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Abstract

The He matrix, put forward by He and He in 1989 [31], is designed as a means for
uniquely representing the structure of a hexagonal system (= benzenoid graph). Observing
that the He matrix is just the adjacency matrix of a pertinently weighted inner dual of
the respective hexagonal system, we establish a number of its spectral properties. The
spectral radius of the He matrix is less than 12, but can be arbitrarily close to 12. In case
of catacondensed systems, the spectral radius is less than 6. Based on a computer search,
we conjecture that the naphthalene graph is the only hexagonal system whose He matrix
has integral spectrum. Some results for the energy of the He matrix are also obtained.
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1 Introduction

According to Sachs [46], a hexagonal system is defined as follows.

Definition 1.1. A hexagonal unit cell is a plane region bounded by a regular hexagon

of side length 1. A hexagonal system is a finite connected plane graph with no cut-

vertices in which every interior region is a hexagonal unit cell.

In what follows, instead of “hexagonal unit cell” we will simply say hexagon.

Hexagonal systems may be viewed as plane graphs (= graphs embedded in the

plane), but also as geometric objects [24]. In the mathematical literature these have

been named “hexagonal animals” or “hexanimals” (see e. g., [29]), “honeycomb sys-

tems” or ”honeycomb graphs” (see e. g., [16, 31]), “polyhexes” (see e. g., [30, 34, 51]),

“hexagonal nets” (see e. g., [48]), and “hexagonal polyominoes” (see e. g., [18, 36, 39]).

Hexagonal systems are encountered in recreational mathematics, and found applica-

tion in physics, such as the Ising model, and in polymer science. However, the far

greatest interest for these objects is in organic chemistry, since these provide the graph

representation of benzenoid hydrocarbons. In chemistry hexagonal systems were ex-

tensively studied under the name of “benzenoid graphs” or ”benzenoid systems” (see

the monograph [25] and the references cited therein); also the name “fusenes” is

occasionally used (see e. g., [2, 12]).

In Fig. 1 are found two examples of hexagonal systems.

H H
1 2

Fig. 1. Hexagonal systems consisting of 10 and 8 hexagons. Their inner duals are
shown in Fig. 2.
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Definition 1.2. The inner dual ID(H) of a hexagonal system H is a graph con-

structed by placing a vertex in the center of each hexagon of H and by connecting

those vertices that are in adjacent hexagons.

ID(H ) ID(H )
1 2

Fig. 2. The inner duals ID(H1) and ID(H2) of the hexagonal systems H1 and H2

from Fig. 1.

In Fig. 2 are shown the inner duals of the hexagonal systems from Fig. 1. It is easy

to realize that these uniquely determine the underlying hexagonal system. However,

in the general case, an inner dual may correspond to several different hexagonal

systems, as seen from the examples depicted in Fig. 3.

ID(H )

H

ID(H )ID(H )

H H

3

3

5

5

4

4

Fig. 3. Three hexagonal systems H3 , H4 , and H5 , whose inner duals ID(H3) ,
ID(H4) , and ID(H5 (viewed as graphs) are isomorphic. If, however, additional
information about the angles between the edges is provided, then the respective di-
agrams (which then are called “dualist graphs”, but which are not graphs) are in a
one–to–one correspondence with the underlying hexagonal system.

-755-



The fact that an inner dual does not fully characterize the underlying hexagonal

systems was notice long time ago [2, 12] and was discussed in due detail in several

papers [3, 4, 5, 6, 11] and reviews [7, 8, 9, 10, 19]. The evident solution of this

problem was the concept of dualist graph, which is constructed in the same manner

as the inner dual, except that the angles between the edges are preserved. Initially,

the name “characteristic graph” was proposed for this object [12], but in 1977 Balaban

changed it into “dualist graph” or simply “dualist” [5]. His motivation was expressed

as follows [5]: “We now prefer to name them dualist graphs, in order to emphasize

both the similarity with, and the difference from, dual graphs.”. Nevertheless, the

name “characteristic graph” is still used by some authors (see e. g., [6, 31]).

In view of the fact that the dualist graph fully determines the underlying hexagonal

system, it was evident that it can be used in connection with the, chemically impor-

tant, naming, coding, and enumerating of benzenoid hydrocarbons [12]. Approaches

of this kind were proposed by Bonchev and Balaban [13] as well as by Cioslowski and

Turek [14]; for review see [9]. A few years later He and He [31] put forward a third

approach, based on – what He and He themselves called – the He matrix . The article

[31] remained unnoticed by the majority of scholars involved in research of hexagonal

systems, and is not mentioned either in later books and reviews (cf. [10, 19, 25]) or

in the extensive monograph [35] on graph–theoretical matrices of chemical relevance.

In this paper we study the He matrix and establish its main mathematical, espe-

cially spectral, properties.

2 The He matrix

Provided that the hexagonal systems are drawn so that some of their edges are vertical

(as in Figs. 1 and 3), then the edges of the dualist graphs have three different possible

directions. We classify them into types (a), (b), and (c), so that an edge e is of type

(a) if the angle between e and the positive horizontal direction is either 0 or π ,

(b) if the angle between e and the positive horizontal direction is either π/3 or

4π/3 , and
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(c) if the angle between e and the positive horizontal direction is either 2π/3 or

5π/3 .

It should be noted that, according to the above definition, the type of an edge

of the dualist graph will not be changed if the entire dualist graph is rotated by 180

degrees.

In Fig. 4 is shown an example of a dualist graph with its edges labeled according

to the above specified orientations.

1 2 3

4

5 6

7

8 9 10

aaa

aa

aa

b

b bb

b bc c

ccc

c

Fig. 4. The dualist graph of the hexagonal system H1 from Fig. 1, the numbering of
its vertices and the labeling of its edges with symbols a , b , and c according to their
orientation; for details see text.

He and He have, conventionally, chosen a = 1 , b = 2 and c = 3 , and have defined

the He matrix as follows.

Definition 2.1. Let H be a hexagonal system with n hexagons. Let the vertices

of the dualist graph of H be labeled by 1, 2, . . . , n . Denote by (rs) the edge of the

dualist graph, connecting the vertices r and s . Then the He matrix A(H) of H is a

square matrix of order n whose (i, j)-entry is defined as

aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j

0 if the vertices i and j of the dualist graph are not adjacent

1 if (ij) is an edge of type (a) of the dualist graph

2 if (ij) is an edge of type (b) of the dualist graph

3 if (ij) is an edge of type (c) of the dualist graph .

The He matrix of the hexagonal system H1 from Fig. 1, whose dualist graph and

the labeling of its vertices are shown in Fig. 4, is given as follows:

-757-



A(H1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 2 3 0 0 0 0 0
1 0 1 0 2 3 0 0 0 0
0 1 0 0 0 2 3 0 0 0
2 0 0 0 1 0 0 3 0 0
3 2 0 1 0 1 0 2 3 0
0 3 2 0 1 0 1 0 2 3
0 0 3 0 0 1 0 0 0 2
0 0 0 3 2 0 0 0 1 0
0 0 0 0 3 2 0 1 0 1
0 0 0 0 0 3 2 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is immediately seen that A(H) is a symmetric matrix with all diagonal elements

equal to zero. Therefore its eigenvalues are real, and their sum is equal to zero. The

eigenvalues of A(H) form the spectrum of the He matrix and may be ordered as

λ1(A(H)) ≥ λ2(A(H)) ≥ · · · ≥ λn(A(H)) .

In what follows instead of λi(A(H)) we simply write λi(H) of, when confusion is not

possible, λi .

For instance, the eigenvalues of A(H1) are 8.036 , 5.325 , 2.006 , 1.416 , -0.151 ,

-0.261 , -2.598 , -3.794 , -4.881 , and -5.097 .

Assuming that some of its edges are vertical, in the general case a hexagonal

system may be drawn in 12 distinct ways. An example is given in Fig. 5. (In case of

symmetry [25], this number is smaller, equal to 6, 4, 3, 2, or 1.)

H

H

H

H

H

H

H

H

H

H

H

H

6a

6i

6e

6b

6j

6f

6c

6k

6g

6d

6l

6h

Fig. 5. The twelve distinct ways in which a non-symmetric hexagonal system H6

can be drawn so that some of its edges are vertical.
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Because the type of any edge of the dualist graph is not changed when the dualist

graph is rotated by 180 degrees, there exist 6 (= 12/2) non-equivalent He matrices

corresponding to one and the same hexagonal system. (Again, in case of symmetry,

this number is smaller, equal to 3, 2, or 1.)

1 2 3

4

Fig. 6. Numbering of vertices of the dualist graph of the hexagonal system H6 .
Depending to the way in which H6 is drawn (see Fig. 5), six distinct He matrices
correspond to this dualist graph.

For example, if the vertices of the dualist graph of H6 are labeled as indicated in

Fig. 6, then the six distinct He matrices of H6 read as follows:

A(H6a) = A(H6c) =

⎡
⎢⎢⎣

0 1 0 0
1 0 1 0
0 1 0 2
0 0 2 0

⎤
⎥⎥⎦ , A(H6b) = A(H6d) =

⎡
⎢⎢⎣

0 1 0 0
1 0 1 0
0 1 0 3
0 0 3 0

⎤
⎥⎥⎦

A(H6e) = A(H6g) =

⎡
⎢⎢⎣

0 2 0 0
2 0 2 0
0 2 0 1
0 0 1 0

⎤
⎥⎥⎦ , A(H6f ) = A(H6h) =

⎡
⎢⎢⎣

0 2 0 0
2 0 2 0
0 2 0 3
0 0 3 0

⎤
⎥⎥⎦

A(H6i) = A(H6l) =

⎡
⎢⎢⎣

0 3 0 0
3 0 3 0
0 3 0 2
0 0 2 0

⎤
⎥⎥⎦ , A(H6j) = A(H6k) =

⎡
⎢⎢⎣

0 3 0 0
3 0 3 0
0 3 0 1
0 0 1 0

⎤
⎥⎥⎦

Each of these six matrices has different eigenvalues, namely

λ1,2,3,4(H6) = ±
√

1

2

[
2 p2 + q2 ±

√
4 p4 + q4

]

where

p = 1 , q = 2 for H6 being drawn ass H6a or H6c ,

p = 1 , q = 3 for H6 being drawn ass H6b or H6d ,

p = 2 , q = 1 for H6 being drawn ass H6e or H6g ,

p = 2 , q = 3 for H6 being drawn ass H6f or H6h ,
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p = 3 , q = 2 for H6 being drawn ass H6i or H6l , and

p = 3 , q = 1 for H6 being drawn ass H6j of H6k .

Thus, the spectrum of the He matrix depends not only on the underlying hexagonal

system, but also on the way in which it has been drawn. This may be considered as

a significant weak point of the entire theory of the He matrix.

We denote the characteristic polynomial of A(H) by

φ(H, λ) = det(λ I − A(H)) =

n∑
k=0

bk λn−k .

Evidently, also φ(H, λ) depends both on the hexagonal system H and on the way in

which it is drawn. For instance,

φ(H6, λ) = λ4 − (2 p2 + q2) λ2 + p2 q2 (1)

where p and q have the values specified above.

For the continuation of this paper it is essential to notice that the He matrix is

nothing else than the adjacency matrix of the inner dual, whose edges are weighted

by 1, 2, or 3, depending on their (above described) types. Therefore the basic spec-

tral properties of the He matrix are immediate consequences and special cases of

results known in spectral graph theory for weighted graphs. The extensions of the

spectral properties of simple (non-weighted) graphs to weighted graphs are usually so

straightforward that these are not discussed in detail (see, for instance [15]). Yet, in

applied sciences there are several works in which spectral properties of weighted graph

are considered [35, 40, 41, 42, 44, 50]. For instance, the formula (1) is immediately

obtained from the so-called “generalization of Sachs’ formula” [41].

The spectral properties of the He matrix have not been studied until now. There-

fore the first results obtained along these lines will necessarily be simple and elemen-

tary. We, nevertheless, hope that these will pave the way for further, more advanced

findings. The ultimate goal of our research is to reveal some concealed properties of

the He matrices and/or dualist graphs and/or inner duals and/or hexagonal systems,

that would shed more light on the remarkable spectral and combinatorial proper-

ties of hexagonal systems. This would make possible to better understand the also

remarkable physico–chemical properties of benzenoid hydrocarbons [21, 25, 26]
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The rest of the paper is organized is as follows. In Section 3, we state some

previously known results related to matrix theory. In Section 4 we present lower and

upper bounds on the spectral radius of the He matrix. In Section 5 we consider the

question if the spectrum of the He matrix can be integral. In the last section some

results on the energy of the He matrix are reported.

3 Lemmas

We list here some previously known results related to matrix theory, that will be

needed in the subsequent sections.

Lemma 3.1. (Perron–Frobenius) [17] A non-negative matrix B always has a non-

negative eigenvalue r , such that the moduli of all the eigenvalues of B do not exceed

r . To this “maximal” eigenvalue r there corresponds a non-negative eigenvector Y ,

such that

BY = r Y (Y ≥ 0, Y �= 0) .

Lemma 3.2. [33] Let B = ||bij|| be an n × n irreducible non-negative matrix with

spectral radius λ1(B) , and let Ri(B) be the i-th row sum of B , i. e., Ri(B) =
n∑

j=1

bij .

Then

min{Ri(B) : 1 ≤ i ≤ n} ≤ λ1(B) ≤ max{Ri(B) : 1 ≤ i ≤ n} . (2)

Moreover, if the row sums of B are not all equal, then both inequalities in (2) are

strict.

Lemma 3.3. (Rayleigh–Ritz) [33] If B is a real symmetric n× n matrix with eigen-

values λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B) , then for any X ∈ R
n
, (X �= 0),

Xt BX ≤ λ1(B)Xt X .

Equality holds if and only if X is an eigenvector of B , corresponding to the largest

eigenvalue λ1(B) .

Lemma 3.4. (Cauchy) [47] Let B be same as in Lemma 3.3, and let Bk be its leading

k × k submatrix; that is, Bk is the matrix obtained from B by deleting its last n − k

rows and columns. Then, for i = 1, 2, . . . , k ,

λn−i+1(B) ≤ λk−i+1(Bk) ≤ λk−i+1(B) . (3)
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4 Spectral radius of the He matrix

Let, as before, aij be the (i, j)-entry of the He matrix A(H) . Let wi =
n∑

j=1

a2
ij , i =

1, 2, . . . , n . Then we have

Lemma 4.1.
n∑

i=1

λ2
i (H) =

n∑
i=1

wi .

Proof: Let X = (x1, x2, . . . , xn)t be an eigenvector corresponding to the eigenvalue

λi of A(H) . Then A(H)X = λi X , that is, A2(H)X = λi A(H)X = λ2
i X . But the

diagonal elements of A2(H) are w1 , w2 , . . . , wn . Thus

n∑
i=1

λ2
i = TrA2(H) =

n∑
i=1

wi .

Theorem 4.2. Let H be hexagonal system. Then any eigenvalue λ of the He matrix

A(H) satisfies

−12 < λ < 12 . (4)

Proof: If a hexagon χ of H has six adjacent hexagons, then the vertex of the

dualist graph corresponding to χ has degree six, and the edges incident to this vertex

have weights 1, 1, 2, 2, 3, and 3, whose sum is 12. Then by Lemmas 3.1 and 3.2,

−12 ≤ λ ≤ 12 .

Since H is finite, its dualist has a vertex of degree strictly less than 6. The

corresponding row or column sum of A(H) is then less than 12. Therefore, by Lemma

3.2 the inequalities in (4) must be strict.

Corollary 4.3. The spectral radius of the He matrix may be arbitrarily close to 12.

Proof: According to Lemma 3.2 the spectral radius of the He matrix A(H) would be

equal to 12 only if all vertices of the dualist graph of H would be of degree 6. This
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would happen only if H is the (infinite) hexagonal lattice. However, we can easily

construct a series of finite hexagonal systems, whose limit is the hexagonal lattice.

Consequently, the spectral radii of the corresponding He matrices form a series whose

limit value is 12.

A hexagonal systems is said to be catacondensed if its inner dual is a tree [12, 25].

Each vertex of the dualist graph of a catacondensed hexagonal system has degree at

most 3. The edges incident to any vertex of degree three have weights 1, 2, and 3,

whose sum is 6. The edges incident to a vertex of degree two may have weights 3 and

3, whose sum is also 6. Then in full analogy with Theorem 4.2 and Corollary 4.3 we

get:

Corollary 4.4. Let H be a catacondensed hexagonal system. Then any eigenvalue λ

of the He matrix A(H) satisfies −6 < λ < 6 . The spectral radius of the He matrix

of a catacondensed hexagonal system may be arbitrarily close to 6.

A catacondensed hexagonal systems is said to be a hexagonal chain if its inner

dual is a path, i. e., has no vertex of degree 3. Then, in analogy to Corollary 4.4, we

have:

Corollary 4.5. Let H be a hexagonal chain. Then any eigenvalue λ of the He matrix

A(H) satisfies −6 < λ < 6 . The spectral radius of the He matrix of a hexagonal chain

may be arbitrarily close to 6.

Theorem 4.6. Let H be a hexagonal system. Then the spectral radius of its He

matrix satisfies

λ1 ≤ max
i

{
1

di

∑
j:j∼i

aij dj

}
(5)

where di is the degree of the vertex i of the dualist graph of H , and where
∑

j:j∼i

stands

for summation over all vertices j of the dualist graph and all edges (ij) that are

incident to the vertex j .

Proof: Consider the matrix D−1AD , with D being the diagonal matrix whose diag-

onal elements are the degrees of the dualist graph. The (i, j)-th element of D−1AD
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is equal to

0 if i = j , or i is not adjacent to j ,

dj/di if (ij) is a type (a) edge of the dualist graph,

2 dj/di if (ij) is a type (b) edge of the dualist graph, and

3 dj/di if (ij) is a type (c) edge of the dualist graph.

Inequality (5) follows by applying Lemma 3.2 on D−1AD

For the hexagonal systems H1 and H2 shown in Figure 1, inequality (5) gives

λ1(H1) ≤ 9.33 and λ1(H2) ≤ 12.5 . On the other hand, the actual spectral radii are

λ1(H1) = 8.04 and λ1(H2) = 6.97 .

From these example we see that upper bound (5) is sometimes greater than 12.

Since by (4), λ1 cannot exceed 12, a strengthening of (5) is:

Corollary 4.7.

λ1 ≤ min{12, P}

where P is the expression on the right–hand side of (5).

We now give a lower bound on the spectral radius of the He matrix.

Theorem 4.8. Let H be a hexagonal system with n hexagons. Then the spectral

radius of the He matrix is bounded from below as

λ1 ≥ 2 Me

n
(6)

where Me =
∑
i∼j

aij and where
∑
i∼j

stands for summation over all edges (ij) of the

dualist graph.

Proof: Let A(H) = ||aij|| be the He matrix corresponding to H . By Lemma 3.3, for

any vector X = (x1, x2, . . . , xn)t ,

Xt A(H)X =

(
n∑

j:j∼1

xj aj1,

n∑
j:j∼2

xj aj2, · · · ,

n∑
j:j∼n

xj aj,n

)t

X

= 2
∑
i∼j

aij xi xj (7)
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because aij = aji . Also,

Xt X =
n∑

i=1

x2
i . (8)

Using Eqs. (7) and (8), by Lemma 3.3, we obtain

λ1 ≥
2

∑
i∼j

ai,j xi xj

n∑
i=1

x2
i

. (9)

Since (9) is true for any vector X , by putting X = (1, 1, . . . , 1)t we arrive at the

required result (6).

Given two hexagonal systems H ′ and H ′′ and some specified boundary edges in

any direction, we can form a new hexagonal system from the disjoint union of H ′ and

H ′′ , by identify these two boundary edges. We say that the new hexagonal systems

is a concatenation of H ′ and H ′′ . Two self-explanatory examples of concatenation

are found in Fig. 7.

H

H

H

H

H H

7

7

�

�

� ��

Fig. 7. Examples illustrating the concept of concatenation of hexagonal systems:
H9 and H10 are obtained by concatenation of H7 and H8 .

Let H∗ be the concatenation of hexagonal systems H ′ and H ′′ . Let H∗ , H ′ , and

H ′′ have n∗ , n′ , and n′′ hexagons, respectively, n∗ = n′ + n′′ . Then we have the

following:
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Theorem 4.9. If H∗ is obtained from H ′ and H ′′ by identifying a single edge of H ′

with a single edge of H ′′ , then

λ1(H
∗) > λ1(H

′) and λ1(H
∗) > λ1(H

′′) .

Proof: By pertinently labeling the vertices of H∗ , the respective He matrix is of the

form:

A(H∗) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ ∗ · · · ∗ 0 0 · · · 0
∗ 0 ∗ · · · ∗ 0 0 · · · 0
· · · · · · · · · · · · ·
∗ ∗ ∗ · · · ∗ 0 0 · · · 0
∗ ∗ ∗ · · · 0 e 0 · · · 0
0 0 0 · · · e 0 ∗ · · · ∗
0 0 0 · · · 0 ∗ 0 · · · ∗
· · · · · · · · · · · · ·
0 0 0 · · · 0 ∗ ∗ · · · ∗
0 0 0 · · · 0 ∗ ∗ · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where e = 1 or 2 or 3. Let B be the (n′ + 1) × (n′ + 1) leading submatrix of A(H∗) .

Then by Lemma 3.4,

λ1(H
∗) ≥ λ1(B)

and

λ1(B) ≥ λ1(H
′) .

Thus λ1(H
∗) ≥ λ1(H

′) . By contradiction, we show that equality in the latter relation

never happens.

Suppose that λ1(H
∗) = λ1(H

′) . This implies that λ1(B) = λ1(H
′) . Let X =

(x1, x2, . . . , xn′)t be the eigenvector corresponding to λ1(H
′) . Since H ′ is connected,

A(H ′) is an irreducible matrix and hence all the eigencomponents xi (i = 1, 2, . . . , n′)

are positive. From the (n′ + 1)-th equation of BX = λ1(H1)X , we get

λ1(H1) · 0 = e · xn′ (e = 1 or 2 or 3)

implying that xn′ = 0 , Then, however, X′ = (x1, x2, . . . , xn′ , 0)t would be the eigen-

vector corresponding to λ1(B) , a contradiction. Thus λ1(H
∗) > λ1(H

′) .

By symmetry, we also get λ1(H
∗) > λ1(H

′′) .

Theorem 4.9 can be extended to the case when the concatenation involves more

than one edge (as in the example H7 ∪H8 ⇒ H10 in Fig. 7). Without proof we state:
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Theorem 4.10. If H∗ is obtained from H ′ and H ′′ by identifying k edges of H ′ with

k edges of H ′′ , k ≥ 1 , then

λ1(H
∗) > λ1(H

′) and λ1(H
∗) > λ1(H

′′) .

5 He matrices with integral spectrum

If all the eigenvalues of the He matrix are integers, then its spectrum is said to be

integral.

Let H11 be the hexagonal systems depicted in Fig. 8. Using Mathematica, we

have computed the spectral radius of A(H11) which turns out to be approximately

equal to 11.19. So we conclude that the He matrices of all hexagonal systems H which

are supergraphs of H11 , do not have integral spectrum because, by Theorem 4.2 and

Lemma 3.4 , 11 < λ1(A(H)) < 12 .

H
��

Fig. 8. A hexagonal system whose He matrix has spectral radius 11.19 .

Let H12 be the hexagonal system with two hexagons (the ”naphthalene graph“),

see Fig. 9. The spectrum of its He matrix is either {−1, 1} or {−2, 2} or {−3, 3} ,

depending on the way in which H12 is drawn. Thus the spectrum of A(H12) is integral.
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H H H
��a ��b ��c

Fig. 9. A hexagonal system whose He matrix has integral spectrum. For the
orientations H12a , H12b , and H12c , the spectra of A(H12) are {−1, 1} , {−2, 2} , and
{−3, 3} , respectively.

From these observations and after studying many hexagonal systems, we are in-

clined to state:

Conjecture 1. H12 is the only hexagonal system whose He matrix has integral spec-

trum.

6 Energy of He matrix

The energy of the graph G whose eigenvalues are λ1, λ2, . . . , λn is defined as

E(G) =
n∑

i=1

|λi(G)| . (10)

This quantity has long known chemical applications and has recently attracted much

attention of mathematicians; for chemical and mathematical details see the surveys

[20, 23] and [22, 27], respectively; for some recent work on graph energy see [1, 32,

38, 43, 45, 49, 52, 53].

Our intention is to conceive a graph–energy–like quantity, that instead of Eq. (10)

would be defined in terms of the eigenvalues of the He matrix. Evidently, if H is a

hexagonal system and A(H) is its He matrix, this “He energy” would be

HEE(H) =

n∑
i=1

|λi(A(H))| .

As explained above, the numerical value of HEE(H) depends on the way in which

the hexagonal system H is drawn. Thus, in the general case, a hexagonal system has

6 distinct HEE-values (or 3, 2, 1 in case of symmetry). We are therefore interested

in such properties of HEE which are independent of the orientation of the underlying

hexagonal system.
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Theorem 6.1. Let H be a hexagonal system with n hexagons. Then the He energy

satisfies

HEE(H) ≥ 4Me

n

where Me =
∑
i∼j

aij , aij = 0, 1, 2, or 3.

Proof: We first observe that HEE(H) ≥ 2 λ1(H) with equality holding if and only if

A(H) has at most one positive eigenvalue. By Lemma 4.8, we get the required result.

Theorem 6.2. Let H be a hexagonal system with n hexagons. Then the He energy

satisfies

HEE(G) ≤ 2Me

n
+

√
(n − 1)

(
W − 4M2

e

n2

)

where, W =
n∑

i=1

n∑
j=1

a2
ij and Me =

∑
i∼j

aij .

Proof: We just have to emulate Koolen–Moulton’s proof [37] of an analogous result

for graph energy.

Using the same notation as in Theorem 4.9, we have:

Theorem 6.3. If H∗ is obtained from H ′ and H ′′ by identifying k edges of H ′ with

k edges of H ′′ , k ≥ 1 , then

HEE(H∗) ≥ HEE(H ′) and HEE(H∗) ≥ HEE(H ′′) .

Proof: We first note that

A(H∗) =

[
A(H ′) ∗

∗ A(H ′′)

]

Let λi(A(H1)) , i = 1, 2, . . . , p , be the positive eigenvalues of A(G′) . By Lemma

3.4,

λi(A(H∗)) ≥ λi(A(H ′)) , i = 1, 2, . . . , p . (11)
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Again by Lemma 3.4,

λn′′+i(A(H∗)) ≤ λi(A(H ′)) ≤ 0 , i = p + 1, p + 2, . . . , n′ − 1, n′

i. e.,

|λn′′+i(A(H∗))| ≥ |λi(A(H ′))| , i = p + 1, p + 2, . . . , n′ − 1, n′ . (12)

Thus we have

HEE(H∗) =
n∗∑
i=1

|λi(A(H∗))|

=

p∑
i=1

|λi(A(H∗))| +
n′′+p∑
i=p+1

|λi(A(H∗))| +
n∗∑

i=n′′+p+1

|λi(A(H∗))|

≥
p∑

i=1

|λi(A(H ′))| + 0 +
n′∑

i=p+1

|λi(A(H ′))| by (11) and (12)

=
n′∑

i=1

|λi(A(H ′)| = HEE(H ′) .

The proof of HEE(H) ≥ HEE(H ′′) is fully analogous. Hence the theorem follows.
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