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Abstract: Let G = (V,E) be a simple graph and GA2 is molecular-structure descriptor,

belonging to the class of geometric-arithmetic indices. In this paper, the trees with second

minimum and maximum GA2 are characterized and the unicyclic graphs with minimum

and maximum GA2 are characterized.

1 Introduction

All graphs in this article are simple and finite. The vertex and edge sets of a graph G

are V (G) and E(G), respectively. The degree of a vertex u in G is denoted by degG(u) or

du. The number of vertices of G is denoted by n(G) and it is called the order of G. The

distance dG(u, v) between vertices u and v ∈ V (G) is the number of edges on a shortest path

connecting u and v in G. Molecular descriptors are playing a significant role in chemistry,

pharmacology, etc. Among them, topological indices have a prominent place [1]. There

are numerous of topological descriptors that have found some applications in theoretical

chemistry, especially in QSPR/QSAR research [6–9] .

In [2, 4] the geometric-arithmetic index GA was conceived, defined as

GA = GA(G) =
∑

uv∈E(G)

√
du dv

1
2
(du + dv)

(1.1)
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where uv is an edge of the graph G connecting the vertices u and v, du stands for the degree

of the vertex u, and the summation goes over all edges of G.

Let e = uv be an edge of G, connecting the vertices u and v. Define the sets

N(e, u,G) = {x ∈ V (G)|dG(x, u) < dG(x, v)}

N(e, v, G) = {x ∈ V (G)|dG(x, u) > dG(x, v)}

consisting of vertices of G lying closer to u than to v, and lying closer to v than to u,

respectively. The number of such vertices is then

nu(e) = nu(e,G) = |N(e, u,G)| and nv(e) = nv(e,G) = |N(e, v, G)|.

In [3] the second geometric-arithmetic index GA2 was conceived by Fath-Tabar, Furtula

and Gutman, defined as

GA2 = GA2(G) =
∑

uv∈E(G)

√
nu nv

1
2
(nu + nv)

(1.2)

where the summation goes over all edges of G. In [3], they gave the lower and upper bounds

for the GA2 index, identified the trees with the minimum and the maximum GA2 indices,

which are the star and the path, respectively.

Lemma 1.1. [3] Let G be a connected graph with n vertices and m edges. Then

GA2(G) ≥ 2m
√
n− 1

n
(1.3)

with equality if and only if G ∼= Sn, where Sn denotes the n-vertex star.

Lemma 1.2. [3] Let G be a connected graph with n vertices and m edges. Then GA2(G) ≤
m, with equality if and only if all vertices of G are mutually equivalent.

Lemma 1.3. [3] Let G be a tree with n vertices. Then

GA2(Sn) ≤ GA2(G) ≤ GA2(Pn) (1.4)

with the equality on the left if and only if G ∼= Sn, where Sn denotes the n-vertex star and

the equality on the right if and only if G ∼= Pn, where Pn denotes the n-vertex path.

In this paper, we characterize the trees with the second minimum and second maximum

GA2 among all trees on n vertices and characterize the unicyclic graphs with minimum and

maximum GA2 among all unicyclic graphs on n vertices.
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2 Tree with the second minimum and second maxi-

mum GA2 index

First we consider the graph G1 and graph G2 depicted in Fig. 1. These two graphs differ

only in the position of a terminal vertex: in G2 this terminal vertex is moved from the

b-branch to the a-branch. In what follows we assume that a ≥ b ≥ 1.

G0w

.......

.......
a︸ ︷︷ ︸

b

︸ ︷︷ ︸
G1

G0w

.......

.......
a+ 1︸ ︷︷ ︸

b− 1

︸ ︷︷ ︸
G2

Fig. 1. The transformation G1 −→ G2 increases the GA2 index if a ≥ b ≥ 1.

�


Proposition 2.1. Let G0 be a connected graph, w ∈ V (G0) , G1 = G0 + Pa + Pb , and

G2 = G0 + Pa+1 + Pb−1 depicted in Fig. 1. Then GA2(G1) ≤ GA2(G2) with equality if and

only if |V (G0)| = 1.

Proof. By the definition of GA2, we have

GA2(G2)−GA2(G1) =
∑

u′v′∈E(G2)

√
nu′(e′, G2)nv′(e′, G2)

1
2
(nu′(e′, G2) + nv′(e′, G2))

−
∑

uv∈E(G1)

√
nu(e,G1)nv(e,G1)

1
2
(nu(e,G1) + nv(e,G1))

.

All terms cancel out except the terms pertaining to the edges indicated by arrows in Fig.

1, for which √
nu′(e′, G2)nv′(e′, G2)

1
2
(nu′(e′, G2) + nv′(e′, G2))

=
2
√
(a+ 1)(n− a− 1)

n√
nu(e,G1)nv(e,G1)

1
2
(nu(e,G1) + nv(e,G1))

=
2
√
b(n− b)

n
.

We conclude that

GA2(G2)−GA2(G1) =
2(
√
(a+ 1)(n− a− 1)−

√
b(n− b))

n
≥ 0

where the equality holds if and only if a+ b+ 1 = n, in other words, |V (G0)| = 1.

By Proposition 2.1 and Lemma 1.1, we obtain next proposition easily.
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Proposition 2.2. Let T be a tree with n ≥ 6 and T � Sn, Pn, T1, T2 (depicted in Fig. 2.).

Then

GA2(Sn) < GA2(T2) < GA2(T ) < GA2(T1) < GA2(Pn) .

T1

. . . . . . .

T2

.....

Fig. 2.

3 Unicyclic Graphs with minimum and maximum GA2

index

Let G = (V,E) be an unicyclic graph of order n with its circuit Cm = v1v2 . . . vmv1 of length

m, T1, T2, . . . , Tk (0 ≤ k ≤ m) are the all nontrivial components (they are all nontrivial trees)

of G − E(Cm), ui is the common vertex of Ti and Cm, i = 1, 2, . . . , k. Such an unicyclic

graph is denoted by Cu1,u2,...,uk
m (T1, T2, . . . , Tk). Specially, G = Cn for k = 0. And if k = 1,

we write Cm(T1) for C
u1
m (T1); and Cu1

3 (Sn−2) = Sn + e. Let n(Ti) = li + 1, i = 1, 2, . . . , k,

then l = l1 + l2 + · · ·+ lk = n−m. By Proposition 2.1, we have next lemma.

Lemma 3.1. Let

G1 = Cu1,u2,...,uk
m (Sl1+1, Sl2+1, . . . , Slk+1)

G2 = Cu1,u2,...,uk
m (Pl1+1, Pl2+1, . . . , Plk+1)

where u1, u2, . . . , uk are the centers of Sl1+1, Sl2+1, . . . , Slk+1, respectively, in G1; and

u1, u2, . . . , uk are the pendent of Pl1+1, Pl2+1, . . . , Plk+1, respectively, in G2. Then

GA2(G1) ≤ GA2(G) ≤ GA2(G2)

for any unicyclic graph G = Cu1,u2,...,uk
m (T1, T2, . . . , Tk) of order n and n(Ti) = li + 1, i =

1, 2, . . . , k, with the equality on the left (resp., on the right) if and only if G ∼= G1 (resp.,

G ∼= G2).

By Lemma 1.2, we can get next proposition.
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Proposition 3.2. G = Cu1,u2,...,uk
m (T1, T2, . . . , Tk) be an unicyclic graph of order n ≥ 4.

Then

GA2(G) ≤ GA2(Cn),

with the equality if and only if G ∼= Cn

Let G1 = Cw1,w2,...,wk
m (Sl1+1, Sl2+1, . . . , Slk+1) be an unicyclic graphs, u, v ∈ Cm ,

degG1(w1) ≥ 3 , degG1(wi) ≥ 3 , w1u1, . . . , w1up (p ≥ 1) are pendent edges incident with

w1 and wiv1, . . . , wivq, (q ≥ 1) are pendent edges incident with wi(depicted in Fig. 3). G′
1

obtained by removing edges wiv1, . . . , wivq and replacing edges w1v1, . . . , w1vq. We say that

G′
1 is a Tr1−transform of G1(depicted in Fig. 3, left). G′′

1 obtained by removing edges

w1u1, . . . , w1up and replacing edges wiu1, . . . , wiup. We say that G′′
1 is a Tr2−transform

of G1 (depicted in Fig. 3, right).

Fig. 3. The transformations Tr1, Tr2

.....

.....

.....

.....

G′′
1G1

.....

.....

G′
1

⇐= =⇒Tr1 Tr2
w1 w1 w1

wi wi wi

u1
u2

up

v1
v2

vq

.....

.....

u1
u2

up

v1
v2

vq

.....

.....

u1
u2

up

v1
v2

vq

Lemma 3.3. Let G1 = Cw1,w2,...,wk
m (Sl1+1, Sl2+1, . . . , Slk+1) be an unicyclic graphs and

degG1(w1) = l1 + 2, degG1(wi) = li + 2. G′
1 be a Tr1−transform of G1, G′′

1 be a

Tr2−transform of G1 depicted in Fig. 3. Then GA2(G
′
1) ≤ GA2(G1) or GA2(G

′′
1) ≤

GA2(G1).

Proof. We divide E(G1) into the following five groups: (i) E1 = {e = uv ∈ G1|degG1(v) = 1

and degG1(u) ≥ 3}; (ii) E2 = {e = uv ∈ Cm|d(u, w1) ≤ d(v, w1) and d(u, wi) ≤ d(v, wi)};
(iii) E3 = {e = uv ∈ Cm|d(u, w1) ≥ d(v, w1) and d(u, wi) ≥ d(v, wi)}; (iv) E4 = {e = uv ∈
Cm|d(u, w1) < d(v, w1) and d(u, wi) > d(v, wi)}; (v) E5 = {e = uv ∈ Cm|d(u, w1) > d(v, w1)

and d(u, wi) < d(v, wi)}.
By the definition of GA2, we have

GA2(G1) =
5∑

i=1

∑
uv∈Ei

√
nu(e,G1)nv(e,G1)

1
2
(nu(e,G1) + nv(e,G1))

.
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For G′
1 be a Tr1−transform of G1, G

′′
1 be a Tr2−transform of G1 depicted in Fig. 3.

We easily have that if uv ∈ Ei (1 ≤ i ≤ 3), then√
nu(e,G1)nv(e,G1)

1
2
(nu(e,G1) + nv(e,G1))

=

√
nu′(e′, G′

1)nv′(e′, G′
1)

1
2
(nu′(e′, G′

1) + nv′(e′, G′
1))

=

√
nu′′(e′′, G′′

1)nv′′(e′′, G′′
1)

1
2
(nu′′(e′′, G′′

1) + nv′′(e′′, G′′
1))

.

Next for uv ∈ E4, by induction on the size of E4 we prove that√
nu(e,G1)nv(e,G1)

1
2
(nu(e,G1) + nv(e,G1))

≥
√

nu′(e′, G′
1)nv′(e′, G′

1)
1
2
(nu′(e′, G′

1) + nv′(e′, G′
1))

,

or √
nu(e,G1)nv(e,G1)

1
2
(nu(e,G1) + nv(e,G1))

≥
√

nu′′(e′′, G′′
1)nv′′(e′′, G′′

1)
1
2
(nu′′(e′′, G′′

1) + nv′′(e′′, G′′
1))

.

Denote t be the size of E4. When t = 1, we have e = w1wi ∈ E4, nw1(e) ≥ nwi
(e) or

nw1(e) ≤ nwi
(e). If ne(w1) ≤ ne(wi), by Tr2−transform of G1, we have

nw′′
1
(e′′) = nw1(e)− l1, nw′′

i
(e′′) = nwi

(e) + li

So when t = 1, we have

√
nw1(e,G1)nwi

(e,G1)
1
2
(nw1(e,G1) + nwi

(e,G1))
≥

√
nw′′

1
(e′′, G′′

1)nw′′
i
(e′′, G′′

1)

1
2
(nw′′

1
(e′′, G′′

1) + nw′′
i
(e′′, G′′

1))
.

Suppose the above result holds when t = d. Let d(w1, wi) = d + 1, P = w1x1 . . . xdwi

be a path. By induction hypothesis, we have degG1(xi) = 2(1 ≤ i ≤ d) and nw1(e1) ≥
nx1(e1), nwi

(ed) ≤ nxd
(ed) or nw1(e1) ≤ nx1(e1), nwi

(ed) ≥ nxd
(ed).

If nw1(e1) ≤ nx1(e1), nwi
(ed) ≥ nxd

(ed), we have nxi−1
(ei) ≤ nxi

(ei)(2 ≤ i ≤ d). By

Tr2−transform of G1, we get G′′
1.

nx′′
i−1

(e′′i ) = nxi−1
(ei)− l1, nx′′

i
(e′′i ) = nxi

(ei) + li.

So when t = d+ 1 ei ∈ E4 (1 ≤ i ≤ d), we have that

√
nxi−1

(ei, G1)nxi
(ei, G1)

1
2
(nxi−1

(ei, G1) + nxi
(ei, G1))

≥

√
nx′′

i−1
(e′′i , G

′′
1)nx′′

i
(e′′i , G

′′
1)

1
2
(nx′′

i−1
(e′′i , G

′′
1) + nx′′

i
(e′′i , G

′′
1))

.

If uv ∈ E5 we can similarly prove that√
nu(e,G1)nv(e,G1)

1
2
(nu(e,G1) + nv(e,G1))

≤
√

nu′(e′, G′
1)nv′(e′, G′

1)
1
2
(nu′(e′, G′

1) + nv′(e′, G′
1))

or √
nu(e,G1)nv(e,G1)

1
2
(nu(e,G1) + nv(e,G1))

≥
√

nu′′(e′′, G′′
1)nv′′(e′′, G′′

1)
1
2
(nu′′(e′′, G′′

1) + nv′′(e′′, G′′
1))

.
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Summarizing above, let G1 = Cw1,w2,...,wk
m (Sl1+1, Sl2+1, . . . , Slk+1) be an unicyclic graph

and degG1(w1) = l1 + 2, degG1(wi) = li + 2. G′
1 be a Tr1−transform of G1, G′′

1 be

a Tr2−transform of G1 depicted in Fig.3. Then GA2(G
′
1) ≤ GA2(G1) or GA2(G

′′
1) ≤

GA2(G1).

Proposition 3.4. Let G = Cu1,u2,...,uk
m (T1, T2, . . . , Tk) be an unicyclic graph of order n ≥ 4.

Then

GA2(G) ≥ GA2(C
u1
4 (Sn−3))

with the equality if and only if G ∼= Cu1
4 (Sn−3).

Proof. First, by Lemma 3.1, we have

GA2(C
u1,u2,...,uk
m (Sl1+1, Sl2+1, . . . , Slk+1)) ≤ GA2(C

u1,u2,...,uk
m (T1, T2, . . . , Tk)).

Let G0 = Cu1,u2,...,uk
m (Sl1+1, Sl2+1, . . . , Slk+1) (k ≥ 1) . By Lemma 3.3, we can obtain a

series graphs Gi, 0 ≤ i ≤ k − 1, Gi obtained by Tr1−transform or Tr2−transform Gi−1

and GA2(Cm(Sn−m+1)) ≤ · · · ≤ GA2(Gi+1) ≤ GA2(Gi) ≤ · · · ≤ GA2(G0).

By calculating,

GA2(Cm(Sn−m+1)) =
2(n−m)

√
n− 1

n
+

4k
√

k(k + n−m)

n+ 2k −m
+ d .

where k = [m/2] , d = 2(m− 2k) .

When m = 2k (k ≥ 3), we have

GA2(Cm(Sn−m+1))−GA2(Cm−2(Sn−m+3))

= 2(n−2k)
√
n−1

n
+

4k
√

k(n−k)

n
−
(

2(n−2k+2)
√
n−1

n
+

4(k−1)
√

(k−1)(n−k+1)

n

)
> 0 .

When m = 2k + 1 (k ≥ 2), we have

GA2(Cm(Sn−m+1))−GA2(Cm−2(Sn−m+3))

= 2(n−2k−1)
√
n−1

n
+

4k
√

k(n−k−1)

n−1
− 2(n−2k+1)

√
n−1

n
− 4(k−1)

√
(k−1)(n−k)

n−1

=
4k
√

k(n−k−1)−4k
√

(k−1)(n−k)

n−1
+

4n
√

(k−1)(n−k)−4(n−1)
√
n−1

n(n−1)
> 0 .

When m = 4,m = 3, we have

GA2(C4(Sn−3))−GA2(C3(Sn−2))

= 2(n−4)
√
n−1

n
+

8
√

2(n−2)

n
−
(

2(n−3)
√
n−1

n
+ 4

√
n−2

n−1
+ 2

)
< 0 .

Summarizing above, Cu1
4 (Sn−3) have the minimum GA2 index among all unicyclic graphs

of order n ≥ 4 .
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