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Abstract Objects that are described by attribute vectors often need to be ranked. A
popular approach not requiring subjective assumptions ranks the objects on the basis of
their average rank in the linear extensions of the induced partially ordered set, or poset for
short. Since the exact computation of average ranks in posets with many incomparable
objects is infeasible with current technology, approximations are required. In this paper
we introduce a new formula that approximates the average ranks more accurately than
presently known formulae.

1 Introduction

In many contexts objects such as chemicals need to be ranked on the basis of objective
criteria. The emergence of initiatives aimed at protecting the environment, such as the
REACH (Registration, Authorisation and Restriction of Chemicals) project of the Euro-
pean Union [1], have recently increased the need for such ranking methods. In computer
models, objects such as chemicals are typically represented as attribute vectors. Two ob-
jects are comparable when the attribute vector of the first object is componentwise smaller
than or equal to, or larger than or equal to the attribute vector of the second object, but
remain incomparable when there is no such relationship. The fact that different objects
can have the same attribute vector causes equivalence classes to arise. Since there is no
way to discern objects residing in the same equivalence class, one will often opt to retain
only one representative object in each class. The set that consists of these representative

objects is a partially ordered set, or poset for short.
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Objects that are incomparable are considered as obstacles in obtaining a ranking. A
popular approach that is not based on subjective assumptions and that overcomes this
problem, computes the average rank of each object in the linear extensions of the poset.
A linear extension of a poset consists of the set of objects equipped with a linear order
that is compatible with the partial order of the poset. Although algorithms to compute
the average ranks are known [11, 12], due to their exponential nature they are not suitable
for posets with many incomparable objects. As a consequence, one often has to resort to
approximative approaches. Markov chain Monte Carlo methods allow to sample uniformly
at random from the set of linear extensions of the poset [9]. However, considerable time
is required to generate a random linear extension and a large sample of linear extensions
is needed to allow for the estimation of the average ranks [15]. Albeit at the expense of
accuracy, in many applications fast approximations are needed. Approximative formulae
using simple features of the poset to approximate the average ranks have already been
developed [6, 7] and are used in practice. In this contribution, we introduce a new formula
based on approximations of the so-called mutual rank probabilities. For larger posets, it

turns out to perform considerably better than the formulae presently used.

2 Preliminaries

A binary relation <p on a set P is called an order relation if it is reflexive (z <p x),
antisymmetric (¢ <p y and y <p @ imply = =p y) and transitive (z <p y and y <p z
imply  <p z). If for an order relation it furthermore holds that every two elements are
comparable (x <p y or y <p x), it is called a linear order relation. If neither  <p y nor
x >p y, we say that « and y are incomparable and write  ||p y. A couple (P, <p), where
P is a set of objects and <p is an order relation on P, is called a partially ordered set or
poset for short. The size of a poset (P, <p), denoted as |P|, is defined as the number of

elements in P.
We will assume, as described in the introduction, that each object © € P can be de-
i € {l,...,k}. Each set Q; is equipped with a linear order relation <;. This reflects

the fact that ¢; can be considered as a true criterion: if ¢;(z) <; ¢;(y), then z is at most

as good as y with respect to criterion ¢;. We say that z is smaller than or equal to y,
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denoted as @ <p y if ¢i(z) <; ¢;(y) for all + € {1,...,k}. Without loss of generality, we
assume that all attribute vectors are unique. If this is not the case, we choose an arbitrary
representative element from each equivalence class of objects having identical attribute
vectors. The relation <p is an order relation; it is the restriction to P of the product
ordering on (Qy X ... X Q.

Let @ be an ordinary set and R and S be two binary relations on . If R C S,
then (@, S) is called an extension of (@, R). A linear extension of a poset (P,<p) is an
extension (P, <;) for which < is a linear order. Let us denote the set of linear extensions
of (P,<p) as E(P). The rank probability P(rank(z) = i) of an element x € P is defined
as the fraction of linear extensions in which element = € P has rank i, or in other words
have exactly ¢ — 1 elements that are smaller than z. The average rank p(zx) of an element
z € P is then defined as the expected value of the rank of x, i.e.

1P|

plz) = Zi - P(rank(z) =1).

Finally, the mutual rank probability P(x > y) of two elements z,y € P is defined as the

fraction of linear extensions in which element z is ranked higher than element y.

3 Approximating the average ranks

3.1 Known formulae

Consider a poset (P, <p). The original local partial order model (LPOM) developed by
Briiggemann et al. [6, 7] obtains a simple approximation of the average rank of an element
x € P by considerably simplifying the structure of the poset. Let us denote the set of
elements incomparable to « as I(z) and its cardinality as i(x), the set of elements smaller
than 2 as S(z) and its cardinality as s(z), and the set of elements larger than = as L(x)
and its cardinality as [(z). The approximation considers all elements from I(x) as isolated
elements, i.e. as elements that are incomparable to all other elements of P, and the sets
S(z) and L(z) as linearly ordered. Furthermore, the elements in I(z) are considered to
be either all ranked before z or all ranked after x in linear extensions of (P, <p). When
denoting the size of (P, <p) as n, the average rank is of x € P is approximated as

pu() = [s(x) 4+ 1] [n + 1] . (1)

n+1—i(x)



-222-

Very recently, Briiggemann et al. [3] have introduced an extended local partial order
model approximating the average rank of z € P as
S(x +1
pr(e) =slo) + 1+ 3 OO )

yEI!) |+1

Note that in the specific case where the elements in I(x) are isolated elements, expres-
sion (2) can be rewritten as

i(x) [s(x) + 1]

n—i(x)+1’

which simplifies to the approximation in (1). The extended local partial order model can

s(x) +1+

thus be seen as a generalization of the local partial order model.

Note that, given a poset (P, <p), the approximations in (1) and (2) both have a time
complexity of O(n?).

3.2 New formula

In this section we introduce a new formula that approximates the average rank of x € P.
Let us first put forward an interesting relationship between the average ranks and mutual

rank probabilities in a poset.

Theorem 1 For a poset (P,<p) where P = {p1,p2,...,pn} and p, € P, the following
relationship holds between the average ranks and the mutual rank probabilities:
n n
) =Y i Prank(p) =i) =1+ Y _ Py > p;).
i=1 j=1
Proof We will prove a slightly more general identity. Let A be any list of m permutations
of n different symbols py, pa, . .., p,. Denote by nf’ the number of times symbol p; occurs

at position i in A, and by n,,,~,, the number of times symbol p; occurs after symbol p; in A.
We want to prove that for any symbol p;, € {p1,p2,..., P} it holds that

n n

e T
g i-nt'=m+ E Npy>p; - (3)
=1 =1

Dividing both sides by m, the left-hand side describes the average position of symbol p,

in A, whereas the right-hand side represents the sum of the elements in column [ of the
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matrix B with elements b;; = P(p; > p;|A) for all 4,7 € {1,2,...,k} where i # j, and
with b; = 1 for all i € {1,2,...,n}.

The proof goes by induction. First let n = 2 and denote the 2 symbols as p; and ps.
Suppose A contains m; permutations (pi, ps) and my = m — my permutations (pg,pi).
We have nl" = nb? = my, nb' = ni® = ma, Npyp, = M1, Npyspy, = Mo and my + me = m.

It then holds that

2
E it =nt+2-nh =my +2-me=m+my
i=1

2
E ient? =0 +2- 0 =my+2-my =m—+my
i=1

yielding
2
E it =mny g,
i=1
and
2
i-nP? = ]
E LNyt =N Ny
i=1

Therefore identity (3) is satisfied for n = 2.

Now suppose (3) is satisfied for some n > 2. We will now prove that this is also the
case for n+ 1. Let A be the given set of m permutations of n+ 1 symbols. Denote any of
these symbols as x and the remaining symbols as p1, po, ..., p,. With each permutation
in A, define a new permutation of n symbols py,ps,...,p, by leaving out symbol z.
Denote by A’ the list of m permutations obtained in this way. Let us take any symbol

P1
i

o € {p1,p2,-..,pn}. Denote the number of times p; occurs at position ¢ in A’ as n?" and

the number of times p; occurs after p; in A as n'y~,,. In A’ identity (3) holds:

n n

- mwr __ !
E 2~n1—m+g N py>p; -
i=1 j=1

We add to the permutations in A’ the symbol z such as to retrieve the permutations
in A. Suppose that p; is at position ¢ in a permutation in A’, and p; comes after x in
the corresponding permutation in A, then we have one permutation less in A with p; at

position ¢ and one permutation more with p; at position 7 + 1. Hence, it follows that
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n+1

n
K —
E 1en; = g LN A Ny -
i=1 i=1

= Nyp,>p, for all p; # p; and p; # x. Hence,

Moreover, n!

PI>Pj
n+1 n n
nft =Y i-n + =m+ +
Leny = LG T Npypsg =M Npy>p; T Mp>a -
i=1 i=1 J=1

Since x and p; are any two symbols from the n 4+ 1 symbols, expression (3) is valid for

n+ 1. O

As Theorem 1 points out, computing the average rank of an element x € P it is
equivalent to computing 1 plus the sum of the mutual rank probabilities P(z > y) for all

y € P. On the basis of this relationship the average rank of x can be written as

pr) =1+ Pla>y)=s)+1+ Y Pla>y). (4)
yeP yel(x)
Using an approximation for P(z > y), with @ # y, suggested by Briiggemann et al. [4],

namely
o Is(x) + 1] i(y) + 1
PE>9) = T ) + 0+ 1@ + @) + 1

one can therefore approximate the average rank of z € P as

()

[s(2) + 1] [I(y) +1]
() + 1 I(y) + 1] + [1(x) + 1] [s(y) + 1]

pr(z) =s(z)+1+ > ’ (6)

y€l(z)

Although p(z) turns out to approximate p(z) better than the known formulae (see
Section 4), only elements comparable to x or y are taken into account in the approximation
of the mutual rank probabilities. One could expect to obtain a better approximation when
incomparable elements would also be considered. The principal idea behind our enhanced
formula is therefore to substitute s(z) and I(z) by quantities that incorporate incompa-
rable elements. In order to account for these elements we will use the approximation of

the mutual rank probabilities in (5). Hence, let us define for = € P

s(x) + Z 75(L > 2)

zel(x)

I(z) + Z Plz> 1),

zel(x)

and introduce the approximation
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5a) + Ulity) + 1)
R N RS PES F R ES TR

Instead of counting the number of elements smaller than z, as s(x) does, §(x) approxi-
mates the total probability of elements to appear before z in a linear extension by using

the approximated mutual rank probabilities in (5).

When we denote the size of the poset as n, this approximation has a time complexity

of O(n?), which is precisely the complexity of the known formulae.

4 Results

In order to compare the accuracy of the approximation formulae p; and ps with that
of the known formulae based on the (extended) local partial order model, the following
experiment is carried out. All posets of size n € {4,...,10} are enumerated using the
algorithm of Brinkmann and McKay [2]. For each poset, all average ranks are computed
using the exact algorithm developed by the present authors [12] and compared with the

results obtained by the approximation formulae.

As an indication of the accuracy, the mean absolute errors of the approximate average
ranks, averaged over all posets of size n € {4,..., 10}, are shown in Table 1. Additionally,
in Table 2 the maximal absolute difference between the exact and approximate average
ranks, averaged over all posets of size n € {4,...,10}, is shown. Although for small n
the formula pp based on the extended local partial order model has the smallest mean
absolute error, for n > 9 the mean and maximal absolute error of ps become smaller. Al-
though the exhaustive experiments only cover posets on up to 10 elements, a clear trend

is visible in Table 1.

In Figure 1 a box plot is shown with the mean absolute errors of the approximate av-
erage ranks for all posets of size 10. Although the difference in accuracy between the new
formulae and the formula pg is still limited for this poset size, the plot clearly indicates
there are less posets with a high mean absolute error with formula ps in comparison with

formula pg.
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Table 1: The mean absolute errors of the approximate average ranks, averaged over all
posets of size n € {4,...,10}.

n AL PE P P2

4 0.1026 0.0057 0.0115 0.0107
5 0.1736 0.0195 0.0308 0.0267
6 0.2441 0.0393 0.0536 0.0473
7 0.3170 0.0647 0.0780 0.0705
8 0.3917 0.0944 0.1029 0.0958
9 0.4690 0.1281 0.1281 0.1226
10 0.5497 0.1658 0.1533 0.1505

Table 2: The maximal absolute errors of the approximate average ranks, averaged over
all posets of size n € {4,..., 10}.

n AL PE N P2

4 0.1656 0.0094 0.0208 0.0182
5 0.3151 0.0391 0.0646 0.0514
6 0.4650 0.0853 0.1204 0.0992
7 0.6310 0.1462 0.1846 0.1545
8 0.7973 0.2158 0.2503 0.2147
9 0.9694 0.2927 0.3178 0.2780
10 1.1458 0.3755 0.3886 0.3433

Figure 1: A box plot with the mean absolute errors of the approximate average ranks (a)
pr. (b) pp, (c) pr and (d) po.
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Table 3: The mean absolute errors of the approximate average ranks, averaged over 100
posets of size n with n € {10,...,20}.

n fr PE f1 P2

10 0.3397 0.1410 0.1674 0.1302
11 0.4043 0.1752 0.1970 0.1537
12 0.4750 0.2135 0.2259 0.1825
13 0.5600 0.2681 0.2775 0.2294
14 0.7437 0.3553 0.3152 0.2567
15 0.7851 0.3867 0.3725 0.3019
16 0.8787 0.4507 0.3587 0.2954
17 0.9629 0.4841 0.4474 0.3673
18 1.0576 0.5630 0.4582 0.3688
19 1.1706 0.6363 0.4995 0.4090
20 1.2300 0.6930 0.5287 0.4221

Furthermore, we generated 100 posets of size n € {10,...,20} by drawing attribute
vectors uniformly at random from {1,...,20}* (see e.g. [10]). Although this procedure
will not generate each poset with equal probability, one can expect the generated posets
to be more representative for the posets induced by data sets encountered in practice.
For each poset, the exact average ranks are computed and compared with the approxi-
mations. As Table 3 shows, formula ps performs slightly better for n = 10 compared to
the first experiment where all posets of size 10 are generated. Moreover, for larger n the

difference in accuracy between py and pp increases, in line with the trend visible in Table 1.

Finally, we consider six real-world data sets from literature (see Table 4) for which
the average ranks of the poset can be computed exactly. From Table 5 it is clear that
the best approximations are again obtained by formula ps, except for data set [5] where
slightly better results are obtained by formula pg, and two data sets where formula p;

obtains the best results.

5 Conclusion

We established a new formula to approximate the average ranks of the elements of a poset
based on an interesting relationship between the average ranks and the mutual rank prob-
abilities. We verified the accuracy of the formula by carrying out exhaustive experiments

on posets of size up to 10, by sampling posets of size up to 20 and by considering six real-
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Table 4: The number and type of the objects, the number of criteria and the number of
incomparable pairs, both absolute and relative to a poset of given size with only incom-
parable elements, for six real-world data sets from literature.

data set || objects # crit. | # inc. | rel. inc.
[14] 12 high production volume chemicals 4 43 65, 1%
8] 15 online databases 5 68 64, 8%
[13] 17 pesticides 4 116 | 85,3%
[5] 18 fish tests 6 98 64, 1%
[16] case c || 31 types of fruit 3 288 | 61,9%
[11] 33 regions in Baden-Wiirttemberg 4 379 71,8%

Table 5: The mean absolute errors of the approximate average ranks of the six real-world
data sets in Table 4.

data set Pr ) P1 P2
[14] 0.5266 0.2165 0.2497 0.2128
8] 1.1386 0.3962 0.3507 0.2757
[13] 1.1182 0.6168 0.4118 0.2194
[5] 0.7988 0.4100 0.4830 0.5485

[16] case ¢ 2.5389 1.4745 0.6517 0.9072
11 2.6908 1.3416 1.0034 | 1.2334

world data sets for which the approximations can be compared with the exact average
ranks. For posets of size n > 9 our formula turns out to perform consistently better than

presently known formulae without requiring additional computation time.
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