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Abstract 
 

Using induction on the size of the graphs, Hosoya polynomials of several types of 
graphs consisting of concatenated pentagonal rings are obtained and studies in this paper. 

 

1. Introduction 

We follow the terminology of [1–4]. Let G be a finite connected graph. The Wiener 

index of G = (V, E) is defined as : 

,
( ) ( , )

u v V
W G d u v

�

� � , 

where ( , )d u v is the minimum of the lengths of all u-v paths in G. Hosoya polynomial (also 

called Wiener polynomial [4] ) of G is defined as : 
( , )

,
( ; ) d u v

u v V
H G x x

�

� � , 

It is clear that  

0
( ; ) ( , ) k

k
H G x d G k x

�

�� , 

where ( , )d G k is the number of pairs (u,v) of vertices of G such  that ( , )d u v k� . 

Hosoya polynomial of a vertex v of G is defined as [4] 

0
( , ; ) ( , , ) k

k
H v G x d v G k x

�

�� , 

in which ( , , )d v G k is the number of all vertices u V� , such that ( , )d v u k� . It is clear that   
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1 1( ; ) ( , ; )
2 2v V

H G x H v G x p
�

� �� ,  

where p is the order of G . 

The Wiener index of G can be obtained directly from the Hosoya polynomial of G as 

follows: 

1
( ) ( ; )

x

dW G H G x
dx �

� . 

The Wiener index is helpful to build a correlation model between the chemical 

structures of various chemical compounds. Indeed, Wiener index is the most celebrated 

topological index that identifies the characteristics chemical compounds. 

In [5,6], Rao, N.P. and Prasanna, A.L., obtained formulas for Wiener indices of 

chemical graphs formed of concatenated 5-cycles (pentenes). It is clear that Hosoya 

polynomial ( ; )H G x  gives additional information about the distances in G. Thus, in this paper 

we obtain Hosoya polynomials of graphs constructed from chains of pentagons, and study 

some of their properties. 

Given a collection of connected graphs, one may build bridge and chain graphs out of 

them. Mansour and Schork [7] the authors shown how the Wiener, hyper-Wiener, detour and 

hyper-detour indices for bridge and chain graphs are determined from the respective indices 

of the individual graphs (for other topological indices, see [7,8] and references therein). 

Definition 1.1: The sequence � � 0
( , )

k
d G k 	

�
 is called unimodal if, for some index h, 

( ,0) ( ,1) ... ( , ) ( , 1) ... ( , )d G d G d G h d G h d G 	
 
 
 � � � � , and we call it is strong- 

unimodal if inequality holds without equality . 

 

2. Straight Chaining of Pentagons 

 

A straight chaining [5] is a graph consisting of m pentagonal rings, every two 

successive rings have a common edge, forming a chain denoted by G(m,S) as shown in Figure 

2.1. It is clear that the order of G(m,S) is 3m+2, the size is 4m+1, and the diameter is m+2, 

2m � . 
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Figure 2.1: The graph G(m,S) 

 

The Hosoya polynomial of the graph G(m,S) is obtained in the next theorem. 

Theorem 2.1: If G(m,S) is the straight chaining of pentagons of order 3m+2 , 5m � , then  
2 3 4( ( , ); ) (3 2) (4 1) (7 2) (7 8) (7 14)H G m S x m m x m x m x m x� � � � � � � � � �  

                       � 

1

5 2

6
(8 22) 9( ) 21 4

m
k m

k
m x m k x x

�
�

�

� � � � � �� .          .....(2.1) 

Proof: We use mathematical induction on m, 5m � . For  m=5 we find, by direct calculation,  
2 3 4 5 6 7( (5, ); ) 17 21 33 27 21 18 12 4H G S x x x x x x x x� � � � � � � � . 

Thus, (2.1) is true for m=5 . We assume that (2.1) is true for 5m r� �  and prove that it is true 

for m = r+1. It is clear from Fig.2.1, that  

( ( 1, ); ) ( ( , ); ) ( )H G r S x H G r S x F x� � � ,  

where 

 
3

2

1
( ) ( , ( 1, ); ) (2 )i

i
F x H w G r S x x x

�

� � � �� , 

in which 1 2 2 2 3, ,r rw v w u� �� � and 3 2 2rw u ��  (see Fig.2.1 , putting m = r+1). 

Then, we find that 
1

2
1

2
( , ( 1, ); ) 1 2 3 2

r
k r

k
H w G r S x x x x

�
�

�

� � � � �� , 

4 2
3

2
1 5

( , ( 1, ); ) 1 2 3 2
r

k k r

k k
H w G r S x x x x

�
�

� �

� � � � �� � , 

and  
5 2

2 3
3

3 6
( , ( 1, ); ) 1 2 3 2 3 2

r
k k r

k k
H w G r S x x x x x x

�
�

� �

� � � � � � �� �  . 

Thus  
2 3 4( ( 1, ); ) (3 2) (4 1) (7 2) (7 8) (7 14)H G r S x r r x r x r x r x� � � � � � � � � � �  

1 2 3 4 5 6 m-1 m 

3m2u �  

2m2u �  

1m2u �  

m2u  

1m2u �  

1mv �  mv  3v  7v  1mv �  4v  

2u  

5v  2v  1v  6v  

3u  

4u  

7u  

8u  

9u  

10u  

11u  

12u  

13u  5u  

6u  

1u  
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               � 

1

5 2 2 3

6
(8 22) 9( ) 21 4 3 4 7 7

r
k r

k
r x r k x x x x x

�
�

�

� � � � � � � � � ���  

               
1

4 5 2 3

6
7 8 9 8 4

r
k r r

k
x x x x x

�
� �

�

� � � � ��  

               2 3[3( 1) 2] [4( 1) 1] [7( 1) 2] [7( 1) 8]r r x r x r x� � � � � � � � � � � �  

               � 

2

4 5 3

6
[7( 1) 14] [8( 1) 22] 9( 1 ) 21 4

r
k r

k
r x r x r k x x

�
�

�

� � � � � � � � � � �� . 

Hence , (2.1) is true for all m, 5m �  . 

This completes the proof . 

Remark 2.2: Hosoya polynomials of G(m,S) for 1 4m
 
  , are obtained as follows : 

� 2( (1, ); ) 5 5 5H G S x x x� � �  , 

� 2 3 4( (2, ); ) 8 9 12 6H G S x x x x x� � � � � , 

� 2 3 4 5( (3, ); ) 11 13 19 13 7 3H G S x x x x x x� � � � � � , 

� 2 3 4 5 6( (4, ); ) 14 17 26 20 14 10 4H G S x x x x x x x� � � � � � � . 

Thus we have obtained ( ( , ); )H G m S x  for all positive integers m.  

We notice from the formula (2.1) that the sequence � � 2

0
( ( , ), ) m

k
d G m S k �

�
 is strong-

unimodal, at index h=2, for 2, 8,11m m� � , because 

( ( , ),0) ( ( , ),1) ( ( , ),2) ( ( , ),3) ... ( ( , ), 2)d G m S d G m S d G m S d G m S d G m S m� � � � � � , and 

( (8, ),4) ( (8, ),5), ( (11, ),5) ( (11, ),6)d G S d G S d G S d G S� � . It is not palindromic. Also we 

notice that the sequence � � 2

2
( ( , ), ) m

k
d G m S k �

�
 is decreasing for 2, 8,11m m� � . 

Finally, we obtain the Wiener index of the straight  chaining of pentagons G(m,S), by 

taking the derivative of ( ( , ); )H G m S x  with respect to x  then putting x=1. Thus, we get  

3 21( ( , )) 3 21 6 14
2

W G m S m m m� �� � � �� � . This is the same result obtained in [5]. 

 

3. Alternate Chaining of Pentagons 

 

Definition 3.1: An alternate chaining [5] G(m,A) is a graph consisting of m pentagonal 

rings, every two successive rings have a common edge, forming a chain as shown in Figure 

3.1.  
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Figure 3.1: The graph G(m,A) 

 

The order of G(m,A) is 3m+2 , the size is 4m+1 , and the diameter is 3 2
2

m�� �
� �� �

. 

The Hosoya polynomial of the graph G(m,A) is obtained in the next theorem. 

 

Theorem 3.2: If G(m,A) is an alternate chaining of order 3m+2, 2m � , then  
2 3( ( , ); ) (3 2) (4 1) (7 2) (7 8)H G m A x m m x m x m x� � � � � � � �  

                        
4
(6 4 5) k

k
m k x

	

�

� � �� ,                  .....(3.1) 

where 3 2
2

m	 �� �� � �� �
 . 

Proof: The relation (3.1) will be proved by mathematical inductional on m. By direct 

calculation, one can easily show that  
2( (1, ); ) 5 5 5H G A x x x� � �  , 

2 3 4( (2, ); ) 8 9 12 6H G A x x x x x� � � � � , 
2 3 4 5( (3, ); ) 11 13 19 13 7 3H G A x x x x x x� � � � � �  . 

Therefore , the relation (3.1) is true for m = 1, 2, and 3. 

Thus, we assume that (3.1) is true for 3m r� �  and consider G(r+1,A) . 

It is clear from Figure 3.1 (putting m = r+1), that  

( ( 1, ); ) ( ( , ); ) ( )H G r A x H G r A x F x� � � ,  

where  
3

2

1
( ) ( , ( 1, ); ) (2 )i

i
F x H w G r A x x x

�

� � � �� , 

in which 1 (3 3)/2 2 (3 5)/2, ,r rw v w v� �� � and 3 (3 5)/2rw u ��  for odd r, 

3 2 2
3m3u �  

2
1m3u �  

2
1m3v �  2

1m3v �  
4v2v

3u
4u

5v

5u
6u

1 

2u

1v

1u
m 

2
1m3u �  

3 

2
m3v  3v

 

2 m 
2

2m3u �  
2
m3u  

2
2m3v �  

2
2m3v �  

4v2v

3u
4u

5v

5u
6u

1 

2u

1v

1u

(a) m is even (b) m is odd 
3v  
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and 

1 (3 4)/2 2 (3 6)/2, ,r rw v w u� �� � and 3 (3 4)/2rw u ��  for even r. 

If r is odd, then  
3 1

3 32
2 3 2

1
4

( , ( 1, ); ) 1 2 3 3 2

r
r

k

k
H w G r A x x x x x x

�
�

�

� � � � � � � �� , 

3 3
3 52

2
2

1
( , ( 1, ); ) 1 2

r
r

k

k
H w G r A x x x

�
�

�

� � � �� , 

and 
3 3

2
2

3
3

( , ( 1, ); ) 1 2 3 2

r

k

k
H w G r A x x x x

�

�

� � � � � � � . 

Thus  
3 1

2
2 3

4
( ( 1, ); ) (3 2) (4 1) (7 2) (7 8) (6 4 5)

r

k

k
H G r A x r r x r x r x r k x

�

�

� � � � � � � � � � � ��  

                            

3 1
3 3 3 52

2 3 2 2

4
3 4 7 7 6 5

r
r r

k

k
x x x x x x

�
� �

�

� � � � � � � ��  

                            2 3[3( 1) 2] [4( 1) 1] [7( 1) 2] [7( 1) 8]r r x r x r x� � � � � � � � � � � �  

                            � 

3 5

2

4
6( 1) 4 5

r

k

k
r k x

�

�

� � � �� . 

If r is even, then  
3 2

3 42
2 3 2

1
4

( , ( 1, ); ) 1 2 3 2 2

r
r

k

k
H w G r A x x x x x x

�
�

�

� � � � � � � �� , 

3 4
2

2
1

( , ( 1, ); ) 1 2

r

k

k
H w G r A x x

�

�

� � � � , 

and 
3 2

2
2 3

3
4

( , ( 1, ); ) 1 2 3 3 2

r

k

k
H w G r A x x x x x

�

�

� � � � � � � � . 

Thus  
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3 2
2

2 3

4
( ( 1, ); ) (3 2) (4 1) (7 2) (7 8) (6 4 5)

r

k

k
H G r A x r r x r x r x r k x

�

�

� � � � � � � � � � � ��  

                            

3 2
3 42

2 3 2

4
3 4 7 7 6 3

r
r

k

k
x x x x x

�
�

�

� � � � � � ��  

                           2 3[3( 1) 2] [4( 1) 1] [7( 1) 2] [7( 1) 8]r r x r x r x� � � � � � � � � � � �  

                           � 

3 4

2

4
6( 1) 4 5

r

k

k
r k x

�

�

� � � �� . 

Therefore,  the relation (3.1) is true for all m, 2m �  . 

This completes the proof . 

We notice that the sequence � � 0
( ( , ), )

k
d G m A k 	

�
, 3 2

2
m	 �� �� � �� �

 is strong- unimodal at 

index h=2, since  ( ( , ),0) ( ( , ),1) ( ( , ),2) ( ( , ),3) ... ( ( , ), )d G m A d G m A d G m A d G m A d G m A 	� � � � � , 

and its decreasing for all 3 22
2

mk �� �
 
 � �� �
 . 

Finally, we can obtain the Wiener index of the graph G(m,A), by taking the derivative 

of ( ( , ); )H G m A x  with respect to x, and then putting x=1. Then, we get   

3 2

3 2

1[18 45 58 ] , ,
8

( ( , ))
1[18 45 58 1] , .
8

m m m m is even
W G m A

m m m m is odd

� � ��
��
�

� � ��
�

  

This is the same result obtained in [5]. 

 

Now, we find the average distance of the pentachain graphs G(m,S) and G(m,A). 
13 2

( ( , )) ( ( , )
2

m
D G m S W G m S

��� �
� � �
� �
� �

3 23 21 6 14
(3 2)(3 1)

m m m
m m
� � �

�
� �

 , 

and 
1

3 23 2 18 45 58 1( ( , )) ( ( , ) ,
4(3 2)(3 1)2

m m m mD G m A W G m A m is odd
m m

��� � � � �
� �� �
� � � �� �

, 
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1
3 23 2 18 45 58( ( , )) ( ( , )) ,

4(3 2)(3 1)2

m m m mD G m A W G m A m is even
m m

��� � � �
� �� �
� � � �� �

. 

Hence, we deduce that for all values of 2m �  , ( ( , )) ( ( , ))D G m S D G m A
 , and the 

equality holds at m=2,3. 

 

4. Double Row Pentachains 

In this section, we obtain Hosoya polynomials of the pentachains in two rows. 

Following N.P.Rao and A.L.Prasanna [6], we  denote the graphs consisting of two rows of 

straight chains with m 5-cycles in the two rows combined as shown in Figure 4.1, by  

1( , )G m S  and  2( , )G m S .  

 

  

 

 
 

Figure 4.1. 

 

From Figure 4.1., we notice that order of the graphs 1( , )G m S  and 2( , )G m S  are 4m+3 

and 5m+3 respectively, the size of them are 6m+2 and 7m+2 respectively, and the  diameter of 

both  are m+2. 

In the next theorems, we given the Hosoya Polynomial of the graphs  1( , )G m S  and 

2( , )G m S . 

Theorem 4.1: For 5m � , we have 
2 3

1

1
4 5 2

6

( ( , ); ) (4 3) (6 2) (13 2) 14( 1)

(14 27) (15 42) 4 [4( ) 9] 6
m

k m

k

H G m S x m m x m x m x

m x m x m k x x
�

�

�

� � � � � � � �

� � � � � � � ��
                                    

Proof: First we can partition the vertex set of 1( , )G m S into three subsets V, U, and W, such 

that 1 2 3 1{ , , , ... , }mV v v v v �� , 1 2 3 1{ , , , ... , }mU u u u u �� , and 1 2 3 2 2 1{ , , , ... , , }m mW w w w w w �� . 

From Figure 4.1. (a), we find that the Hosoya polynomial of 1( , )G m S  can be obtained in 

terms of ( ( , ); )H G m S x  as follows: 

1mv �  mv  4v  3v  2v  1v  

1mu �  mu  4u  3u  2u  1u  

1w  m2w  2w  
1m2w �  1m2w �  3w  

1w  

1m2v �  m2v  4v  3v  2v  1v  

1m2u �  m2u  4u  3u  2u  1u  

2w  mw  
1mw �  3w  

-a- )S,m(G 1  -b- )S,m(G 2  
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( , ) ( , )
1

,
( ( , ); ) 2 ( ( , ); ) d w w d v u

w w W v V
u U

H G m S x H G m S x x x�

�� � � �
� �

� � �� � . 

                       2 32(3 2) 2(4 1) 2(7 2) 2(7 8)m m x m x m x� � � � � � � �  

                    � 

1

4 5 2

6
2(7 14) 2(8 22) 2 9( ) 21 8

m
k m

k
m x m x m k x x

�
�

�

� � � � � � � ��  

                    
4 2

5

0 6
(2 1 ) (3 6) 4 ( 3 )

m
k k

k k
m k x m x m k x

�

� �

� �
� � � � � � � �� �
� �
� �  

                    
2

2

3
( 1) 2 ( 3 )

m
k

k
m x m k x

�

�

� � � � �� . 

                    2 3 4(4 3) (6 2) (13 2) 14( 1) (14 27)m m x m x m x m x� � � � � � � � � �  

                    
1

5 2

6
(15 42) 4 [4( ) 9] 6

m
k m

k
m x m k x x

�
�

�

� � � � � �� . 

Remark 4.2: 

�  2 3
1( (1, ); ) 7 8 11 2H G S x x x x� � � � , 

� 2 3 4
1( (2, ); ) 11 14 24 14 3H G S x x x x x� � � � � , 

� 2 3 4 5
1( (3, ); ) 15 20 37 28 15 5H G S x x x x x x� � � � � � , 

� 2 3 4 5 6
1( (4, ); ) 19 26 37 50 42 18 6H G S x x x x x x x� � � � � � � . 

We notice that the sequence � � 2
1 0

( ( , ), ) m

k
d G m S k �

�
is strong unimodal for all 1 11m
 
  

at index h=2, and for all 13,14m �  at index h=3, but is not unimodal for all 16m � . 

Finally the Wiener index of 1( , )G m S for 2m � , is given by : 

1 1 1
( ( , )) ( ( , ; ) )

x

dW G m S H G m S x
dx �

�  

3 2
1

1( ( , )) [8 54 19 30]
3

W G m S m m m� � � � . 

Now, we find the Hosoya polynomial of 2( , )G m S in the next theorem: 

Theorem 4.3: For 5m � , we have 
2 3 4

2( ( , ); ) (5 3) (7 2) (14 2) (19 14) 11(2 3)H G m S x m m x m x m x m x� � � � � � � � � �                                  

                        
1

5 2

6
(23 56) 5 [5( ) 13] 16

m
k m

k
m x m k x x

�
�

�

� � � � � �� . 
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Proof: Let 1 2 3 2 2 1{ , , , ... , , }m mV v v v v v �� , 1 2 3 2 2 1{ , , , ... , , }m mU u u u u u �� , and 

1 2 3 1{ , , , ... , }mW w w w w �� . From Figure 4.1. (b), we obtain : 

( , ) ( , )
2

,
( ( , ); ) 2 ( ( , ); ) d w w d v u

w w W v V
u U

H G m S x H G m S x x x�

�� � � �
� �

� � �� � . 

                      2 3 42(3 2) 2(4 1) 2(7 2) 2(7 8) 2(7 14)m m x m x m x m x� � � � � � � � � �  

                     � 

1

5 2

6 0
2(8 22) 2 9( ) 21 8 ( 1 )

m m
k m k

k k
m x m k x x m k x

�
�

� �

� � � � � � � � �� �  

                     2 3 4( 1) 6 (9 8)m x mx m x� � � � �
2

5
8 ( 3 )

m
k

k
m k x

�

�

� � �� . 

                     2 3 4(5 3) (7 2) (14 2) (19 14) 11(2 3)m m x m x m x m x� � � � � � � � � �                                     

                     
1

5 2

6
(23 56) 5 [5( ) 13] 16

m
k m

k
m x m k x x

�
�

�

� � � � � �� . 

By taking the derivative of 2( ( , ); )H G m S x  with respect to x and then putting x =1 , we 

get Wiener index : 

3 2
2

1( ( , )) [25 195 2 96]
6

W G m S m m m� � � � , 2m � . 

Remark 4.4:  

� 2 3 4
2( (1, ); ) 8 9 12 6H G S x x x x x� � � � � , 

� 2 3 4
2( (2, ); ) 13 16 26 24 12H G S x x x x x� � � � � , 

� 2 3 4 5
2( (3, ); ) 18 23 40 43 33 14H G S x x x x x x� � � � � � , 

� 2 3 4 5 6
2( (4, ); ) 23 30 54 62 55 36 16H G S x x x x x x x� � � � � � � . 

The sequence � � 2
2 0

( ( , ), ) m

k
d G m S k �

�
is strong unimodal at index h=3, for all 3 6m
 
 , 

and index h=4, for all 7 14m
 
 , but is not unimodal for all 15 22m
 
 . Finally, the 

sequence � � 2
2 0

( ( , ), ) m

k
d G m S k �

�
is strong-unimodal at index   h=6, for all 24m �  . 

 

Now, we denote by the graph consisting of two rows of alternate chaining with m 5-

cycles in each of the two rows, combined as shown in Figure 4.2 , by  *( , )G m A . 
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Figure 4.2: The graph *( , )G m A  

From Figure 4.2., we notice that order of the graphs *( , )G m A  is 9 6
2

m�� �
� �� �

, 

size 13 4
2

m�� �
� �� �

, and the diameter 3 3
2

m�� �
� �� �

. 

Also, in the next theorems, we given the Hosoya polynomials of the graphs  *( , )G m A  

which dependent on ( ( ); )H G mA X and ( ; )pH P X , where 3 2
2

mp �� �� � �� �
. 

Theorem 4.5: (a) For m is even, 4m � , we have 

* 2 33 1 1 1( ( , ); ) (3 2) (13 4) (27 4) (33 28)
2 2 2 2

H G m A x m m x m x m x� � � � � � � �                         

                        
3 /2

4 5

6

1 1(15 23) (29 68) [9(3 2 ) 26]
2 2

m
k

k
m x m x m k x

�

� � � � � � ��  

                        3 /2 14 mx �� . 

                        (b) For m is odd, 4m � , we have 

* 2 31 1 1 1( ( , ); ) (9 7) (13 5) (27 3) (33 23)
2 2 2 2

H G m A x m m x m x m x� � � � � � � �                                   

                         
(3 1)/2

4 5

6

1 1(15 22) (29 63) [9(3 2 ) 29]
2 2

m
k

k
m x m x m k x

�

�

� � � � � � ��  

                         (3 1)/2 (3 3)/210 2m mx x� �� � . 

Proof  (a): Let 1 2 3 3 1
2

{ , , , ... , }mV v v v v
�

� , 1 2 3 3 1
2

{ , , , ... , }mU u u u u
�

� , and 

1 2 3 3 1
2

{ , , , ... , }mW w w w w
�

� . Thus 

* ( , ) ( , )

,
( ( , ); ) 2 ( ( , ); ) d w w d v u

w w w v V
u U

H G m A x H G m A x x x�

�� � � �
� �

� � �� � . 

                         2 32(3 2) 2(4 1) 2(7 2) 2(7 8)m m x m x m x� � � � � � � �  

4v  3v  2v  1v  

12/m3u �  
2/m3u  4u  3u  2u  1u  

2/m3v  

2w  2/m3w  
12/m3w �  3w  

12/m3v �  5v  6v  

5u  6u  

1w  

4v  3v  2v  1v  

2/)3m3(u �  
2/)1m3(u �  4u  3u  2u  1u  

2/)1m3(v �  

2w  
2/)1m3(w �  3w  2/)3m3(v �  5v  6v  

5u  6u  

1w  

(a) m is even (b) m is odd 
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3 /2 1 3 /2

2 3

4 0

32 (6 4 5) ( 1 ) ( 1) 4
2

m m
k k

k k

mm k x k x m x mx
�

� �

� � � � � � � � �� �  

                         
3 /2 1

4 5

6

1 (9 8) (4 8) (3 4 2 )
2

m
k

k
m x m x m k x

�

�

� � � � � � �� . 

                        2 33 1 1 1(3 2) (13 4) (27 4) (33 28)
2 2 2 2

m m x m x m x� � � � � � � �    

                    

                         
3 /2

4 5

6

1 1(15 23) (29 68) [9(3 2 ) 26]
2 2

m
k

k
m x m x m k x

�

� � � � � � ��  

                         3 /2 14 mx �� . 

 (b): Let 1 2 3 3 3
2

, , , ... , mV v v v v �

 !
� " #
$ %

, 1 2 3 3 3
2

, , , ... , mU u u u u �

 !
� " #
$ %

, and 

1 2 3 3 1
2

, , , ... , mW w w w w �

 !
� " #
$ %

. Then 

* ( , ) ( , )

,
( ( , ); ) 2 ( ( , ); ) d w w d v u

w w W v V
u U

H G m A x H G m A x x x�

�� � � �
� �

� � �� � . 

                          2 32(3 2) 2(4 1) 2(7 2) 2(7 8)m m x m x m x� � � � � � � �  

                          
(3 1)/2 (3 1)/2

2

4 0

3 12 (6 4 5) ( ) ( 1)
2

m m
k k

k k

mm k x k x m x
� �

� �

�
� � � � � � �� �  

                          
3( 1)/2

3 4 5

6

1(4 2) (9 7) (4 6) (3 5 2 )
2

m
k

k
m x m x m x m k x

�

�

� � � � � � � � �� . 

                          2 31 1 1 1(9 7) (13 5) (27 3) (33 23)
2 2 2 2

m m x m x m x� � � � � � � �                      

                         
(3 1)/2

4 5

6

1 1(15 22) (29 63) [9(3 2 ) 29]
2 2

m
k

k
m x m x m k x

�

�

� � � � � � ��  

                         (3 1)/2 (3 3)/210 2m mx x� �� � . 

Corollary 4.6: The Wiener index of )A,m(G *  is given by: 

* 3 21( ( , )) [81 234 424 32],
16

W G m A m m m m is even� � � � , 

* 3 21( ( , )) [81 261 487 51],
16

W G m A m m m m is odd� � � � . 
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