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Abstract

Using induction on the size of the graphs, Hosoya polynomials of several types of
graphs consisting of concatenated pentagonal rings are obtained and studies in this paper.

1. Introduction
We follow the terminology of [1-4]. Let G be a finite connected graph. The Wiener
index of G = (V, E) is defined as :

W(G)=Y du,v),

u,velV’
where d(u,v)is the minimum of the lengths of all u-v paths in G. Hosoya polynomial (also
called Wiener polynomial [4] ) of G is defined as :
H(G;x)= Z X

u,vel

It is clear that

H(G;x) =Y d(G,k)x",

k=0
where d(G, k) is the number of pairs (u,v) of vertices of G such that d(u,v)=k.
Hosoya polynomial of a vertex v of G is defined as [4]
H(v,G;x) =Y d(v,G,k)x"

k=0

in which d(v,G, k) is the number of all vertices u €V, such that d(v,u) =k . It is clear that
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H(Gx) =3 Y HO,G)+ 2 p.

vel
where p is the order of G .
The Wiener index of G can be obtained directly from the Hosoya polynomial of G as

follows:

W(G) = % H(Gx) |,

The Wiener index is helpful to build a correlation model between the chemical
structures of various chemical compounds. Indeed, Wiener index is the most celebrated
topological index that identifies the characteristics chemical compounds.

In [5,6], Rao, N.P. and Prasanna, A.L., obtained formulas for Wiener indices of
chemical graphs formed of concatenated 5-cycles (pentenes). It is clear that Hosoya
polynomial H(G;x) gives additional information about the distances in G. Thus, in this paper
we obtain Hosoya polynomials of graphs constructed from chains of pentagons, and study
some of their properties.

Given a collection of connected graphs, one may build bridge and chain graphs out of
them. Mansour and Schork [7] the authors shown how the Wiener, hyper-Wiener, detour and
hyper-detour indices for bridge and chain graphs are determined from the respective indices

of the individual graphs (for other topological indices, see [7,8] and references therein).
Definition 1.1: The sequence {d(G,k)}Z;O is called unimodal if, for some index h,
d(G,0)<d(G,) L ... (G, h) 2d(G,h+1)>.. >2d(G, &), and we call it is strong-

unimodal if inequality holds without equality .
2. Straight Chaining of Pentagons

A straight chaining [5] is a graph consisting of m pentagonal rings, every two
successive rings have a common edge, forming a chain denoted by G(m,S) as shown in Figure
2.1. It is clear that the order of G(m,S) is 3m+2, the size is 4m+1, and the diameter is m+2,

m>2.
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Figure 2.1: The graph G(m,S)
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The Hosoya polynomial of the graph G(m,S) is obtained in the next theorem.
Theorem 2.1: If G(m,S) is the straight chaining of pentagons of order 3m+2, m>5, then
H(G(m,S);x) =Bm+2)+(4m+1)x+(Tm—2)x> +(Tm—8)x* +(7m—14)x*

m+l
+@Bm=22)x" + D [9(m—k)+ 21" +4x"2 L Q.10

=6
Proof: We use mathematical induction on m, m>5. For m=5 we find, by direct calculation,

H(G(5,8);x) =17+21x+33x> +27x> + 21x* +18x° +12x° +4x7 .
Thus, (2.1) is true for m=5 . We assume that (2.1) is true for m=r>5 and prove that it is true
for m = r+1. It is clear from Fig.2.1, that

H(G(r+1,5);x)=H(G(r,S);x)+ F(x),
where

F(x)= ZBZH(WI.,G(r+1,S);x)—(2x+x2) S

=

in which w; =v,

a oWy =1y, 5, and wy =u,, , (see Fig.2.1, putting m = r+1).

Then, we find that

r+l
H(w,G(r+1,8);x) =1+2x+3> x* +2x"2

k=2
4 r+2
H(w,,G(r+1,8);x) =1+2> " x" +3> " x +2x"7
k=1 k=5
and

5 r+2
H(w,,G(r+1,8);x) =1+2x+3x> +2) x* +3% x* +2x .

k=3 k=6
Thus
H(G(r+1,8);x) = @r+2)+(@r+D)x+(7r—2)x" +(7Tr=8)x’ +(7r —14)x*
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r+l
+(8r=22)x° + Y [9(r —k)+ 21]x* +4x"7 + 3+ 4x+7x7 ++7x°

k=6

r+l
+7x" +8x° + 9Zxk +8x" +4x"
k=6

=[3(r+ 1)+ 2] +[4(r + D) + 1 +[7(r +1) = 205 +[7(r + 1) — 8]
T+ 1) —141x* +[8(r +1)—22]x° + §[9(r +1—k)+21] X +dx
k=6

Hence , (2.1) is true for all m, m>5 .
This completes the proof . ||
Remark 2.2: Hosoya polynomials of G(m,S) for 1<m <4 , are obtained as follows :
. H(G(,8);x)=5+5x+5x" ,
. H(G(2,5);x) =8+9x+12x" +6x° +x",
. H(G@3,S8);x) =11+13x+19x* +13x° + 7x* +3x°,
° H(G(4,8);x) =14+17x+26x" +20x° +14x* +10x" +4x°.
Thus we have obtained H(G(m,S);x) for all positive integers m.
We notice from the formula (2.1) that the sequence {d(G(m, S ),k)}::o2 is strong-
unimodal, at index #=2, for m>2, m#8,11, because
d(G(m,S),0) <d(G(m,S),1) <d(G(m,S),2) >d(G(m,S),3) > ... >d(G(m,S),m+2), and
d(G(8,S),4)=d(G(8,S5),5), d(G(11,S),5) =d(G(11,5),6). It is not palindromic. Also we

m+

2 . .
+, s decreasing for m=>2, m=8,11.

notice that the sequence {d(G(m,S),k)}

Finally, we obtain the Wiener index of the straight chaining of pentagons G(m,S), by
taking the derivative of H(G(m,S);x) with respect to x then putting x=1. Thus, we get

1 .. . .
W(G(m,S)) = E[3m3 +21m? 76m+14] . This is the same result obtained in [5].
3. Alternate Chaining of Pentagons
Definition 3.1: An alternate chaining [5] G(m,A4) is a graph consisting of m pentagonal

rings, every two successive rings have a common edge, forming a chain as shown in Figure
3.1.
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Figure 3.1: The graph G(m,A)

The order of G(m,A) is 3m+2 , the size is 4m+1 , and the diameter is fm; 2J.

The Hosoya polynomial of the graph G(m,A) is obtained in the next theorem.

Theorem 3.2: If G(m,A) is an alternate chaining of order 3m+2, m> 2, then

H(G(m, A);x) = Bm+2)+@m+1D)x+(Tm—=2)x> +(Tm—8)x’

+i(6m—4k+5)xk, ..... (3.1

k=4
where 6 = L%J

Proof: The relation (3.1) will be proved by mathematical inductional on m. By direct

calculation, one can easily show that
H(G(1, A);x)=5+5x+5x" ,
H(G(2,A4);x) =8+9x+12x* +6x° + x*,
H(G3, 4);x) =11+13x+19x% +13x° + 7x* +3x° .
Therefore , the relation (3.1) is true for m = 1, 2, and 3.
Thus, we assume that (3.1) is true for m =7 >3 and consider G(r+1,4) .
It is clear from Figure 3.1 (putting m = r+1), that
H(G(r+1,A4);x)=H(G(r,A);x)+ F(x),

where
3
F(x)=> H(w,G(r+1,4);x)—(2x+x"),
i=1

in which W, =v5,.5)5 s Wy = V3,50 ,a0d Wy =15, foroddr,
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and
W= Vigpayz s Wa = U0 >a0d Wy =1, foreven r.

If r is odd, then

3r+l

2 3r+3
H(w,G(r+1,4);x) =1+ 2x+43x> +3x° +2) x* +x 2,

k=4

3r+3
3r+5

2 2
H(w,,G(r+1,A);x) =142 x* +x 2,

k=1

and
3r+3
2
H(wy,G(r+1,4);x) =1+ 2x+43x> +2 " x* .
k=3
Thus
341
2
H(G(r+1,A);x) = Br+2)+(4r+Dx+(Tr=2)x* +(Tr —8)x" + z (6r—4k +5)x*
k=4
3r+l
N 3r+3 3r+5
+3+4x+ 7 + 475 +6 D xF +5x 2 +x 2
k=4

=[3(r+1)+ 2] +[40 + 1)+ x +[7(- + 1) = 2]x° +[7(r +1) = 8]x°

+§[6(r+1)—4k+5] x*.

If r is even, then

3r+2

2 3r+4
Hw,G(r+1,A);x) =1+2x+43x" +2x° 42> x +x 2,

k=2

3r+4

2
H(w,,G(r+1,A);x) =142 x*,

k=1

and

3r+2

2
H(w;,G(r+1,4);x) =1+ 2x++3x> +3x° +2 D" x* .

k=4

Thus
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3r+2

H(G@r+1,4);x)=Gr+2)+@r+D)x+(Tr-2)x> +(7r -8)x’ + 22: (6r —4k +5)x"

k=4

3r+2

2 3r+4
+3+4x+7x7 +4+7x° +6 ) xF +3x 2
k=4

=[3(r+1)+2]+[4(r + 1)+ 1]x+[7(r +1) = 2]x* +[7(r +1) - 8]’
3

r+4
+ZZ: [6(r+1)—4k+5] x*.
k=4

Therefore, the relation (3.1) is true for all m, m>2 .
This completes the proof. W

3m+2

We notice that the sequence {d(G(m, A),k)}fzo, 5 =L J is strong- unimodal at
index /=2, since d(G(m, A),0) <d(G(m, A),1) <d(G(m, A),2) > d(G(m, A),3) > ... >d(G(m, A),d),
and its decreasing for all 2<k < t#J .

Finally, we can obtain the Wiener index of the graph G(m,A4), by taking the derivative
of H(G(m, A);x) with respect to x, and then putting x=1. Then, we get

1[l8m3 +45m* +58m] , m is even ,
W(G(m, 4)) =
é[lSm3 +45m* +58m—1] , m is odd .

This is the same result obtained in [5].

Now, we find the average distance of the pentachain graphs G(m,S) and G(m,4).

3m’ +21m* —6m+14
Bm+2)(3m+1)

_ 3m+2)"
D(G(m,S)) —( J W(G(m,S) =
2

and

_ 3m+2)" 3 2 _
D(G(m, A)) = W(G(m, dy= 1 A5m +38m=1 =
) 4Gm+2)(Bm+1)
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_ 3m+2Y" 3 2
D(G(m, A)) = W (G, Ay)= ST HASM+38m i even.
) 4Gm+2)(3m+1)

Hence, we deduce that for all values of m>2 , D(G(m,S))< D(G(m, A)), and the

equality holds at m=2,3.

4. Double Row Pentachains

In this section, we obtain Hosoya polynomials of the pentachains in two rows.
Following N.P.Rao and A.L.Prasanna [6], we denote the graphs consisting of two rows of
straight chains with m 5-cycles in the two rows combined as shown in Figure 4.1, by

G(m,S,) and G(m,S,).

v Va V3 V4 Vm Vinsl vy

V, V Vv
AP ERPI —& —0—@V 211
W, W W W W o W,
W e—e-e 09— —LO W5 w, - Wil
W -
2m-1
A s -e
u; 2 u; Uy Uy, Ui 1 Uy Uz Uy UsmU2mel
-a- G(m,S))
Figure 4.1.

From Figure 4.1., we notice that order of the graphs G(m, S,) and G(m,S,) are 4m+3
and Sm+3 respectively, the size of them are 6m+2 and 7m+2 respectively, and the diameter of
both are m+2.

In the next theorems, we given the Hosoya Polynomial of the graphs G(m,S,) and
G(m,S,).

Theorem 4.1: For m > 5, we have
H(G(m,S,);x) = (4m+3)+(6m+2)x+(13m—2)x* +14(m-1)x’
+(14m—=27)x" + (15m—42)x* + 4mz+1[4(m —k)+9]x* +6x"?
k=6
Proof: First we can partition the vertex set of G(m,S,)into three subsets V, U, and ¥, such
that V={v,,v,,v;, .. .V}, U={u,,uy,uy, . yu, 3, and W={w,w,,wy, .. ,wy,, W, }.
From Figure 4.1. (a), we find that the Hosoya polynomial of G(m,S,) can be obtained in

terms of H(G(m,S);x) as follows:
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H(G(m,S,);x)=2H(G(m,S);x)— D x4 3 x0,

Yw,w'elW Vel
Yuel

=203m+2)+2(4m+1)x+2(Tm—2)x* + 2(Tm—8)x’

m+l

+2(Tm—14)x* +28m—22)x> + 2 [9(m —k) + 21 ¢ +8x"*
k=6

—{i(2m+l—k)x" +(@Bm—-6)x’ +4'§(m+3—k)xk:|

k=0 k=6

m+2

Hm+D)x*+2) (m+3—k)x* .

k=3
=(4m+3)+(6m+2)x+(13m—2)x" +14(m—1Dx’ +(14m—27)x"
m+1
+(15m—42)x5+4Z[4(m_k)+9]xk 16" WA
k=6

Remark 4.2:
. H(G(I,S]);x)=7+8x+11x2+2x3,

. H(G(2,8,);x) =11+14x +24x* +14x° +3x*,

. H(G(3,85,));x) =15+20x+37x +28x* +15x* +5x°,

. H(G(4,S,);x) =19+26x +37x" +50x" +42x* +18x° +6x°.

We notice that the sequence {al(G(m,Sl),k)}:':o2 is strong unimodal for all 1<m <11
at index ~#=2, and for all m=13,14 at index A=3, but is not unimodal for all m>16.

Finally the Wiener index of G(m,S,)for m>2, is given by :

x=1

W(G(m,S,) = %H(G(m, $:%))

W(G(m,S,)) = %[sz +54m> +19m+30]. W

Now, we find the Hosoya polynomial of G(m,S,) in the next theorem:

Theorem 4.3: For m>5, we have
H(G(m,S,);x) = (5m+3)+(Tm+2)x +(14m—2)x" +(19m—14)x’ +112m—3)x*
m+1

+H23m—56)x" +5 [S(m—k)+13]x* +16x"*2.

k=6
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Proof: Let V=, s Vo Vo > U=,y 0, ooty 00,1} and
W ={w,w,,w,, ... ,W,,,}.From Figure 4.1. (b), we obtain :

H(G(m,S,);x)=2H(G(m,S);x)— D x/00 4 3" x0,
Yw,wel Vvel
YuelU

=20Bm+2)+2(4m+1D)x+2(Tm—2)x* +2(Tm—8)x’ + 2(Tm—14)x*

m+l

+2(8m—22)x" +2> [9(m—k) + 21" +8x""* = > (m+1—-k) x*
k=6 k=0

m+2
Hm+1)x" +6mx’ +(Om—8)x* +82 " (m+3—k)x* .

k=5
=(5m+3)+(Tm+2)x+(14m—2)x* + (19m —14)x> +11(2m—3)x*

m+1
+23m—56)x" +5) [S(m—k)+13]x" +16x"7. W

=6

By taking the derivative of H(G(m,S,);x) with respect to x and then putting x =1 , we
get Wiener index :

W(G(m,S,)) = %[ZSm3 +195m° +2m+96], m>2.
Remark 4.4:

. H(G(1,S,);x) =8+9x+12x> +6x° +x*,

o H(G(2,S,);x) =13+16x+26x" +24x" +12x*,

o H(G(3,S,);x) =18+23x +40x” +43x” +33x* +14x°,

o H(G(4,S,);x) =23+30x+54x" +62x° +55x* +36x° +16x°.

The sequence {a’(G(m,S2 ),k)}::o2 is strong unimodal at index ~#=3, for all 3<m<6,
and index /=4, for all 7<m <14, but is not unimodal for all 15<m<22. Finally, the

sequence {d(G(m, Sz),k)}::o2 is strong-unimodal at index /=6, for all m>24 .

Now, we denote by the graph consisting of two rows of alternate chaining with m 5-

cycles in each of the two rows, combined as shown in Figure 4.2 , by G(m,A").
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v v v
1 4 ' 4 ) (3m+1)/2
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u; Uy Us Uug Usm/2 u, uy Us
(a) m is even
P
Figure 4.2: The graph G(m,A )
. . P 9m+6
From Figure 4.2., we notice that order of the graphs G(m,A4 ) is 7|

size { ! 3n;+ 4-‘ , and the diameter Fm; SJ .

Also, in the next theorems, we given the Hosoya polynomials of the graphs G(m, 4)

which dependent on H(G(mA); X)and H(P,; X), where p = Fm; ZJ.
Theorem 4.5: (a) For m is even, m >4, we have
H(G(m, A );x) = %(3m +2)+ % (13m+4)x +%(27m —4)x? +%(33m —28)x°

3m/2

+(15m—23)x* + % (29m —68)x° +% > [9G3m—2k)+26]x"
k=6

+4x3m,/2+l .

(b) For m is odd, m >4, we have
H(G(m, A");x) = %(9m +7) +%(13m +5)x +%(27m —3)x’ +%(33m —23)x°

GBm-1)/2
+(15m—22)x* + % (29m —63)x° +% z [9(3m —2k)+29]x"

k=6

£10x3mD2 9y Gmid2

Proof (a): Let V={,v,v, ., VL'"H} s U=1{u,u,,uy,.., Us, }, and

1
2 2

W ={w,w,,w,,..,w, }.Thus
—+1
2
H(G(m, A");x) =2H(G(m, A);x)— D x4 3 xd00,
Yw,wew VvelV

Vuel

=23m+2)+2(4m+1)x+2(Tm—2)x* + 2(7m—8)x’
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3m/2+1

3m/2
2 (6m74k+5)xk72(37m+17k)xk+(m+1)x2+4mx3
k=0

=4
1 4 5 3m/2+1 ‘
+5(9m78)x +(4m—-8)x” + z GBm+4-2k)x" .
=6

=%(3m+2)+%(13m+4)x+%(27m—4)x2 +%(33m—28)x3

3m2
+(15m—23)x* + % (29m —68)x’ + % z [9(3m —2k)+26]x"

k=6

+4x3m/2+1 .

(b): Let Vz{v],vz,v3,... ,vw}, Uz{ul,uz,u3,... ,uw}, and

2 2

2

w —{wl Wy Wy e, Wy } . Then

H(G(m, A );x) =2H(G(m, A);x)— Yy x4 % x40,
Yw,welW YVvel
YuelU

=2(3m+2)+2(4m+1D)x+2(Tm—2)x> + 2(Tm—8)x*

(Bm+1)/2 (3m-1)/2 Im+1
+2 > (6m—4k+5x = Y ( —k)x* +(m+1)x
k=4 k=0
1 3(m+1)/2
+(4m+2)x° +E(9m—7)x4 +(@m=-6)x"+ Y (Bm+5-2k)x".
k=6

= %(9m +7) +%(l3m +5)x +%(27m —3)x* +%(33m —23)x°

GBm=1)/2

+(15m—22)x* +%(29m —63)x° +% > [9(3m—2k)+29]x*
k=6

GBm+1)/2

+10x +2xCmN |

Corollary 4.6: The Wiener index of G(m,A") is given by:

W(G(m,A")) = %[8 1 +234m” +424m—32], m iseven,

W(G(m,A)) =%[81m3 +261m* +487Tm+51], m isodd . |
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