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Abstract

Let n+(G) , n−(G) , and n0(G) be the number of positive, negative, and zero eigenval-
ues of the graph G . If G represents the carbon–atom skeleton of a conjugated molecule
then, within the Hückel molecular–orbital model, n+(G) , n−(G) , and n0(G) are the num-
bers of bonding, antibonding, and non-bonding molecular orbitals. Whereas for Kekuléan
benzenoid systems and their monocyclopeta–derivatives, n+ = n− and n0 = 0 , this is not
always the case with their dicyclopenta–derivatives. Let D be the molecular graph of a
dicyclopenta–derivative of a benzenoid hydrocarbon. In order to elucidate the structural
requirements for the validity of n+(D) > n−(D) , it is necessary to analyze the cycles of
D . Let Z be a cycle of D and |Z| its size. We show that if ZAB is a cycle, embracing both
five-membered rings of D , then n0(D − ZAB) = 0 happens only if |ZAB| ≡ 0 (mod 4) .
If ZA and ZB are disjoint cycles, embracing the two five-membered rings of D , then
n0(D − ZA − ZB) = 0 happens only if |ZA| + |ZB| ≡ 2 (mod 4) .
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INTRODUCTION

Within the Hückel molecular orbital (HMO) model, Kekuléan benzenoid hydrocar-

bons have equal number of bonding and antibonding MOs, and have no non-bonding

MO. Continuing our systematic studies of cyclopenta–derivatives of benzenoid hydro-

carbons [1], we found that in these conjugated systems such distribution of MOs may

be either preserved or violated, depending on the number and position of the five–

membered rings [2–6]. Some general regularities along these lines were recently estab-

lished [7]. In particular, the problem was completely solved in the case of Kekuléan

monocyclopenta– as well as in syn-dicyclopenta–derivatives: these have equal number

of bonding and antibonding MOs, and no non-bonding MO. In anti -dicyclopenta–

derivatives, the number of bonding MOs may exceed that of the antibonding MOs.

In [7] a sufficient condition for this was found, namely

K(B)2+K(B−p−q−r−s)2 < 4
∑

A

∑
B

K(D−ZA−ZB)2+2
∑
AB

K(D−ZAB)2 (1)

where the notation will be explained below. The aim of the present paper is to

offer a full derivation of Eq. (1). In order to achieve this goal, the cycles of the

dicyclopenta–derivatives need to be duly examined.

We first repeat a few well known graph–theoretic properties of molecular graphs

and specify our notation [8, 9].

Let G be the graph representing the carbon–atom skeleton of a conjugated hy-

drocarbon (a so-called Hückel graph) [8–10]. Let G possess n vertices, and let its

spectrum consist of the eigenvalues λ1, λ2, . . . , λn . As well known [8–10], these eigen-

values are closely related to the Hückel molecular orbital (HMO) energy levels of

the underlying conjugated π-electron system. Let n+ = n+(G) , n− = n−(G) , and

n0 = n0(G) be the number of eigenvalues of G that are, respectively, positive, nega-

tive, and equal to zero; of course, n+ + n− + n0 = n . In HMO theory, n+ , n− , and

n0 are the number of bonding, antibonding and non-bonding MOs [8–10].

Let e be an edge of the graph G , connecting the vertices u and v . Let Z be a

cycle of G in which the edge e is contained. Then the characteristic polynomial of G
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satisfies the recurrence relation [9, 11,12]

φ(G, λ) = φ(G − e, λ) − φ(G − u − v, λ) − 2
∑

Z

φ(G − Z, λ) (2)

with the summation going over all cycles Z containing the edge e ; if the graph G has

no such cycles, then
∑
Z

φ(G − Z, λ) ≡ 0 .

Denote by A(G) the adjacency matrix of the graph G . Since, by definition [9],

φ(G, λ) = det[λ I − A(G)] , we immediately get φ(G, 0) = (−1)n detA(G) , from

which it follows

φ(G, 0) = (−1)n

n∏
i=1

λi . (3)

The following immediate consequence of Eq. (3) will be needed in the subsequent

considerations:

Lemma 1. Let G be a graph with even number of vertices, and without zero eigen-

values. If

(−1)n/2 φ(G, 0) < 0 (4)

then n+(G) �= n−(G) . If G is the molecular graph of a π-electron systems, then

inequality (4) implies that the numbers of bonding and antibonding MOs are different.

One should note that (4) is a sufficient, but not a necessary condition for the non-

equality of the numbers of bonding and antibonding MOs, i. e., for n+(G) �= n−(G) .

In particular, if n+ = n/2± 2k for some k ≥ 1 , then the inequality (4) will not hold.

The chemically most relevant case is when n+ = n/2±1 . Then inequality (4) is both

necessary and sufficient.

Most of the graphs encountered in this work are bipartite. If G is a bipartite graph,

then its vertices can be colored by two colors (say, black and white), so that the colors

of adjacent vertices are always different. In Fig. 1 are depicted two benzenoid graphs

and the coloring of their vertices indicated.
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B2B1

Fig. 1. Two benzenoid systems with colored vertices. In the theory of benzenoid
systems it is customary that the peak vertices are colored white and the valley vertices
black. The graph B1 has 21 black and 21 white vertices, and therefore its color excess
is zero. The graph B2 has 22 black and 20 white vertices and its color excess is 2.

Let the vertices of G be colored so that nb of them are black and nw are white;

nb + nw = n . Then CE = CE(G) = |nb − nw| is called the color excess of G . For

example, for the graphs depicted in Fig. 1, CE(B1) = 0 and CE(B2) = 2 .

If the color excess of a bipartite graph G is different from zero, then this graph

has at least one zero eigenvalue. Consequently, we have:

Lemma 2. If the color excess of a bipartite graph G is greater than zero, then the

product of all eigenvalues of G is equal to zero, and by Eq. (3), φ(G, 0) = 0 .

The eigenvalues of a bipartite graph G obey the pairing theorem, namely λi =

−λn+1−i holds for all i = 1, 2, . . . , n . This implies that n+(G) = n−(G) .

Let us now focus our attention to benzenoid hydrocarbons [13, 14]. Let B be

the molecular graph of a benzenoid system. This graph is bipartite and therefore

Lemmas 2 and 3 are applicable to it. Moreover, according to the famous Dewar–

Longuet–Higgins formula [15],

φ(B, 0) = detA(B) = (−1)n/2 K(B)2 (5)

where K(B) is the Kekulé structure count [14, 16], and where, as before, n is the

number of vertices of B . [14, 16]. It has been shown [17] that Eq. (5) applies also to

subgraphs obtained by deleting from B either non-internal vertices or cycles or both.
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It is worth noting that if a graph G satisfies the Dewar–Longuet–Higgins formula,

then n0(G) = 0 if and only if K(G) > 0 .

In what follows we shall be interested only in Kekuléan benzenoids (those pos-

sessing at least one Kekulé formula structural, K(B) > 0). If so, then n is necessarily

even, and CE(B) = 0 . For instance, one of the benzenoid systems depicted in Fig. 1

has zero color excess and is Kekuléan, K(B1) = 175 , whereas the other has non-zero

color excess and is non-Kekuléan, K(B2) = 0 .

A simple corollary of Eq. (5) is that if B is a Kekuléan benzenoid system, then

n+(B) = n−(B) = n/2 and n0(B) = 0 . In other words, within the HMO approxima-

tion, a Kekuléan benzenoid molecule has equal number of bonding and antibonding

MOs and has no non-bonding MO.

TOPOLOGICAL PROPERTIES OF DICYCLOPENTA–DERIVATIVES

OF BENZENOID HYDROCARBONS

In the case of dicyclopenta–derivatives of benzenoid hydrocarbons we must dis-

tinguish between two cases. We refer to them as syn and anti.

Two cyclopentadiene fragments are in syn position if both five-membered rings are

attached to vertices of the same color of the parent benzenoid system. Two cyclopen-

tadiene fragments are in anti position, if the two five-membered rings are attached to

vertices of different color of the parent benzenoid system. For an illustrative example

see Fig. 2.

In an earlier work [7] we demonstrated the validity of:

Theorem 3. If B is a Kekuléan benzenoid system, and D is its syn-dicyclopenta

derivative, then n+(D) = n−(D) and n0(D) , i. e., D has equal number of bonding

and antibonding MOs, and has no non-bonding MO.

In view of this result, in what follows we will consider only anti -dicyclopenta

derivatives. Let D be such a molecular graph, and let its vertices, edges, and five-

membered rings be labeled as indicated in Fig. 3.
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B3

D1 D2

Fig. 2. The parent benzenoid system B3 with its vertices colored, and its two
dicyclopenta–derivatives: D1 is a syn– and D2 an anti -derivative.
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Fig. 3. Two anti -dicyclopenta-derivatives of a benzenoid system (of B3 from Fig.
2), and the labeling of some of their vertices, edges, and cycles.

-790-



Applying Eq. (2) first to the edge e and then to the edge f of D we obtain:

φ(D,λ) =

[
φ(D− e− f, λ) − φ(D− e− a− b, λ) − 2

∑
Y

φ(D− e− ZY , λ)

]

−
[
φ(D− u− v− f, λ) − φ(D− u− v− a− b, λ) − 2

∑
Y

φ(D− u− v− ZY , λ)

]

− 2
∑
X

[
φ(D− ZX− f, λ) − φ(D− ZX− a− b, λ) − 2

∑
Y

φ(D− ZX− ZY , λ)

]

− 2
∑
XY

φ(D− ZXY , λ) . (6)

In the above formula,
∑
X

,
∑
Y

, and
∑
XY

indicate summation over cycles that, respec-

tively, embrace the ring X but not the ring Y , embrace the ring Y but not the ring

X , and embrace both rings X and Y .

First of all, it should be noted that all subgraphs occurring on the right–hand side

of Eq. (6) are bipartite and that to all of them the Dewar–Longuet–Higgins formula

(5) applies [17]. Some of these have non-zero color excess: CE(D− e− a− b) = 2 ,

CD(D−e−ZY ) = 1 , CD(D−u−v−f) = 2 , CD(D−u−v−ZY ) = 1 , CD(D−ZX−f) =

1 , CD(D−ZX− a− b) = 1 . Therefore, by setting λ = 0 and bearing in mind Lemma

2, we get

φ(D, 0) = φ(D− e− f, 0) + φ(D− u− v− a− b, 0)

+ 4
∑
X

∑
Y

φ(D− ZX− ZY , 0) − 2
∑
XY

φ(D− ZXY , 0) .

Noting that if the parent benzenoid system B has n vertices, then D has n+4 vertices,

and applying Eq. (5), we have

φ(D, 0) = (−1)(n+4)/2 K(D− e− f)2 + (−1)n/2 K(D− u− v− a− b)2

+ 4
∑
X

∑
Y

(−1)(n+4−|ZX |−|ZY |)/2 K(D− ZX− ZY )2

− 2
∑
XY

(−1)(n+4−|ZXY |)/2 K(D− ZXY )2
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which immediately yields

(−1)(n+4)/2 φ(D, 0) = K(D− e− f)2 + K(D− u− v− a− b)2

+ 4
∑
X

∑
Y

(−1)(|ZX |+|ZY |)/2 K(D− ZX− ZY )2

− 2
∑
XY

(−1)|ZXY |/2 K(D− ZXY )2 . (7)

From Fig. 3 we see that the subgraph D−u−v−a− b is just the parent benzenoid

system B . Since by deleting a pendent vertex and its neighbor, the Kekulé structure

count does not change [16], the subgraphs D− e− f and B − p− q − r− s have equal

K-values. Bearing this in mind, Eq. (7) can be rewritten as

(−1)(n+4)/2 φ(D, 0) = K(B)2 + K(B − p − q − r − s)2

+ 4
∑
X

∑
Y

(−1)(|ZX |+|ZY |)/2 K(D− ZX− ZY )2

− 2
∑
XY

(−1)|ZXY |/2 K(D− ZXY )2 . (8)

In what follows we prove that the terms K(D− ZX − ZY ) are non-zero only

if |ZX | + |ZY | ≡ 2 (mod 4) and that the terms K(D− ZXY ) are non-zero only if

|ZXY | ≡ 0 (mod 4) . If so, then

(−1)(n+4)/2 φ(D, 0) = K(B)2 + K(B − p − q − r − s)2

− 4
∑
X

∑
Y

K(D− ZX− ZY )2 − 2
∑
XY

K(D− ZXY )2 . (9)

Then by Lemma 1 we arrive at the conclusion that inequality (1) is a sufficient

condition for n+(D) �= n−(D) .

What remains to prove are:

Theorem 4. Using the notation specified in Fig. 3, let ZX and ZY be disjoint

cycles embracing, respectively, the five-membered cycle X and Y . Then the subgraph

D−ZX−ZY is Kekuléan (i. e., K(D−ZX−ZY ) > 0) only if |ZX |+|ZY | ≡ 2 (mod 4) .

and
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Theorem 5. Using the notation specified in Fig. 3, let ZXY be a cycle embracing

both five-membered cycles X and Y . Then the subgraph D −ZXY is Kekuléan (i. e.,

K(D − ZAB > 0) only if |ZXY | ≡ 0 (mod 4) .

PROOF OF THEOREM 4

Throughout this section it is assumed that D is a molecular graph of an anti -

dicyclopenta–derivative of a Kekuléan benzenoid system B , and that its vertices and

cycles are labeled as indicated in Fig. 3.

We first recall a result valid for benzenoid systems.

Lemma 6. [18] Let B be a benzenoid system and Z its cycle of size |Z| . If |Z| ≡
0 (mod 4) , then inside Z there is an odd number of vertices. If |Z| ≡ 2 (mod 4) ,

then the number of vertices inside Z is either even or zero.

We examine the conditions necessary for the validity of K(D − ZX − ZY ) > 0 .

As explained above, K(D − ZX − ZY ) > 0 holds if and only if D − ZX − ZY has no

zeros in its spectrum, i. e., n0(D − ZX − ZY ) = 0 .

The vertices of the subgraph D − ZX − ZY form three disconnected components

Dα , Dβ , Dγ (of which some may be empty). The components Dα and Dβ are formed

by the vertices lying inside the cycles ZX and ZY , respectively. The component Dγ

is formed by the vertices lying outside ZY and ZY . Then

K(D − ZX − ZY ) = K(Dα) · K(Dβ) · K(Dγ)

where, if some of these components is empty (without any vertex), then the respective

K-value is equal to unity.

The components Dα, Dβ, Dγ are bipartite graphs. If any of them has an odd

number of vertices, then its color excess is greater than unity and therefore its K-

value is equal to zero. Then also K(D − ZX − ZY ) = 0 .

Thus, in order that K(D−ZX −ZY ) > 0 holds, the number of vertices in all three

components Dα, Dβ, Dγ must be even (or zero).

Let Z be a cycle of a graph embedded in the plane. Denote by ni(Z) the number

of vertices lying inside Z .
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Consider first the case when ZX is just the five-membered cycle X , |ZX | = 5 .

Inside it there are no vertices, ni(ZX) = 0 , and |ZX | ≡ 1 (mod 4) .

Consider now the cycles of D that embrace the five-membered cycle X , but are

greater than X . These cycles are of two kinds: those containing the vertex w (for

example, ZXa) and those not containing the vertex w (for example, ZXb), cf. Fig. 4.

ZXa
Z'Xa

ZXb
Z'Xb

Fig. 4. Two types of cycles (ZXa and ZXb) in the molecular graphs of anti -
dicylopenta–derivatives of benzenoid molecules, embracing the five-membered cycle
X , and the corresponding cycles of the parent benzenoid systems (Z ′

Xa and Z ′
Xb). In

these examples the number of vertices lying inside ZXa and ZXb is even, consistent
with the fact that |ZXa| = 25 = 4× 6 + 1 and |ZXb| = 17 = 4× 4 + 1 . For details see
text.

Let ZXa be a cycle of D , embracing X and containing the vertex w , cf. Figs.

3 and 4. This cycle is in a one-to-one correspondence with the cycle Z ′
Xa of the

parent benzenoid system B . By inspecting Fig. 4 we see that ni(ZXa) = ni(Z
′
Xa)

and |ZXa| = |Z ′
Xa| + 3 . Thus, in order that ni(ZXa) be even, also ni(Z

′
Xa) must be

even. Then by Lemma 6, |Z ′
Xa| ≡ 2 (mod 4) which implies that |ZXa| ≡ 1 (mod 4) .

Let ZXb be a cycle of D , embracing X but not containing the vertex w , cf. Figs.
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3 and 4. This cycle is in a one-to-one correspondence with the cycle Z ′
Xb of the parent

benzenoid system B . By inspecting Fig. 4 we see that ni(ZXb) = ni(Z
′
Xb) + 1 and

|ZXb| = |Z ′
Xb| + 1 . Thus, in order that ni(ZXb) be even, ni(Z

′
Xb) must be odd. Then

by Lemma 6, |Z ′
Xb| ≡ 0 (mod 4) which implies that |ZXb| ≡ 1 (mod 4) .

Thus is all cases, if the number of vertices inside the cycle ZX is even (or zero),

then |ZX | ≡ 1 (mod 4) .

By symmetry, the same holds for the cycles ZY , embracing the five-membered

cycle Y . From |ZX | ≡ 1 (mod 4) and |ZY | ≡ 1 (mod 4) it follows

|ZX | + |ZY | ≡ 2 (mod 4)

which is just the claim of Theorem 4. �

PROOF OF THEOREM 5

The proof of Theorem 5 is similar as that of Theorem 4. This time we have to

distinguish between four types of cycles in D that embrace both X and Y : those

containing both vertex w and c (for example, ZXY a), those containing the vertex w

but not c (for example, ZXY b), those containing the vertex c but not w (for example,

ZXY c), and those containing neither w nor c (for example, ZXY d), cf. Figs. 3 and 5

Let ZXY a be a cycle of D , embracing X and Y and containing the vertices w

and c , cf. Figs. 3 and 5. This cycle is in a one-to-one correspondence with the

cycle Z ′
XY a of the parent benzenoid system B . By inspecting Fig. 4 we see that

ni(ZXY a) = ni(Z
′
XY a) and |ZXY a| = |Z ′

XY a| + 6 . Thus, in order that ni(ZXY a) be

even, also ni(Z
′
XY a) must be even. Then by Lemma 6, |Z ′

XY a| ≡ 2 (mod 4) which

implies that |ZXY a| ≡ 0 (mod 4) .

The considerations of the remaining three cases are fully analogous and will be

skipped. The final conclusion is that in all cases, if the number of vertices inside

the cycle ZXY is even (or zero), then |ZXY | ≡ 0 (mod 4) , which is just the claim of

Theorem 5. �
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ZXYa
Z'XYa

ZXYb
Z'XYb

ZXYc Z'XYc

ZXYd
Z'XYd

Fig. 5. Four types of cycles (ZXY a , ZXY b , ZXY c , and ZXY d) in the molecular
graphs of anti -dicylopenta–derivatives of benzenoid molecules, embracing both five-
membered cycles X and Y , and the corresponding cycles of the parent benzenoid
systems (Z ′

XY a , Z ′
XY b , Z ′

XY c , and Z ′
XY d). In these examples the number of vertices

lying inside ZXY a , ZXY b , ZXY c , and ZXY d is even, consistent with the fact that
|ZXY a| = 28 = 4 × 7 , |ZXY b| = 20 = 4 × 5 , |ZXY c| = 24 = 4 × 6 , and |ZXY d| = 20 =
4 × 5 , For details see text.
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CONCLUDING REMARKS

By means of Theorems 4 and 5 we arrive at Eq. (9), which combined by Lemma

1 results in:

Theorem 7. If B is a Kekuléan benzenoid system, and D is its anti-dicyclopenta

derivative, then n+(D) �= n−(D) holds whenever inequality (1) is obeyed.

From the considerations outlined in the present work, we are not able to decide

whether n+(D) > n−(D) or n+(D) < n−(D) would occur in the case when inequality

(1) is satisfied. However, earlier empirical studies [19] clearly point towards the first

of the above two options. Thus, we claim [7] that if inequality (1) is satisfied, then

the the polycyclic conjugated molecules specified in Theorem 7 have more bonding

MOs than antibonding MOs.

A mathematical proof of the latter assertion would be welcome.
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