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Abstract: Let G = (V, E) be a simple graph and G A is molecular-structure descriptor,
belonging to the class of geometric-arithmetic indices. In this paper, the trees with second
minimum and maximum GA, are characterized and the unicyclic graphs with minimum

and maximum G A, are characterized.

1 Introduction

All graphs in this article are simple and finite. The vertex and edge sets of a graph G
are V(G) and E(G), respectively. The degree of a vertex u in G is denoted by degq(u) or
d,. The number of vertices of G is denoted by n(G) and it is called the order of G. The
distance dg(u, v) between vertices u and v € V(G) is the number of edges on a shortest path
connecting u and v in G. Molecular descriptors are playing a significant role in chemistry,
pharmacology, etc. Among them, topological indices have a prominent place [1]. There
are numerous of topological descriptors that have found some applications in theoretical
chemistry, especially in QSPR/QSAR research [6-9] .
In [2,4] the geometric-arithmetic index GA was conceived, defined as

Vd, d,

GA=GA(G) = ) dy +dy)

weFR(G)

(1.1)
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where uv is an edge of the graph G connecting the vertices u and v, d,, stands for the degree
of the vertex u, and the summation goes over all edges of G.

Let e = uv be an edge of (G, connecting the vertices u and v. Define the sets
N(e,u,G) = {z € V(G)|da(x,u) < dg(z,v)}
N(e,v,G) = {a € V(G)lda(z,u) > da(z,v)}

consisting of vertices of G lying closer to u than to v, and lying closer to v than to w,

respectively. The number of such vertices is then
ny(e) = ny(e,G) = |N(e,u, G)| and n,(e) = n,(e,G) = |[N(e,v, G)|.

In [3] the second geometric-arithmetic index G Ay was conceived by Fath-Tabar, Furtula

and Gutman, defined as

GAy = GAL(G Z Tow VALTRL (1.2)
weE(G 2 nu + 'ﬂy

where the summation goes over all edges of G. In [3], they gave the lower and upper bounds
for the G A, index, identified the trees with the minimum and the maximum GA, indices,

which are the star and the path, respectively.

Lemma 1.1. /3] Let G be a connected graph with n vertices and m edges. Then

Gay(@) > 2=l (1.3)

n

with equality if and only if G = S,,, where S,, denotes the n-vertex star.

Lemma 1.2. /3] Let G be a connected graph with n vertices and m edges. Then GAy(G) <

m, with equality if and only if all vertices of G are mutually equivalent.
Lemma 1.3. /3] Let G be a tree with n vertices. Then
GAy(S,) < GA3(G) < GAs(P,) (1.4)

with the equality on the left if and only if G = S,,, where S, denotes the n-vertex star and
the equality on the right if and only if G = P,, where P, denotes the n-vertex path.

In this paper, we characterize the trees with the second minimum and second maximum
G Ay among all trees on n vertices and characterize the unicyclic graphs with minimum and

maximum G'A; among all unicyclic graphs on n vertices.
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2 Tree with the second minimum and second maxi-
mum GA, index

First we consider the graph GG; and graph Go depicted in Fig. 1. These two graphs differ
only in the position of a terminal vertex: in G this terminal vertex is moved from the

b-branch to the a-branch. In what follows we assume that a > b > 1.

Fig. 1. The transformation G; — G5 increases the GAs index if a > b > 1.

Proposition 2.1. Let Gy be a connected graph, w € V(Gy), G1 = Gy + P, + Py, and
Gy = Go + Puy1 + Pyq depicted in Fig. 1. Then GAs(G1) < GAs(Ga) with equality if and
only if |[V(Gp)| = 1.

Proof. By the definition of GA,, we have

V(e Ga)ny (e, Ga)

GAy(Gy) — GAY(Gy) = N (€', Ga) + ny (¢, Ga))

3(
u/v'€EE(Ga) 2

_ Z nu(c,Gl)nU(c,Gl)
weB(Gy) %(nu(ea Gl) + n'u(87 Gl))
All terms cancel out except the terms pertaining to the edges indicated by arrows in Fig.

1, for which

V(e Gang(e . Gy)  2y/(a+1)(n—a—1)
é(nu (¢/,Ga) + ny (€', Ga)) N n
ny(e, Gi)ny,(e, Gy) _ 24/b(n —b)
3(nu(e, Gr) + ny(e, Gh)) n '

We conclude that

G Ao(Ga) — G A (Gy) = 2(y/(a+1)(n—a—1) — \/b(n — b)) -

n

where the equality holds if and only if @ + b+ 1 = n, in other words, |V(Gy)| = 1. 0O

By Proposition 2.1 and Lemma 1.1, we obtain next proposition easily.
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Proposition 2.2. Let T be a tree withn > 6 and T 2 S,, P,, T1, Ty (depicted in Fig. 2.).
Then
GAy(S)) < GAy(Ty) < GAy(T) < GAy(Th) < GAy(P,) -

T1 Tz

3 Unicyclic Graphs with minimum and maximum G A,
index

Let G = (V, E) be an unicyclic graph of order n with its circuit Cy, = v1vz ... v,01 of length
m, T, T, ..., T}, (0 < k < m) are the all nontrivial components (they are all nontrivial trees)
of G — E(Cy,), u; is the common vertex of T; and Cp,, i = 1,2,..., k. Such an unicyclic
graph is denoted by Cuv2--u(Ty Ty, ..., Ty). Specially, G = C,, for k =0. And if k = 1,
we write C,,(T1) for C4(T1); and C3(S,—2) = S, +e. Let n(T;) =L+ 1,4 =1,2,...k,

m )

then l =1y +lo + --- + I = n —m. By Proposition 2.1, we have next lemma.
Lemma 3.1. Let

Gi = Cpr" (S 41, Sty - - - Sit1)

Gy = Cprv" (P iy, Py, ..., Py)

where uy, ug, . . ., uy, are the centers of Sy +1, Siy41, - ., Si41, respectively, in Gy; and

Uy, Us, . .., uy are the pendent of P11, Py, ..., P41, respectively, in Gy. Then
GA3(Gh) < GA(G) < GAy(Ga)

for any unicyclic graph G = Cuvvz-(Ty Ty, ... Ty) of order n and n(T;) = l; + 1, i =
1,2,...,k, with the equality on the left (resp., on the right) if and only if G = Gy (resp.,
G=Gy).

By Lemma 1.2, we can get next proposition.



Proposition 3.2. G = Curv2" (T Ty, ..., Ty) be an unicyclic graph of order n > 4.
Then
GA5(G) < GAy(Cy),

with the equality if and only if G = C,

Let Gy = Crw2e=% (S 14,841, .., Si,+1) be an unicyclic graphs, u,v € C,,
dega, (w1) > 3, dege, (w;) > 3, wiuy, ..., wy, (p > 1) are pendent edges incident with
wy and w;vy, . .., wv,, (¢ > 1) are pendent edges incident with w;(depicted in Fig. 3). G}
obtained by removing edges w;v1, . .., w;v, and replacing edges wyvy, ..., wiv,. We say that
G is a Tri—transform of G;(depicted in Fig. 3, left). G} obtained by removing edges
Wiy, ..., wiu, and replacing edges wiuy, . .., w;u,. We say that G is a Tro—transform

of Gy (depicted in Fig. 3, right).

Uy Uy
us us
U, Tr Tr. U,
D 1 »
=1 ==

Uq Uq
Vo Vo
U1 U1

"

GY

Fig. 3. The transformations Try, T'ro
Lemma 3.3. Let Gy = Ct®2 0% (Sy 41, Siytts - -+ Sit1) be an unicyclic graphs and

dege, (wr) = I + 2, dege,(w;) = l; +2. G be a Tri—transform of Gy, GY be a
Tro—transform of Gy depicted in Fig. 3. Then GAy(G)) < GAy(Gy) or GAy(GY) <
GAy(Gy).

Proof. We divide E(G}) into the following five groups: (i) £y = {e = uwv € Gi|degg, (v) =1
and degg, (u) > 3}; (ii) By = {e = wv € Cpld(u, wr) < d(v,wi) and d(u,w;) < d(v,w;)};
(iti) B3 = {e = uv € Cy|d(u,wy) > d(v,wy) and d(u, w;) > d(v,w;)}; (iv) By ={e=uv €
Crl|d(u, wy) < d(v,w) and d(u, w;) > d(v,w;)}; (v) Es = {e = uwv € C|d(u,wy) > d(v,w;)
and d(u, w;) < d(v,w;)}.

By the definition of GAy, we have

5

nueGl (6 Gl)
A _ .
GAy(Gy) 2::26: Lnu(e, G1) +ny(e, G1))

. 2
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For G be a Tri—transform of Gy, G be a Try—transform of GG; depicted in Fig. 3.
We easily have that if wv € E; (1 <1i < 3), then

na(e,Gnu(e,G1)  /nuw(e,Gnu (e, GY) /€, G)ny(e”, GY)

L(nu(e, G1) +ny(e,G1))  $(nw(e,G) +ny (e, GL))  2(nu(e”,GY) +nu(e”,GY))

Next for uv € Ey, by induction on the size of £, we prove that

\/nu’(e/v D (e, GY)
Lnw (e, GY) +ny(e,GY))’

nu(e, G1)n,(e, G1)
L(nu(e, G1) + ny(e, Gr))

>

or

ny(e, G1)n,(e, G1) > \/nuu " G nn (e, GY)
L(nu(e, G1) + ny(e,Gr)) = $(nun(e”, GY) + nn(e”, GY))’
Denote ¢ be the size of E;. When ¢ = 1, we have e = wjw; € Ey,ny,(€) > ny,(e) or

Ny (€) < My, (€). If ne(wy) < ne(w;), by Tro—transform of Gy, we have
77/111{’(6N) = Ny (6) =1, nw;’(e”) = nw,(e) +1;

So when t = 1, we have

\/’I’Lw1 (8, Gl)nwl (8, Gl) S \/TL“,{/ (eﬂ7 Glll)nw;' (EN7 G’l’)
%(n‘wl (67 Gl) + T, (67 Gl)) - é(nw{’ (ellv Glll) + nm:’(eﬁf Gll/)) '

Suppose the above result holds when ¢ = d. Let d(wy,w;) = d+ 1, P = w2y ... zqw;
be a path. By induction hypothesis, we have degg, (x;) = 2(1 < i < d) and ny,(e1) >
Ny (€1), M, (€a) < ngy(€a) or ny, (€1) < ngy(e1), nu, (€a) = ngy(ea)-

If ng, (€1) < gy (e1),n,;(€q) > ng,(eq), we have n,,  (e;) < ng,(e;)(2 < i < d). By

Try—transform of Gy, we get GY.
N (€)= N, (e) = Ly, nar(e) = na,(e:) + i

Sowhent =d+1e¢; € By (1 <i<d), we have that

Ve (€, G, (€5, G1) \/ nay (e GY)nay (ef, GY)
e z > .
3 (e, (e, G1) + g, (e, G1)) = 5(nay (€], GY) + nay (e, GY))

If uv € E5 we can similarly prove that

ny (e, Gy)ny(e, Gq) - Ve, Gny (e, GY)
L(nu(e, G1) + ny(e,Gv)) ~ 2(nw(e,GL) +ny (e, GY))

or

ny(e, G1)n,(e, G1) - (€, Gy (e, GY)
%(nu(es Gl) + nu(ev Gl)) - %(nu”(e”7 G,],) + Ny (6”7 G/],)) ’
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Summarizing above, let Gy = C¥Vw2%k(S) 1.5, 41, ..., S,+1) be an unicyclic graph
and dege, (wr) = i + 2,degg, (w;) = l; + 2. G} be a Tri—transform of Gy, G be
a Tro—transform of G, depicted in Fig.3. Then GAy(G)) < GAy(G) or GAy(GY) <
GAs(Gh). O
Proposition 3.4. Let G = Cpv2" (T, Ty, ..., T}) be an unicyclic graph of order n > 4.
Then

GA3(G) = GAy(CY (Sn-3))
with the equality if and only if G = C{*(S,_3).

Proof. First, by Lemma 3.1, we have
GA(Cr" " (S 41, Stygts - -+, Sig1)) < GAp (Ot 2" (Ty, Ty, . T))).

Let Gy = Cp2e" (S, 11, 81541, -+, Si+1) (K > 1) . By Lemma 3.3, we can obtain a
series graphs G;, 0 <i < k — 1, G; obtained by Tr;—transform or Try—transform G;_,
and GAQ(CM(Sn,"H,l)) S s S GAZ(Gi+1) S GAQ(G'L) S e S GAZ(GU)

By calculating,

2(n —m)y/n—1 N 4k\/k(k +n —m)

GAz(C7n(Sn—nL+l)) = n n+2k—m

+d.

where k = [m/2], d = 2(m — 2k).
When m = 2k (k > 3), we have
GA?(CW(Snan»l)) GA2(C (Sn m+3))

_ 2(n—2k)Vn—1 | 4ky\/k(n—k) 2(n—2k42)yn—1 | 4(k—1)y/(k—1)(n—k+1)
- n + n - n + n >0

When m = 2k + 1 (k > 2), we have
GAQ(Cm(Sn7m+1)) - GAZ(Cm72(Sn7m+3))

_ 2(n—2k— 1)\/T+ Ak\k(n=k=1)  2(n-2k+1)vn—1  A4(k=1)y/(k=1)(n—k)

n—1 n n—1
_Ak/k(n—k—1)—4k\/(k=1)(n—k) | 4ny/(k=1)(n—k)—4(n—1)yn—1
- n—1 + n(n—1) >0.

When m =4, m = 3, we have

GA(Cu(Sn-3)) — GAs(C5(Sn-2))

_ 2(n— 4>\/* \/ n—2) (2(n73im+4ﬁ+2) <0.

Summarizing above, Cy" (S,,—3) have the minimum G A, index among all unicyclic graphs

of order n > 4. O
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