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Abstract

The atom-bond connectivity (ABC) index of a graph G, is defined as the sum of

the weights
(du + dv − 2

dudv

) 1
2
of all edges uv of G, where du denotes the degree of a

vertex u in G. The ABC index provides a good model for the stability of linear
and branched alkanes as well as the strain energy of cycloalkanes. In this paper,
we characterize the catacondensed hexagonal systems with extreme ABC indices,
and prove that the ABC index of a graph decreases when any edge is deleted.
Consequently, it is also proved that the graph with n vertices and the maximum
ABC index is the complete graph Kn.

1 Introduction

A hexagonal system is a finite connected plane graph with no cut vertex in which every

interior region is surrounded by a regular hexagon of side length 1. A hexagonal system
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without internal vertex is called catacondensed hexagonal system. Hexagonal systems

are the natural graph representation of benzenoid hydrocarbons and have been widely

investigated [3].

In the last few years a number of new molecular structure descriptors has been con-

ceived (e.g., see [5,8-10]) and several of them have found applications in QSPR/QSAR

studies. Among molecular structure descriptors, topological indices have a prominent

place. One of the most important topological indices is the Randić index which is aimed

at the modelling of the branching of the carbon-atom skeleton of alkanes, introduced by

Randić [11]. But a great variety of physico-chemical properties lie on factors rather than

branching. In order to take this into consideration, Estrada et al. proposed a new index,

known as the atom-bond connectivity (ABC) index [6] of graph G, which is abbreviated

as ABC(G). ABC(G) is defined as the sum of
(du + dv − 2

dudv

) 1
2
over all edges uv of G,

where du denote the degree of a vertex u of G, i.e.,

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

The ABC index keep the spirit of the Randić index, and it provides a good model for the

stability of linear and branched alkanes as well as the strain energy of cycloalkanes [4,6].

Furtula et al. [7] studied the mathematical properties of ABC index of trees and

proved that the star tree, Sn, has the maximal ABC value among all trees with n(≥ 2)

vertices. They also obtained the chemical trees with extremal ABC indices. In the present

paper, we are interested in molecular structure with cycles, in particular, the catacon-

densed hexagonal systems. The catacondensed hexagonal systems with the maximum and

minimum ABC indices among all catacondensed hexagonal systems with h hexagons are

given.

Bollobás and Erdös [1] found that the Randić index of a graph decreases when an edge

with maximal weight is deleted. For ABC index of graphs, we prove that the ABC index

of a graph decreases when any edge is deleted. Consequently it is also proved that the

graph with n vertices and the maximum ABC index is the complete graph Kn.

All graphs considered here are finite and simple. Undefined teminology and notation
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may refer to [2].

2 Extreme ABC index of catacondensed hexagonal

systems

Let Ch be the set of catacondensed hexagonal systems with h hexagons. For a hexag-

onal system Ch ∈ Ch, its dualist graph D(Ch) is the graph whose vertex set is the set

of hexagons of Ch, and two vertices of which are adjacent if the corresponding hexagons

have a common edge. Clearly the dualist graph of a catacondensed hexagonal system is a

tree with the maximum degree less than or equal to 3. For Ch ∈ Ch, a hexagon s of Ch is

called a kink of Ch if s has exactly two consecutive vertices of degree 2 in Ch, and called a

branched hexagon if s has no vertex with degree 2 in Ch. A kink (resp. branched hexagon)

of Ch corresponds to a vertex of degree 2 (resp. degree 3) in the dualist graph D(Ch)

of Ch. The catacondensed hexagonal systems having no kink and branched hexagon are

called linear hexagonal chains. Let Lh be the linear hexagonal chain with h hexagons.

Let Dh be the set of the catacondensed hexagonal systems with h hexagons for which

the dualist graph of any hexagonal system Ch ∈ Dh has at most one vertex of degree 2,

and the vertex of degree 2 corresponds to a kink of Ch. It is not difficult to see that any

hexagonal system in Dh has exactly �h− 2

2
� branched hexagons. Let a(Ch) (resp. b(Ch))

be the number of kinks (resp. branched hexagons) in Ch.

In the following we can obtain the sharp lower and upper bounds on ABC index of

catacondensed hexagonal systems.

Theorem 1. Let Ch ∈ Ch, then

(i) ABC(Ch) = (
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)
(
a(Ch) + 3b(Ch)

)
;

(ii) ABC(Ch) is monotonously decreasing in a(Ch) or b(Ch);

(iii) ABC(Dh) ≤ ABC(Ch) ≤ ABC(Lh), where Lh is the linear hexagonal chain with

h hexagons and Dh ∈ Dh.

Proof. (i) We prove (i) of Theorem 3 by induction on h.
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If h = 1, then a(C1) = b(C1) = 0 and ABC(C1) = 3
√
2, so (i) holds for h = 1.

If h = 2, then a(C2) = b(C2) = 0 and ABC(C2) =
2

3
+ 5

√
2, so (i) holds for h = 2.

If h = 3, then b(C3) = 0. Suppose a(C3) = 0 (resp. a(C3) = 1), then ABC(C3) =
4

3
+ 7

√
2 (resp. ABC(C3) = 2 +

13

2

√
2 ), so (i) holds for h = 3.

Assume (i) holds for all Ch−1 ∈ Ch−1 (h ≥ 4), i.e., ABC(Ch−1) = (
√
2 − 2

3
) + (

2

3
+

2
√
2)(h− 1)− (

√
2

2
− 2

3
)
(
a(Ch−1) + 3b(Ch−1)

)
. Let Ch ∈ Ch, which is obtained by gluing

a new hexagon sh to some Ch−1. Without loss of generality, assume that the hexagon sh

is adjacent to some hexagon si in Ch−1. Now in Ch we have the following three cases.

Case 1. If si is a branched hexagon of Ch. Then a(Ch) = a(Ch−1) − 1 and b(Ch) =

b(Ch−1) + 1. By the induction assumption and direct computation, we have

ABC(Ch) = ABC(Ch−1) + (2 +
√
2)

= (
√
2− 2

3
) + (

2

3
+ 2

√
2)(h− 1)− (

√
2

2
− 2

3
)
(
a(Ch−1) + 3b(Ch−1)

)
+ (2 +

√
2)

= (
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)

((
a(Ch−1)− 1

)
+ 3

(
b(Ch−1) + 1

))

= (
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)
(
a(Ch) + 3b(Ch)

)
.

Case 2. If si is a kink of Ch. Then a(Ch) = a(Ch−1) + 1 and b(Ch) = b(Ch−1). By the

induction assumption and direct computation, we have

ABC(Ch) = ABC(Ch−1) + (
4

3
+

3

2

√
2)

= (
√
2− 2

3
) + (

2

3
+ 2

√
2)(h− 1)− (

√
2

2
− 2

3
)
(
a(Ch−1) + 3b(Ch−1)

)
+ (

4

3
+

3

2

√
2)

= (
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)

((
a(Ch−1) + 1

)
+ 3b(Ch−1)

)

= (
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)
(
a(Ch) + 3b(Ch)

)
.

Case 3. Otherwise, a(Ch) = a(Ch−1) and b(Ch) = b(Ch−1). By the induction assump-

tion and direct computation, we have

ABC(Ch) = ABC(Ch−1) + (
2

3
+ 2

√
2)
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= (
√
2− 2

3
) + (

2

3
+ 2

√
2)(h− 1)− (

√
2

2
− 2

3
)
(
a(Ch−1) + 3b(Ch−1)

)
+ (

2

3
+ 2

√
2)

= (
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)
(
a(Ch) + 3b(Ch)

)
.

Therefore, (i) of Theorem 3 holds.

(ii) Obviously.

(iii) Since 0 = a(Lh) ≤ a(Ch), 0 = b(Lh) ≤ b(Ch), by (ii) we have ABC(Ch) ≤
ABC(Lh).

Now, let us prove the lower bound. For any Dh ∈ Dh, if h is even (resp. odd), then

a(Dh) = 0 and b(Dh) =
h− 2

2
(resp. a(Dh) = 1 and b(Dh) =

h− 3

2
). From (i), we have

ABC(Dh) = (
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)
(
a(Dh) + 3b(Dh)

)

=

⎧⎪⎨⎪⎩
(
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
) · 3h− 6

2
(if h is even)

(
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
) · 3h− 7

2
(if h is odd)

= (
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)(h− 2 + �h− 2

2
�).

Since a kink (resp. branched hexagon) of Ch corresponds to a vertex of degree 2 (resp.

degree 3) in the dualist graphD(Ch) of Ch, and note that a vertex of degree 2 inD(Ch) not

necessarily corresponding to a kink of Ch, we have 2a(Ch)+3b(Ch)+
(
h−a(Ch)−b(Ch)

)
≤

2(h−1), i.e., a(Ch)+2b(Ch) ≤ h−2. It follows that b(Ch) ≤ �h− 2

2
�. From (i), we have

ABC(Ch) = (
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)
(
a(Ch) + 3b(Ch)

)
= (

√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)

((
a(Ch) + 2b(Ch)

)
+ b(Ch)

)

≥ (
√
2− 2

3
) + (

2

3
+ 2

√
2)h− (

√
2

2
− 2

3
)(h− 2 + �h− 2

2
�).

= ABC(Dh). �
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3 The ABC index changes due to edge deletion

In this section, we will prove that the ABC index of a graph decreases when any edge

is deleted. Consequently, it is proved that the graphs on n vertices with maximum ABC

index is the complete graph Kn. We first give two lemmas.

Lemma 1. Let x1x2 be an edge of a graph G and let d(xi) = di (i = 1, 2). If d1 = 1, then

ABC(G− x1x2) ≤ ABC(G), equality holds if and only if x1x2 is an isolate edge of G.

Proof. Let E0 = E(G) \ {x1x2}. If d2 = 1, then ABC(G) − ABC(G − x1x2) = 0;

therefore we may assume that d2 ≥ 2.

Note that

ABC(G)− ABC(G− x1x2)

=

√
d2 − 1√
d2

+
∑

x2v∈E0

√
d2 + dv − 2√

d2dv
−

∑
x2v∈E0

√
(d2 − 1) + dv − 2√

(d2 − 1)dv

=

√
d2 − 1√
d2

+
∑

x2v∈E0

√
d2 + dv − 2√

d2dv
−

∑
x2v∈E0

(√d2 + dv − 2√
d2dv

·
√
d2 + dv − 3√
d2 + dv − 2

·
√
d2√

d2 − 1

)
>

√
d2 − 1√
d2

+
∑

x2v∈E0

√
d2 + dv − 2√

d2dv
−

∑
x2v∈E0

(√d2 + dv − 2√
d2dv

·
√
d2√

d2 − 1

)
=

√
d2 − 1√
d2

+
(
1−

√
d2√

d2 − 1

)
·
∑

x2v∈E0

√
d2 + dv − 2√

d2dv
.

Since
∑

x2v∈E0

√
d2 + dv − 2√

d2dv
≤ (d2 − 1) ·

√
d2 − 1√
d2

, we have

ABC(G)− ABC(G− x1x2)

≥
√
d2 − 1√
d2

+
(d2 − 1)

√
d2 − 1√

d2
·
(
1−

√
d2√

d2 − 1

)
=

√
d2 − 1√
d2

+
(d2 − 1)

√
d2 − 1√

d2
− (d2 − 1)

=

√
d2 − 1√
d2

· (d2 − 1 + 1)− (d2 − 1)

=
√

d2(d2 − 1)− (d2 − 1) > 0.

i.e., ABC(G− x1x2) < ABC(G). �
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Lemma 2. Let x ∈ {2}⋃[3,+∞), y ∈ [1,+∞), f(x, y) =

√
x+ y − 2√

xy
−

√
x+ y − 3√
(x− 1)y

,

then f(x, y) ≥ 1√
x
− 1√

x− 1
.

Proof.
∂f

∂y
=

√
xy

2
√
x+y−2

− x
√
x+y−2
2
√
xy

xy
−

√
(x−1)y

2
√
x+y−3

− (x−1)
√
x+y−3

2
√

(x−1)y

(x− 1)y

=
1

2
√

y3

( x− 3√
x− 1 · √x+ y − 3

− x− 2√
x · √x+ y − 2

)
.

Case 1. If x = 2, y = 1, then f(2, 1) =

√
2

2
≥ 1√

2
− 1√

2− 1
, so Lemma 2 holds.

Case 2. If x = 2, y > 1, then
∂f

∂y
< 0. Hence, f(2, y) ≥ lim

y→+∞
(√2 + y − 2√

2y
−

√
2 + y − 3√
(2− 1)y

)
=

1√
2
− 1√

2− 1
, so Lemma 2 holds.

Case 3. Let x ∈ [3,+∞), y ∈ [1,+∞), then we have

0 < (x2 − x− 4)y + 2(x− 2)(x− 3)

= x2y + 2x2 + 12− xy − 4y − 10x

= x3y− 5x2y + 8xy− 4y+ x4 − 8x3 + 23x2 − 28x+ 12− (x3y− 6x2y + 9xy + x4 −
8x3 + 21x2 − 18x)

= (x− 2)2(x− 1)(x+ y − 3)− (x− 3)2x(x+ y − 2),

which leads to

x− 3√
x− 1 · √x+ y − 3

<
x− 2√

x · √x+ y − 2
.

That is,
∂f

∂y
< 0.

Then we have f(x, y) ≥ lim
y→+∞

(√x+ y − 2√
xy

−
√
x+ y − 3√
(x− 1)y

)
=

1√
x
− 1√

x− 1
, so Lemma

2 holds. �

Theorem 2. Let x1x2 be an edge of a graph G and x1x2 is not an isolate edge, then

ABC(G− x1x2) < ABC(G).

Proof. Let E0 = E(G) \ {x1x2} and let d(xi) = di, i = 1, 2. If min {d1, d2}=1. Note that

x1x2 is not an isolate edge, then we have done by Lemma 1. Otherwise we can assume
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d1 ≥ 2 and d2 ≥ 2. Let us observe the function

f(d1, d2) = ABC(G)− ABC(G− x1x2)

=

√
d1 + d2 − 2√

d1d2
+

∑
x1v∈E0

√
d1 + dv − 2√

d1dv
−

∑
x1v∈E0

√
(d1 − 1) + dv − 2√

(d1 − 1)dv

+
∑

x2u∈E0

√
d2 + du − 2√

d2du
−

∑
x2u∈E0

√
(d2 − 1) + du − 2√

(d2 − 1)du

=

√
d1 + d2 − 2√

d1d2
+

∑
x1v∈E0

(√d1 + dv − 2√
d1dv

−
√
d1 + dv − 3√
(d1 − 1)dv

)
+

∑
x2u∈E0

(√d2 + du − 2√
d2du

−
√
d2 + du − 3√
(d2 − 1)du

)
.

By Lemma 2, we have

f(d1, d2) ≥
√
d1 + d2 − 2√

d1d2
+(d1 − 1) ·

( 1√
d1

− 1√
d1 − 1

)
+(d2 − 1) ·

( 1√
d2

− 1√
d2 − 1

)
=

√
d1 + d2 − 2√

d1d2
+ (d1 − 1) ·

√
d1 − 1−

√
d1√

d1 ·
√
d1 − 1

+ (d2 − 1) ·
√
d2 − 1−

√
d2√

d2 ·
√
d2 − 1

=

√
d1 + d2 − 2√

d1d2
+

d1 − 1−
√

d1(d1 − 1)√
d1

+
d2 − 1−

√
d2(d2 − 1)√
d2

=

√
d1 + d2 − 2√

d1d2
+
(d1 − 1

2
)−

√
d1(d1 − 1)− 1

2√
d1

+
(d2 − 1

2
)−

√
d2(d2 − 1)− 1

2√
d2

>

√
d1 + d2 − 2√

d1d2
− 1

2
√
d1

− 1

2
√
d2

(by di −
1

2
>
√

di(di − 1) for i = 1, 2)

=

√
4d1 + 4d2 − 8− (

√
d1 +

√
d2)

2
√
d1d2

.

Since 2d1 + 2d2 − 8 ≥ 0 and d1 + d2 ≥ 2
√
d1d2, then we have

(2d1 + 2d2 − 8) + d1 + d2 ≥ 2
√
d1d2,

which leads to

√
4d1 + 4d2 − 8 ≥

√
d1 +

√
d2.

That is, f(d1, d2) > 0.

Therefore ABC(G− x1x2) < ABC(G). The proof is completed. �

By Theorem 2, the following Corollaries and Theorem are clear.
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Corollary 1. Let G be a graph without isolate edges, let v be a vertex of G, then

ABC(G − v) ≤ ABC(G), and the equality holds if and only if v is an isolated vertex of

G.

Corollary 2. Let G be a graph without isolate edges and isolate vertices, let H be a

subgraph of G, then ABC(H) ≤ ABC(G), and the equality holds if and only if G = H.

Theorem 3. Let G be a graph with n vertices, then ABC(G) ≤ ABC(Kn) =
n

2

√
2n− 4,

and the equality holds if and only if G = Kn.

Remark. By Theorem 2, it is also clear that the minimum ABC value of trees with n

vertices is the minimum ABC value of all connected graphs with n vertices. But, finding

the minimum ABC value of trees remains an open problem [7].
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