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Abstract

We present explicit formulas for the total number of conjugated circuits

of a given length in polyacene and fibonacene chains and analyze asymptotic

behavior of the expected number of conjugated circuits in long chains of the

considered types.

1 Introduction

The conjugated-circuit model has been successfully applied to many conjugated

systems, in particular to benzenoids and fullerenes. The basic postulate of the model

is that the stability of a conjugated molecule is determined mostly by its conjugated

circuits, i.e., by circuits within Kekulé structures in which single and double bonds
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come in the alternating order. We refer reader to [3] for a brief description of the

model and also for references explaining it in more detail. Besides providing a neat

introduction to the model, the cited reference is concerned with enumerating short

conjugated circuits in unbranched benzenoid chains, in particular in polyacenes and

fibonacenes, by recursively constructing families of single- and multivariate counting

polynomials. Our goal in the present paper is to give explicit formulas for the results

of reference [3] and then to use them to analyze the asymptotic behavior of the

expected number of conjugated circuits of given lengths in the considered benzenoid

classes.

2 Definitions and preliminaries

The literature on benzenoid systems is vast; we recommend [1] for a thorough ex-

position. For any graph-theoretic terms not defined here we refer the reader to any

of standard monographs on graph theory, such as, e.g., [2].

A benzenoid system is a 1-connected collection of congruent regular hexagons

arranged in the plane in such a way that any two hexagons having a common point

intersect in a whole edge. From the conditions of regularity and congruence it follows

that benzenoid systems are subsets (with 1-connected interior) of a regular tiling of

the plane by hexagonal tiles. To each benzenoid system we assign a graph, taking

the vertices of hexagons as the vertices of the graph, and the sides of hexagons as the

edges of the graph. The resulting benzenoid graph is simple, plane, and bipartite.

In the rest of the paper, when referring to benzenoids, we will be referring to the

corresponding benzenoid graphs.

The vertices lying on the border of the unbounded face of a benzenoid graph are

called external; other vertices, if present, are called internal. A benzenoid graph

without internal vertices is called catacondensed. If no hexagon in a catacondensed
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benzenoid is adjacent to three other hexagons, we say that the benzenoid is a chain.

It is clear that in a benzenoid chain there are exactly two hexagons adjacent to one

other hexagon; those two hexagons are called terminal, while any other hexagons

(if present) are called interior. An interior hexagon is called straight if the two

edges it shares with other hexagons are opposite to each other. If the two shared

edges are not opposite, the hexagon is called kinky. (Note that the shared edges

cannot be adjacent, since this would result in an internal vertex. Hence the above

definitions cover all possible cases.)

Let us consider a benzenoid chain with n hexagons. If all its n−2 interior hexagons

are straight, we call the chain a polyacene and denote it by An. If all interior

hexagons are kinky, the chain is called a polyphenacene and denoted by Zn. How-

ever, for reasons that will become clear soon, we will call such chain a fibonacene.

A Kekulé structure in a benzenoid graph G is a collection M of edges of G such

that each vertex of G is incident to exactly one edge from M . It is implicit in the

definition that no edges of M share a vertex; hence M is a matching, and even more,

it is a perfect matching in G. The number of Kekulé structures of a benzenoid

graph G is denoted by K(G). In chemical parlance the edges of a Kekulé structure

are called double bonds, while the remaining edges are called single bonds.

It is an easy exercise to show that K(An) = n + 1 and K(Zn) = Fn+2, where Fn+2

denotes the (n+ 2)-nd Fibonacci number. Furthermore, K(An) ≤ K(Bn) ≤ K(Zn)

for any benzenoid chain Bn with n hexagons. Those two facts justify our choice of

name for Zn and also the notational choice of An and Zn for the extremal chains.

Let M be a Kekulé structure in a graph G. Any closed path consisting of edges that

alternate with respect to M is called a conjugated circuit. A conjugated circuit

is necessarily of even length; in benzenoid graphs that length cannot be divisible by

4. Hence, conjugated circuits in a benzenoid chain on n hexagons can be of length

4k + 2 for 1 ≤ k ≤ n.
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3 Main results

3.1 Polyacenes

It is easy to see that inAn there are exactly 2n conjugated circuits of length 6, 2(n−1)

conjugated circuits of length 10, 2(n− 2) conjugated circuits of length 14, etc. This

follows from the fact that exactly one of the vertical edges of An participates in any

perfect matching of An. Each of n−1 interior vertical edges gives rise to exactly two

conjugated circuits of length 6, and each of two peripheral vertical edges gives rise

to one such circuit. The situation is similar for longer conjugated circuits, whose

numbers decrease by one for each interior vertical edge that is too close to one end

of the chain. The case n = 3 is shown in Fig. 1. As the length of the longest possible

conjugated circuit cannot exceed 4n+ 2, we have the following result.

Figure 1: All possible conjugated circuits in A3.

Theorem 1

The number of conjugated circuits of length 4k + 2 in An is equal to 2(n + 1 − k).

The total number of all conjugated circuits in An is equal to n(n+ 1).

It is obvious that the expected number of conjugated circuits of length 4k+2 in An

is equal to 2(n+1−k)
n+1

, and that the expected number of all conjugated circuits in An

is equal to n. That completely settles the case of polyacenes.
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3.2 Fibonacenes

We have already mentioned that the Kekulé structures in Zn are counted by Fi-

bonacci numbers Fn+2. The same sequence counts the number of perfect matchings

in ladder graphs Ln = Pn+1�P2. (Here Pm denotes a path on m vertices, and �
denotes the Cartesian product of two graphs.) Hence there should be a correspon-

dence between Kekulé structures of Zn and perfect matchings of Ln. Indeed, if one

looks at the portion of Z6 between two dashed horizontal lines in Fig. 2, it is easy to

see that that strip contains a half of each hexagon. By replacing the three edges not

in the strip by a single horizontal edge we obtain a ladder graph, and there is only

one way of extending the part of perfect matching of Zn in the strip to a perfect

matching in the ladder graph.

Figure 2: The correspondence between Zn and Ln.

Conjugated circuits of length 6 in the particular Kekulé structure of Z6 shown in Fig.

2 are indicated by small circles in the corresponding hexagons. From the right hand

side of the same figure we see that to each conjugated 6-circuit in Z6 corresponds

a square in L6 whose four vertices are covered by two parallel edges. Hence the

number of conjugated 6-circuits in Zn is equal to the number of squares in Ln whose

four vertices are paired by two parallel edges. We note that such squares are also

conjugated. Hence the number of conjugated 6-circuits in Zn is equal to the number

of conjugated squares in Ln. We find the Ln interpretation more suitable for the

combinatorial reasoning that follows.

Among better known combinatorial interpretations of Fibonacci numbers are binary

strings without adjacent ones; it is well-known that the number of binary strings of

length n without adjacent ones is equal to Fn+2 [4]. This is exactly the number of
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perfect matchings in Ln, and if we look more closely at them, we see that the squares

whose vertices are paired by horizontal edges cannot be adjacent. By writing 1 for

each such square and 0 otherwise, we obtain Fn+2 binary strings without adjacent

ones. The correspondence for the case n = 4 is shown in Fig. 3.

1010

1000

1001

0010

0000

0100

0001

0101

Figure 3: Conjugated circuits in Zn, in Ln and the corresponding binary strings.

Now the total number of ones in all binary strings of length n is equal to the

total number of conjugated squares in Ln whose vertices are paired by horizontal

edges. A closer look at Fig. 3. reveals that the ones in binary strings account for

exactly half of the conjugated squares. This suggests that there is a correspondence

between the conjugated squares with horizontal edges and the ones with vertical

edges. Each conjugated square with vertical edges corresponds to a zero in binary

string representation, but the opposite is not true, since a zero corresponding to a

conjugated square cannot be adjacent to one. Hence, the conjugated squares with

vertical edges correspond to insulated zeroes, i.e., to zeroes not adjacent to ones. We

now prove by induction on n that in all binary strings of length n without adjacent

ones the number of insulated zeroes is equal to the number of ones.
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Lemma 2

Let Sn be the set of all binary strings of length n without adjacent ones. Then the

total number of ones in Sn is equal to the number of insulated zeroes in Sn.

Proof

We proceed by induction on n. For n = 2 we have the strings 00, 01 and 10. Both

zeroes in the first string are insulated, there are exactly two ones, and the claim is

valid. Let us now assume that the claim is valid for some n ≥ 2. Write all strings

from Sn+1 in the lexicographic order one below the other so that their digits form a

rectangular array. The array has Fn+3 rows and n+ 1 columns. Label the columns

from right to left by the consecutive numbers from 1 to n + 1. We claim that for

each 1 in column k there is an insulated 0 in the same column Fk+1 places above it,

and that the correspondence is bijective. By looking at the case n = 2 we see that

the claim is valid. The case n = 3 is shown in Fig. 4., with insulated zeroes encased

in rectangles. Let us look more closely at the array Sn+1. It can be divided in three

0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 0 1 0

Figure 4: With proof of Lemma 2.

sub-arrays by separating its leftmost column and dividing the rest by a line below

its Fn+2-nd row, as indicated in Fig. 4. The most important is the leftmost column.

Its first Fn+2 rows contain insulated zeroes, next Fn+1 rows contain leading zeroes

that are not insulated, and the lower-most Fn+2 rows contain ones. Clearly, to each

one in the leftmost column corresponds unique zero in the same column Fn+2 places

above it, and vice versa. The remaining two sub-arrays satisfy the claim by the

inductive hypothesis, and this completes the step of induction.
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Hence the total number of conjugated 6-circuits in Zn is twice the number of ones in

Sn. It remains to count ones in Sn. Let us denote this number by an. The sequence

starts with a1 = 1, a2 = 2, a3 = 5. We note that a string from Sn has 1 in place k if

and only if it does not have 1 in places k − 1 and k + 1. The remaining substrings

are of length k − 2 and n − k − 1, and the number of such substrings is equal to

FkFn+1−k. By summing over all k we obtain that an is equal to the convolution of

the Fibonacci numbers with themselves, an =
∑n

k=1 FkFn+1−k.

The sequence of Fibonacci numbers convolved with themselves is well-known and

well researched. It appears as sequence A001629 in [5], and we refer the reader to

this reference for a number of formulas and further results. The most informative

for our purposes is the representation in terms of Fibonacci numbers given by an =

(nFn+1 + 2(n+ 1)Fn)/5.

Theorem 3

The total number of conjugated 6-circuits in Zn is equal to 2
5
(nFn+1 + 2(n+ 1)Fn).

Now we can compute the average number of conjugated 6-circuits in a Kekulé

structure of a fibonacene on n hexagons. The exact formula is obtained by di-

viding 2
5
(nFn+1 + 2(n + 1)Fn) by Fn+2, but more interesting is the behavior of this

quantity for large n. Since the quotient Fn

Fn+1
tends to the Golden Section ratio

ϕ =
√
5−1
2

≈ 0.618034 for n −→ ∞, we have the following asymptotic behavior of

the expected number of conjugated 6-circuits in fibonacenes.

Corollary 4

An average Kekulé structure in Zn contains approximately 2
5
ϕ(2ϕ+1)n conjugated

6-circuits.

Numerically, 2
5
ϕ(2ϕ+ 1) ≈ 0.55279.
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By a similar reasoning we may also find the number of longer conjugated circuits

in a fibonacene on n hexagons. Let cn,k denotes the number of conjugated circuits

of length 4k + 2 in Zn. Obviously, cn,k = 0 for k > n. From Theorem 3 we have

cn,1 = 2
5
(nFn+1 + 2(n + 1)Fn), and for larger k the number is given by following

formula.

Theorem 5

cn,k = cn+1−k,1.

The total number of conjugated circuits in Zn is now readily obtained by computing

the sequence of partial sums of cn,1. We denote this quantity by tn. It can be neatly

expressed in terms of Fibonacci numbers; the following result can be obtained by

straightforward manipulation of generating function of cn,1.

Theorem 6

The total number of conjugated circuits in a fibonacene on n hexagons is given by

tn = 1 +
1

5
((n− 3)Fn+1 + (3n− 2)Fn+2) .

By dividing the above formula by Fn+2 we obtain the following asymptotics of the

expected number of conjugated circuits in a Kekulé structure in Zn.

Corollary 7

The expected number of all conjugated circuits in Zn behaves asymptotically as

3+ϕ
5
n for large values of n.
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4 Concluding remarks

At the end of the paper we would like once more to revisit reference [3]. Although we

have presented neat explicit formulas for the number of conjugated circuits of any

given length in fibonacene chains, the above reference still contains some interesting

challenges. For example, the coefficients of the conjugated 6-circuit polynomials

in Table II on p. 374 can be arranged in a triangular array whose row sums give

Fibonacci numbers. (The coefficients count the Kekulé structures containing a given

number of conjugated 6-circuits.) That triangular array does not appear in [5], and

it is quite likely that determining the explicit formulas for its elements could lead

to a new family of identities for Fibonacci numbers.
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