2 sin(v)
+3984sin(v) cos(v)® v2 — 72 cos(v) v + 360 sin(v) cos(v)*
—3840 sin(v) cos(v)® 4 720 sin(v) cos(v)? — 300 sin(v) cos(v)? + 240 cos(v) sin(v)
—4608 cos(v)® v — 192 v? sin(v) + 723 cos(v )V + 576 cos(v)® v* + 864 cos(v) v

+ 2880 sin(v) cos(v)”

—2304 cos(v)" v — 624 cos(v)? v + 560 cos(v)? v — 284 cos(v)* v* — 4416 cos(v)* v

by =

12

+404 cos(v)® v — 984 cos(v)® v — 800 cos(v)® v¥ + 9408 cos(v)® v
—1676 cos(v)® v + 3360 cos(v)® v + 48 v sin(v) + 48 sin(v) v* cos(v)?
—96sin(v) v* cos(v)® + 48 sin(v) cos(v)* v! + 48 sin(v) v* cos(v)

—96 sin(v) cos(v)? v — 60sin(v) — 52 V3:| /(v6 (cos(v) +1) sin(v)5> (64)

12v — 624 sin(v) cos(v)® v + 1152 sin(v) cos(v)? v2 — 483 sin(v) cos(v)? v?

+759sin(v) cos(v)® v? — 120 cos(v) v sin(v) — 504 sin(v) cos(v)® v + 192 cos(v) v
—720sin(v) cos(v)* 4 480 sin(v) cos(v)® 4 60sin(v) cos(v)® + 240sin(v) cos(v)?
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—60 cos(v) sin(v) — 45 v?sin(v) — 23 cos(v) v¥ + 192 cos(v)” v — 864 cos(v)" v
—240 cos(v)* v 4 325 cos(v)? v* — 537 cos(v)! v 4 612 cos(v)! v + 255 cos(v)? v3
—1296 cos(v)* v + 232 cos(v)® v* — 384 cos(v)® v — 424 cos(v)® v + 1968 cos(v)° v

+24 v sin(v) + 24sin(v) v* cos(v)® — 48 sin(v) v* cos(v)® + 24 sin(v) cos(v)* v?

+24sin(v) v* cos(v) — 48sin(v) cos(v)? v + 25 vg} /(v6 (cos(v) +1) SiIl(V)S) (65)

by = —% 240v — 576sin(v) cos(v)* v + 867 sin(v) cos(v)? v* + 1620 sin(v)

cos(v)? v2 — 780 cos(v) v sin(v) — 840 sin(v) cos(v)® v — 216 cos(v) v
+480 sin(v) cos(v)® — 720 sin(v) cos(v)? + 60 sin(v) cos(v)? + 240 cos(v) sin(v)
—156 v*sin(v) + 507 cos(v) v — 1488 cos(v)? v + 764 cos(v)? v¥ — 992 cos(v)* v
+2208 cos(v)* v — 814 cos(v)® v¥ + 600 cos(v)* v + 400 cos(v)® v* — 960 cos(v)° v

+352 cos(v)® v? — 384 cos(v)? v + 96 v sin(v) + 96 sin(v) v* cos(v)®

—192sin(v) v* cos(v)® + 96 sin(v) cos(v)* v* + 96 sin(v) v* cos(v)

—1925sin(v) cos(v)? v? — 60sin(v) — 172 v3] /(v6 (cos(v) + 1) sin(v)5) (66)

For small values of |v| the formulae given by (62)-(66) are subject to heavy cancella-

tions. In this case the following Taylor series expansions should be used:

17273 290305 , 5146457 , = 7920822209 = 9148045993

0= 72576 T 456192 20756736 | | 125536730328 © 776045207664 ©
635438436621 ,,  S61866236422343 .,

+360429927137280 Y 6744004366665646080
12600569860102927 8921092027353637 16

Jr620448401733239439360 v 9776762693978318438400
280997 58061 , = 4155299 , 6171445871

U7 1R1440 114048 23063040 | 156920924160
570822810683 1422020786503 ., 699661076305589

* 106706228428800 ©  6758061133824000 12969239166664704000
132022490052283 14 164232944944655369 16

Jr20736911822635008000 v 122200533674728980480000
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33961 58061 , 2172983 2064563873 4

T181440 T 228096 © 34504560 © | 313841848320 ¥
9724781733 214673377381 . 462572504947933 .,

15243746918400 ' 1930874609664000 21075013645830144000
4746565597278053 14 1041226049632616773 16

+ 1107943574523641856000 © 1344304870422018785280000
173531 58061 7205971, 139440391 2163203479 ¢

= 180440 798336 | T 1452071520 © T 156920024160 © T 9700566220800

9 =

3

LT, 1536752835474911
v

15768800312256000 ' 168600109166641152000

6413588385252487 2683426764236251339 ¢

3877802510832746496000 * 9410134092054131496960000
b 45767 58061 800491 393677303
4

= 725760 T 6336688 © | 184323840 © | 1255367393280
24046527743 3984003755203 ., 32443250855260

426824913715200 | 378451423494144000 © 17747379912278016000
1358692009638011 14 1874552699488763323 16, (67)

+ 4431774298094567424000 * 37640536371816525987840000
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Appendix B

by = 418( 10800 + 832512 sin(v) cos(v)® v3 — 606720 sin
+3317760 sin(v) cos(v)'? v + 829440 sin(v) cos(v) ' v + 400578 sin(v) cos
—694848 sin(v) cos(v)® v® — 438912 sin(v) cos(v ) % 4223680 qm(
—780480 sin(v) cos(v
—122880 sin(v) cos(v)'? v¥ 4 253440 sin(v) cos( Yy + 125280 sin
4289920 sin(v) cos(v)” v¥ 4 43200 sin(v) cos(v)* v — 449280 sin(v)
—12288 sin(v) cos(v)' v® — 7392sin(v) cos(v)” v + 19776 sin(v) cos(v)'! v°
—55296 sin(v) cos(v)'? v® — 61440 sin(v) cos(v)™ v¥ — 129480 sin(v) cos(v)® v*
—76032sin(v) cos(v)® v® + 96000 sin(v) cos(v)™ v¥ — 5137920 sin(v) cos(v)® v
—51480 sin(v) cos(v) v* — 24576 sin(v) cos(v)? v¥ + 244320 sin(v) cos(v)® v*
—368640 sin(v) cos(v)' v 4 2537280 sin(v) cos(v)® v + 1422720 sin(v) cos(v)" v
—1140480 sin(v) cos(v)? v + 2880 sin(v) cos(v)* v7 — 348480 sin(v) cos(v)* v
—184320sin(v) cos(v)™ v — 312480 sin(v) cos(v)? v — 125952 sin(v) cos(v)® v
—12528 sin(v) cos(v) v* + 30240 sin(v) v + 25920 sin(v) v + 50328 v° sin(v)
+100608 v* cos(v)™® + 276480 vZ cos(v)'® + 27648 cos(v) v® + 14592 cos(v)*® v*
+3072 cos(v) ' v® + 512 cos(v)* v + 46080 cos(v)** v + 11904 cos(v)** v*
474880 cos(v)'? v — 138240 cos(v)" v® — 1935360 cos(v)'! v2
—1055808 cos(v)* v* — 630720 cos(v)'° v2 4 4078080 cos
4915120 cos(v)® v — 2661120 cos(v)” v — 652680 cos(v)® v2 — 825120 cos
4419040 cos(v)* v2 4+ 1339200 cos(v)® v — 158760 cos(v)? v — 272160 cos(v) v
+43344 cos(v)' v* + 5824 cos(v)*? v — 13536 cos(v)' v® — 71400 cos(v)"0 v*
+46080 cos(v)? v5 4 2659200 cos(v)® v* — 678930 cos(v)® v* — 54680 cos(v)® v°
+71280 cos(v)” v® — 1975740 cos(v)” v* + 38780 cos(v)® v5 4 1035765 cos(v)
+241488 cos(v)® v® + 642348 cos(v)® v? — 561759 cos(v)? v* + 85398 cos(v)* v°
—308028 cos(v)® v® — 608328 cos(v)* v* + 271476 cos(v)? v* — 30339 cos(v)? v°
+223128 cos(v) v* 4 25920 cos(v) + 314640 cos(v)* 4 60480 cos(v)?
+92160 cos(v)™ + 1116 v6 — 23760 cos(v)? + 184320 cos(v)™ — 80640 cos(v)*?

i(
(

v) cos(v)®v
" .

v) cos(v) v
3

9,2

V) vV

— ==

)
v)° v

6V4
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—12960 v — 50400 v* — 184320 cos(v)"® 4+ 967680 cos(v)'! — 489600 cos(v)'°
—2304000 cos(v)? + 1087200 cos(v)® + 2001600 cos(v)™ — 889200 cos(v)°
—751680 cos(v)s) / [Vs sin(v)® (8 cos(v)® vt + 120 cos(v)® v? 4 720 cos(v)°
—1800 cos(v)* — 420 cos(v)* v* — 60 cos(v)* v — 120sin(v) cos(v)* v*
—600sin(v) cos(v)® v + 126 cos(v)? v* — 60 cos(v)? v2 4 1440 cos(v)?

+435 sin(v) cos(v) v + 600 sin(v) cos(v) v — 360 + 31 v* + 360 VQ)}

4

by = % (9216 cos(v) ¥ v7 sin(v) — 3372 cos(v)* sin(v) v7 + 768 cos(v)? sin(v) v’
+3048 cos(v)¥ sin(v) v7 — 1734 cos(v) v + 372sin(v) v"
+138240 cos(v) ¥ sin(v) v — 912 cos(v)® sin(v) v7 + 46080 cos(v) " sin(v)

+96 cos(v)'?sin(v) v7 — 10848 sin(v) cos(v)® v® 4 68880 sin(v) cos(
+48960 sin(v) cos(v)'0 v + 13440 sin(v) cos(v) ' v¥ — 98352 sin(v) cos(v)® v*
+91524 sin(v) cos(v)® v + 16146 sin(v) cos(v)* v® — 96600 sin(v) cos(v)% v?

—9540 sin(v) cos(v)* v¥ — 29160 sin(v) cos(v)? v + 29880 sin(v) cos(v

(

Vd

cos(v)®v3

<.

)2 VS

—7680sin(v) cos(v)'? v¥ — 380160 sin(v) cos(v)™ v — 12960 sin(v) cos(v) v
—211680 sin(v) cos(v)” v* + 210600 sin(v) cos(v)* v + 103680 sin(v) cos(v)°® v*
—381024 sin(v) cos(v)7 v® — 25344 sin(v) cos(v)' v° + 4704 sin(v) cos(v) ' v°
—96480 sin(v) cos(v)® v + 89856 sin(v) cos(v)? v° — 126720 sin(v) cos(v)11 v
(

+321840 sin(v) cos(v)? v¥ — 23040 sin(v
+635040 sin(v) cos(v)" v 4 51840 sin( (
+177120 sin(v) cos(v)* v — 609120 sin ( (
+49896 sin(v) cos(v) v¥ 4+ 1620 sin(v) v¥ — 5400 sin(v) v — 10125 v sin(v)
—10752 v* cos(v)"® — 34560 v? cos(v)'* — 768 cos(v) v — 4096 cos(v)' v6
—23040 cos(v)* v? — 16896 cos(v)** v* + 74880 cos(v)' v? + 1952 cos(v) ! v°
4102240 cos(v) " v + 26880 cos(v) v* + 198720 cos(v) ™ v — 99000 cos(v)
—977040 cos(v)® v* + 68580 cos(v)" v2 + 1231920 cos(v)® v — 62820 cos(v)° v*
—550800 cos(v)* v2 4+ 12060 cos(v)? v2 4 32400 cos(v)? v2 + 13500 cos(v) v2
+54912 cos(v)' 2 v 4 13312 cos(v) "2 v8 — 15360 cos(v) 0 v® + 75456 cos(v) 'O v*
—3512cos(v)” v® — 35952 cos(v)? v* — 473712 cos(v)® v* + 85504 cos(v)® v©
+29616 cos(v)” v0 4 188376 cos(v)” v! — 196288 cos(v)° v° + 389760 cos(v)© v*

) cos(v)'? v — 309240 sin(v) cos(v)® v
v) cos(v)? v — 129555 sin(v) cos
) cos(

v)iv®

v) cos(v)? v + 423792 sin(v) cos(v)? v°

9v2

(68)
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—45158 cos(v)® v — 245886 cos(v)® v! — 252 cos(v)* v* + 145008 cos(v)! v©
+12989 cos(v)® v0 + 95379 cos(v)? v! — 24948 cos(v)? v! — 27648 cos(v)? v°
—18045 cos(v) v* 4 10800 cos(v) + 112320 cos(v)* — 48240 cos(v)?

492160 cos(v)™ + 10908 v¢ — 25920 cos(v)* — 46080 cos(v)™* — 299520 cos(v)"?
+12960 v — 4320 v* 4 144000 cos(v)'* + 311040 cos(v)™® — 139680 cos(v)°
—31680 cos(v)® 4 5040 cos(v)” — 158400 cos(v)® + 74160 cos(v)5)/

[vs (900 sin(v) cos(v)® v2 — 660 sin(v) cos(v)® v? + 8sin(v) cos(v)'? v?

+64 sin(v) cos(v)? v + 435 cos(v) v¥ 4 600 v cos(v) + 360 v2 sin(v) + 31 vt sin(v)
+120 cos(v)?v* — 795 cos(v)” v¥ + 1665 cos(v)® v — 1425 cos(v)? v*

+600 cos(v)? v — 2400 cos(v)” v 4 3600 cos(v)® v — 2400 cos(v)* v

—5040 sin(v) cos(v)* 4 720 sin(v) cos(v)'" — 3240 sin(v) cos(v)®

+5760 sin(v) cos(v)® 4 2160 sin(v) cos(v)? 4 254 sin(v) cos(v)© v*

—780sin(v) cos(v)? v2 — 281 sin(v) cos(v)* v* 4 60 sin(v) cos(v)* v?

—76sin(v) cos(v)®v* + 120 sin(v) cos(v)'* v — 360 sin(v))}

by = 214( 3600 + 140376 cos(v)* sin(v) v7 + 26712 cos(v)" sin(v) v"
79152 cos(v)? sin(v) vV — 16560 cos(v) sin(v) v’ — 8208 cos(v)? sin(v

+4608 cos(v)'? sin(v) v — 142464 cos(v)® sin(v) v7 4 45768 cos(
+19416sin(v) v7 — 49968 cos(v)® sin(v) v’ + 87936 cos(v)® sin(v) v7

+46872 cos(v)? sin(v) v7 — 30720 cos(v) ' sin(v) v — 143568 sin(v) cos(v)® v°
—334080sin(v) cos(v)® v* + 1036800 sin(v) cos(v)'® v + 299520 sin(v) cos(v)'® v?
4222522 sin(v) cos(v)? v° + 402192 sin(v) cos(v)® v + 50976 sin(v) cos(v)* v°
+377280 sin(v) cos(v) v¥ — 457920 sin(v) cos(v)* v¥ — 77760 sin(v) cos(v)? v
4205920 sin(v) cos(v)? v¥ — 92160 sin(v) cos(v) 2 v* + 69120 sin(v) cos(v)™ v
+34560 sin(v) cos(v ) v + 322800 sin(v) cos(v)” v* + 95040 sin(v) cos(v)* v
—241440 sin(v) cos(v)? v* + 194340 sin(v) cos(v)" v° 4 19008 sin(v) cos(v)* v°
+80640 sin(v) cos(v)'? v + 131880 sin(v) cos(v)? v¥ — 99912sin(v) cos(v)® v°
+57600 sin(v) cos(v)'! v* — 1278720 sin(v) cos(v)® v — 50760 sin(v) cos(v) v?
—24192sin(v) cos(v) 2 v® — 220080 sin(v) cos(v)® v — 276480 sin(v) cos(v)'? v
+492480 sin(v) cos(v)® v 4 266400 sin(v) cos(v)" v — 262080 sin(v) cos(v)? v

— 417744 sin(v) cos(v)* v® — 119520 sin(v) cos(v)* v + 11520 sin(v) cos(v)® v

v7

V)V

)
)
) 6
)

(69)
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—271572sin(v) cos(v)® v> — 24696 sin(v) cos(v) v° + 1440 sin(v) v*
+8640 sin(v) v — 16344 v° sin(v) + 68544 v* cos(v)™ + 138240 v? cos(v)"?
+24192 cos(v) ¥ v + 34560 cos(v)? v — 140096 cos(v)M v8 — 737280 cos(v)M v2
—366432 cos(v)' v* — 82080 cos(v)* v? + 1307520 cos(v)? v + 27360 cos(v)® v
—708480 cos(v)" v* + 12600 cos(v)° v — 329760 cos(v)® vZ 4 47520 cos(v)! v2
+411840 cos(v)? v* — 39240 cos(v)? v — 82080 cos(v) vZ 4 26208 cos(v)'? v?
+576 cos(v) 2 v + 7464 cos(v) 'O v — 83748 cos(v) ' v + 349808 cos(v)® v°
+650472 cos(v)? v* + 116364 cos(v)® v* — 57944 cos(v)® v — 586248 cos(v)7 v*
—350460 cos(v)” v* + 128708 cos(v)° v® — 262479 cos(v)® v? + 641024 cos(v)
+102228 cos(v)® v* + 304923 cos(v)* v! — 151308 cos(v)* v® — 345788 cos(v)® v©
—171528 cos(v)® v* — 121188 cos(v)? v* + 104867 cos(v)? v® + 67176 cos(v) v*
+8640 cos(v) + 72720 cos(v)* + 2880 cos(v)® — 25748 v® — 720 cos(v)?
—138240 cos(v)™ + 69120 cos(v)'? — 720 v + 19920 v* 4 529920 cos(v)"!
—256320 cos(v)'? — 789120 cos(v)? + 365760 cos(v)® + 561600 cos(v)”
—246960 cos(v)® — 175680 cos(v)? + 1152 cos(v) ' sin(v) v7)/

5,6

V) v

[v5 (900 sin(v) cos(v)® v — 660 sin(v) cos(v)® v? + 8 sin(v) cos(v) ' v*

+645in(v) cos(v)? v + 435 cos(v) v* + 600 v cos(v) + 360 vZ sin(v) + 31 v sin(v)
+120 cos(v)?v? — 795 cos(v)” v¥ + 1665 cos(v)® v — 1425 cos(v)? v?

+600 cos(v)? v — 2400 cos(v)” v 4 3600 cos(v)® v — 2400 cos(v)* v

—5040sin(v) cos(v)* + 720 sin(v) cos(v)'" — 3240 sin(v) cos(v)®

+5760 sin(v) cos(v)® 4 2160 sin(v) cos(v)* 4 254 sin(v) cos(v)© v*

—780sin(v) cos(v)? v? — 281 sin(v) cos(v)* v* 4 60 sin(v) cos(v)* v?

—76sin(v) cos(v)®v* + 120 sin(v) cos(v)'* v — 360 sin(v)ﬂ

b3 = 112< 6744 cos(v)* sin(v) v7 + 1536 cos(v)? sin(v) v7 + 6096 cos(v)® sin

41362 cos(v) v0 4 744 sin(v) v7 — 1824 cos(v)® sin(v) v7 + 192 cos(v) ' sin
—16944 sin(v) cos(v)® v7 + 43440 sin(v) cos(v)® v* — 17280 sin(v) cos(v)

—11520 sin(v) cos(v)' v — 92208 sin(v) cos(v)? v* + 50256 sin(v) cos(v)% v°
+12882sin(v) cos(v)? v® — 50040 sin(v) cos(v)° v¥ + 23700 sin(v) cos(v)
—2520sin(v) cos(v)? v — 10920 sin(v) cos(v)? v¥ + 57600 sin(v) )

—4320 sin(v) cos(v) v — 171360 sin(v) cos(v)™ v + 45720 sin(v) cos(v)* v

7

(v)v
()"

4.3

11

cos(v cos(v)" v

(70)
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+55680 sin(v) cos(v)? v¥ — 260064 sin(v) cos(v)” v® — 19200 sin(v) cos(v)!! v*
+1728 5in(v) cos(v)'? v — 54240 sin(v) cos(v)? v* + 117120 sin(v) cos(v)? v
—3840 sin(v) cos(v)™ v¥ 4 69840 sin(v) cos(v)® v — 6480 sin(v) cos(v) v3
+180240 sin(v) cos(v)® v¥ — 93960 sin(v) cos(v)® v + 332640 sin(v) cos(v)
—230400sin(v) cos(v)® v — 48297 sin(v) cos(v)! v* + 53280 sin(v) cos(v)? v
—208800 sin(v) cos(v)® v 4 235920 sin(v) cos(v)® v° + 28152 sin(v) cos(v) v°
45340 sin(v) v¥ — 1800 sin(v) v — 5295 v° sin(v) — 51840 cos(v)
+704 cos(v) ' v + 2880 cos(v)' v2 4 10752 cos(v)' v* 4 276480 cos(v) 0 v?
—29880 cos(v)? v — 555120 cos(v)® v2 4 82620 cos(v)” v + 507600 cos(v)® v
—89820 cos(v)® v — 192240 cos(v)* v* + 36900 cos(v)* v* + 10800 cos(v)? v*
—2700 cos(v) v — 34944 cos(v)'? v 4 3072 cos(v)'? v® — 27648 cos(v)'° v°
+174336 cos(v) ' v — 3416 cos(v)? v8 — 63504 cos(v)? v* — 325008 cos(v)
+96768 cos(v)® v + 3036 cos(v)” v + 139200 cos(v)” v! — 147456 cos(v)° v0
+269808 cos(v)® v! + 5302 cos(v)® v® — 125286 cos(v)® v? — 123396 cos(v)? v*
+104976 cos(v)* v® — 7933 cos(v)? v& 4 46773 cos(v)* v* + 52164 cos(v)? v*
—38448 cos(v)? v — 7935 cos(v) v* + 3600 cos(v) + 48960 cos(v)*
—20880 cos(v)? + 10356 v¢ — 8640 cos(v)? + 23040 cos(v)*? + 4320 v2 — 12960 v*
—11520 cos(v)* — 92160 cos(v)' + 44640 cos(v)? + 146880 cos(v)®
—68400 cos(v)” — 118080 cos(v)® + 52560 cos(v)5) /

v

7

COoSs(V v

12 V2

4
8V

[vs (900 sin(v) cos(v)® v2 — 660 sin(v) cos(v)® v?
+8sin(v) cos(v)0 v? 4 64 sin(v) cos(v)? v* + 435 cos(v) v*
+600 v cos(v) + 360 v sin(v) + 31 v* sin(v) + 120 cos(v)? v¥ — 795 cos(v)" v*
41665 cos(v)® v¥ — 1425 cos(v)® v + 600 cos(v)? v — 2400 cos(v)" v
+3600 cos(v)® v — 2400 cos(v)* v — 5040 sin(v) cos(v)* + 720 sin(v) cos(v)°
—3240sin(v) cos(v)® + 5760 sin(v) cos(v)® + 2160 sin(v) cos(v)?
4254 sin(v) cos(v)° v* — 780 sin(v) cos(v)? v? — 281 sin(v) cos(v)? v*
+60sin(v) cos(v)* v? — 76 sin(v) cos(v)® v* + 120 sin(v) cos(v)' v* — 360 sin(v))] (71)

V7

1
b=~ (3600 — 26976 cos(v) sin(v) v7 + 6144 cos(v)? sin(v
+24384 cos(v)° sin(v) v7 + 35808 cos(v) v® + 2976 sin(v

—7296 cos(v)® sin(v) v7 + 768 cos(v) ' sin(v) v7 — 9792 sin(v) cos(v)® v°

—_ =

V7
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+368640 sin(v) cos(v)®v® + 69120 sin(v) cos(v)' v — 69120 sin(v) cos(v) ! v3
—870sin(v) cos(v)* v® + 76032 sin(v 6v% 4 152064 sin(v) cos(v)? v°
—751680 sin(v) cos(v)® v® + 694080 sin V)3 4 77760 sin(v) cos(v)? v
—266400sin(v) cos(v)* v* — 12960 sin(v) cos(v) v — 32640 sin(v) )3
—267840 sin(v) cos(v)* v + 3840 sin(v) cos(v)® v¥ — 9696 sin(v) cos(v)
—1152sin(v) cos(v)'* v® — 100200 sin(v) cos(v)* v* + 1344 sin(v) cos(v)? v°
—276480 sin(v) cos(v)® v + 36360 sin(v) cos(v) v* + 92640 sin(v) )Py
+406080 sin(v) cos(v)® v + 92160 sin(v) cos(v)” v — 23040 sin(v) cos(v)? v
— 184896 sin(v) cos(v)* v° + 72000 sin(v) cos(v)* v — 128160 sin(v) cos(v)® v
)
1

) cos(v)
(v) cos(

7

cos(v)' v

7

ot

) v
)

cos(v

+20976 sin(v) cos(v)® v° — 17424 sin(v) cos(v) v° + 24480 sin(v) v*
—8640sin(v) v — 22536 v* sin(v) + 3968 cos(v)" v® — 92160 cos(v)' v
+28896 cos(v)'! v + 17280 cos(v)'? v2 + 472320 cos(v)® v — 98640 cos(v)® v2
—933120 cos(v)™ v2 + 209880 cos(v)® v + 874080 cos(v)® vZ — 203040 cos(v)* v
—377280 cos(v)* v2 + 84600 cos(v)? v2 4 56160 cos(v) v2 — 192 cos(v) ™ v°
+2352 cos(v) 10 v — 26624 cos(v)® v® — 193344 cos(v)? v? — 10074 cos(v)® v*
+2168 cos(v)® v + 58992 cos(v)7 v® + 528372 cos(v)” v* — 7916 cos(v)° v°
+4305 cos(v)® v* — 26096 cos(v)® v® — 730212 cos(v)® v* 4 39669 cos(v)* v*
+7974 cos(v)* v® — 44428 cos(v)? v® + 480984 cos(v)? v* — 50172 cos(v)? v*
42353 cos(v)? v® — 114696 cos(v) v? — 8640 cos(v) + 52560 cos(v)*
+48960 cos(v)* — 533270 — 20880 cos(v)? — 10080 v2 + 13920 v*
+23040 cos(v)' — 11520 cos(v)'® — 92160 cos(v)? + 44640 cos(v)®
1146880 cos(v)7 — 68400 cos(v)® — 118080 cos(v)5> / [v5 (900 sin(v) cos(v)® v?
—660 sin(v) cos(v)® v? + 8sin(v) cos(v)' v* + 64 sin(v) cos(v)? v* 4 435 cos(v) v*
+600 v cos(v) + 360 v sin(v) + 31 v* sin(v) + 120 cos(v)? v¥ — 795 cos(v)" v*
41665 cos(v)® v¥ — 1425 cos(v)® v + 600 cos(v)? v — 2400 cos(v)" v
+3600 cos(v)® v — 2400 cos(v)* v — 5040 sin(v) cos(v)* + 720 sin(v) cos(v)*°
—3240sin(v) cos(v)® + 5760 sin(v) cos(v)® + 2160 sin(v) cos(v)?
4254 sin(v) cos(v)° v* — 780 sin(v) cos(v)? v? — 281 sin(v) cos(v)* v*
+60sin(v) cos(v)* v? — 76 sin(v) cos(v)® v* + 120 sin(v) cos(v)' v* — 360 sin(v))] (72)
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ag = — (360 — 120 sin(v) cos(v)® v* + 405 sin(v) cos(v)* v¥ — 7200 sin(v) cos(v)? v

—90sin(v) cos(v)? v — 4200 sin(v) cos(v) v — 1200 sin(v) cos(v)” v?
+8100sin(v) cos(v)4 v — 6690 sin(v) cos(v)® v + 3525 sin(v) cos(v) v*
+4680sin(v) cos(v)® v¥ — 2400 sin(v) cos(v)® v + 4800 sin(v) cos(v)" v

+13800 sin(v) cos(v)? v — 14400 sin(v) cos(v)® v — 1140 sin(v) v* + 1500 sin(v) v
—3360 cos(v)® v2 + 480 cos(v)" v2 4 13440 cos(v)% v? — 2700 cos(v)® v

—19140 cos(v)* v + 5580 cos(v)* v + 10860 cos(v)? v — 3360 cos(v) v*

+192 cos(v)® v + 48 cos(v)" v! — 896 cos(v)® v! — 246 cos(v)® v* 4 1680 cos(v)" v*
+573 cos(v)® v* — 1680 cos(v)? v — 690 cos(v) v* 4 1800 cos(v) + 9000 cos(v)*
—6480 cos(v)* — 3600 cos(v)? — 1800 v* + 809 v* 4 2880 cos(v)® — 2880 cos(v)”
—8640 cos(v)® + 7560 cos(v)5)/

<8 cos(v)®v? + 120 cos(v)® v* + 720 cos(v)°

—1800 cos(v)* — 420 cos(v)* v* — 60 cos(v)? v* — 120 sin(v) cos(v)? v*

—600sin(v) cos(v)? v + 126 cos(v)* v* — 60 cos(v)* v + 1440 cos(v)?
+435sin(v) cos(v) v¥ 4 600 sin(v) cos(v) v — 360 + 31 v* + 360 v2) (73)

For small values of |v| the formulae given by (68)-(73) are subject to heavy cancella-

tions. In this case the following Taylor series expansions should be used:

17273 58061 , 928762181 , 5566793867 196859105291

72576 | 76032 © 2490808320 © ' 44834549760 © 6097498767360
0799714119243, 176491634172663863

8100673360588800 ©  96342919523794944000
4913676130972033213 39589661903200572089 16

31022420086661971968000 ~  1240896803466478378720000
280997 58061 o2 1687695937 ot 1078024163 16440524041 ¢

181440 95040 T 6227020800 U~ 14010796800 © | 1172595916800 "
148316364059 |, 6827282630651881  ,,

105483668020440 © 12676699937341440000 *
169060768980582727 |, 60477846614652841307 16

2760858936300104640000 ©  3102242008666197196800000
33961 58061 , 589105331 1363181447 4 20552199571 ¢

181440 T 190080 U~ 6227020800 © T 112086374400 ©  15243746918400 ©
1079417169811, 12863028425460287

20274183401472000 240857298809487360000 *
1833852717523296121 14 76765303497434207 16

77556050216654929920000 v 21694000060602777600000 !

0 =

1=

by = —
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173531 58061 , =~ 47009791 29800801 4 6264867143 ¢

5= 781440 665280 © | 6227020800 | 14010796800 © | 9700566220800
1662548783477, 9930630794620043  ,,

* 10137091700736000 * 240857298809487360000 *
181124896891621531 14 42359250984577014973 16

19389012554163732480000 * 21715694060663380377600000 *
45767 58061 61409317 256452461

4= 725760 | 5322240 U T 24908083200 | 448345497600
54602191981 . 88336017061 .,  5123418702332051

126824913715200 * * 3243360344235520 963429195237949440000 *
280280526557119531 14 9830407697358330991 16

310224200866619719680000 © ' 86862776242653521510400000 *
58061, 2399921 3552850 g

T 63866880 7178291200 © 99632332800 ©

a9 = . (74)
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Appendix C

The eight-step ninth algebraic order method developed by Jenk-

ins [36]

31511
LTEj = h''| ———
7 {518400

(@) + o

o [31511 d
l
{31511 _

25920 (éég( ))

31511 [ &2 @
10368 \ dz2®\"
d2
(@) 738(2)

50 (v @)

, (x))zy (o) +
p

(e

3456

31511
8640

315611 ( d

5184 \dx
6648321
518400

5325359 [ d
259200

o (52 @) (v @)

3wng@0&%y@0 d?

3240 priCls
913819 ( d°
518400 \ dao®
4
6480 \ dz®
d’ d
64800 (553g(w)) oY@+

(@) (@) e+

da3
5325359 d? d
250200 ° (@) y (z) <ﬁg (I)> P

2
d? 31511
@) ¥ o+ S

d?
g;gg(x)

31511

31511

220577
12960

4
dxg

913819
64800

G?y(x) +

)y<x>+
L8151 (&
6480 \dz3®\’
d 31511
dxv

1354973
259200

<x>)2 (@) +

)y (@) froE o) +

31511
8640

@)+

<x>)3 L@+

31511
5184
976841

259200

(z) +

£ (v

31511
103680

‘g (x)y(z)

31511

51840 (g (90))2 y (I)}

(g @)’y ()

e+ 22
d4
(dz4b v
(g(@)y () —
31511

s £y (@) (4 (w))z

976841 [ & @)L
259200 \ dn® " ) dz”

€@ (v @) 1o

1354973
129600 &Y

31511
103680 &\°

31511 (&
518400 \ dzs® '\’

@y (s

d
s (gvte
220577 ( d?

\::;/
“
S

=
+
Q

31511
3456

64800 \ 3%\’
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518400 518400 ©

+31511 (g (.I))2 (%y (L)) %g () + z;g;é (8 (J))g (%y (L)) %g (x)

. 31511 (& (x))sy(‘r) + 6648821 (2)y (x) (%g ($))

6480
31511 ; d? 913819 db
10363 (g (I))Jy (z) @g (z) + 518400 g(@)y (z) @g (z)
1354973 9 d* 1544039 [ d? _ d* .
259200 (g(2))y (2) @g (z) + 259200 (@8 (z) )y (=) @3 (z)

+% (%g (x)) (%y (x)) %g (z) + % (%g (x)) y (2) %358; (:1:)} (75)
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The ten-step eleventh algebraic order method developed by Jenk-
ins [36]

3055417 3055417

_ 12 6 (. 5 o () o (e
LB = h {53222400 V(@) + Se0a00 & & (@)Y (@)

58052923 / d? 3055417 [ d d

4 — PR ~ PR —_—
o {10644480 (deg(x)) ¥ (@) + 7771080 (dxg(x)> ¥ @

3055417 ,
3518160 8 () y(r)}

3055417 d d 3055417 [ 8 d
o {443520 g () (da;Y(”’)) 2% 0 66112 (dzﬁg(x)) el
113050429 dir(”) 2 BOT2042L (L 2 @)
6652800 \dz1®\ )V T 661120 \ @ ®\ ) Y
3055417 4 58052023 . d
+2661120 (g(x)y (v) + 3661120 & (z)y (x) L (1/)}

, [3055417 d & 479700469 [ d° d
2 . . _ . . 3 _
o [ ss701 5@ (de(l)) 2® )+ S6611200 (dﬁ“”) ¥ @

3055417 4 3055417 [ d d d?
+aptes @'y @+ T (£60) (£ @) 76 @

3055417 w2 d d 3669555817 [ d? 2
95080 (8 (1) ((T’ (”) & TSm0 (rg (”)) ¥ (o)

LTR02UO63 (&0 N 9639521 (d N
dz68 )Y dz® ) Y gt

53222400 8870400
39720421 d 2 113050429 g
7887040 © )y (@) (@g m) Wg(w)y (z) e (z)

58052923 ) 2
Traoso @)Y @ 758 @)

ngiﬁf @) (405 @) 5@

+G

dx dx

479700469 d & 730244663 d
13305600 & @) (@y (m)) 2278 )+ 511200 8 @)Y (0) 358 (@)
131382931 [ d 2 70274501 ( d°
1663200 (%g (I)) ¥ (@) + 36611200 (ﬁg (I))y(‘”)

3055417 d d? d
s e@) (100 (@) fe) +
223045441 iz i, id
1330560 (d.ﬁg(wo (dx’ (x)) 78 (@)

3055417 i;()gi () 4 3055417 d77(,) 4
88704 \adz®") a7 aas800 \dat®\ ) @\
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3055417 5 39720421 [ d? d*
Soniog @)y @)+ S () v @) )
T 01 ) () + Aoy 4y a) s 0
A (@) (59 @) ) + e o 0)y (o) (et () Ao (o)
o @) (v @) @)

e GOy @ (e @) + S 6@y @) s ()
2270174831 (i ()) v )i

dxg o

13305600
986899691 ( d N o @
13305600 \dz® " ) Y\ 458

39720421 N >
ey E@)y @) <%g <x)>

3055417 d d ® 3055417 fd d
e @ (v @) (e + e e (4o @) 8 (0)

22017483t (o :
13305600 &Y 2°

e+ L @) (v @) (£50)
@)+ o (@) () e (o))

@ 3669555817 ) 2N
L (z) + 53292400 (g(2)7y (x) (@8 (T/))

3055417 d 8
T ooe11n @) ( Y (%)) 8@

SO (L (0) 5 (o) s () + T2 d—() ()ds (@)
5322240 \ dz® )Y\ G T 35500 \ de d 58\’

3
58052003 (o £+
985600 \ da2® dxo
51942089 [ d? d° 3055417 [ d 2 d*
3548160 (Eg(”))ymﬁg @)+ ~10 (%g(‘ )) v (@) e (@)

21387919 d d ds 3055417 &3 d d*

s (52 @) (v @) e+ e (@) (v @) e @
94717927 [ d d &2 2
P (@) (v @) (e @)

| 333040453 (d ., *rd () & ()
2661120 \dz® dz” ) ax3® "

3055417 [ d ‘ 70274591 e
190080 (%g( )> (@) + 6611200 8 W)Y (@) gme (@)
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% (8(2)y (2) %g () + % (g (2))y (x) C;L;g (z)

+% g(2)y (2) (%g (z))2 + % (g () (%y (.r)) C;L;g (x)
o a0) (v s (o)

OO 0 () g o)+ ot ) (v @) (e ) )
o) (v @) (e s 0

g @)y () (s (0)) 16 )

39720421 bz £~
ooy 8070 (e @) (o)

3055417 [ dv° 3055417 [ d° d
53222400 (dxwg(x)) ¥(#) + 5359010 (@g (‘7")) ¥ @
3055417 ( d2 ’ 3055417 ( d* ’

78848 (@g (x)> ¥(#) + 553110 (@g (x)> v()

1078562201 (N oy (L
5322240 \dz® )Y gpat
d? 3055417 .
728 (@) + paoooion @)y (I)} (76)
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The twelve-step thirteenth algebraic order method developed by
Jenkins [36]

12995034463 12995034463
LTEj; = ht | ittt
o {237?08976000 ¥(#) + 33565568000 C & (@)Y (@)
12995034463 [ d d 208885792649 [ d?
5 - _ _ .
¢ [5660928000 (dxg(x)> 2" ™) * 33065568000 <d$2g(x)>} (@)
12995034463 ) . [208885792649 &2
11321856000 & () Y(I)} o { 6793113600 & @)Y (@) gz (@)
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The new proposed method developed in paragraph 3.1 (see in
Appendix B for details)
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The new proposed method developed in paragraph 3.2
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