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Abstract

The variable first and second Zagreb indices are defined to be λM1(G) =∑
u∈V (d(u))2λ and λM2(G) =

∑
uv∈E(d(u)d(v))λ, where λ is any real num-

ber. In this paper, we prove that when λ ∈ [0, 1] (resp. λ ∈ (−∞, 0)),
λM1(G)/n ≤ λM2(G)/m (resp. λM1(G)/n ≥ λM2(G)/m) holds for graphs G
satisfying one of the following conditions: Δ(G)−δ(G) ≤ 2; Δ(G)−δ(G) ≤ 3

and δ(G) � 2; G is a chemical graph. When λ ∈ (1,+∞), the relationship of

numerical value between λM1(G)/n and λM2(G)/m is indefinite for distinct

graphs G even if Δ(G) − δ(G) ≤ 2.

1 Introduction

A molecular graph is a representation of the structural formula of a chemical

compound in terms of graph theory, whose vertices correspond to the atoms of

the compound and edges correspond to chemical bonds. The first Zagreb index

M1(G) and the second Zagreb index M2(G) are usually used in the study of molec-

ular graphs, and they are defined in [2] as follows:

M1(G) =
∑

u∈V
(d(u))2 and M2(G) =

∑

uv∈E
d(u)d(v),
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where V is the set of vertices, E is the set of edges and d(u) is degree of the vertex

u of G. The research of Zagreb indices and their generalization are often found in

chemistry and mathematical chemistry.

A natural issue is to compare the values of the Zagreb indices on the same

graph. In [1], the AutoGraphiX system proposed the following conjecture:

Conjecture 1.1 ([1]) For all simple connected graphs G,

M1(G)/n ≤ M2(G)/m

and the bound is tight for complete graphs.

However, this conjecture does not hold for all general graphs ([3]), while it is

proved to be true for chemical graphs ([3]), trees ([10]) and unicyclic graphs([7]),

and connected bicyclic graphs except one class ([9]). Besides, its generalization

to the variable Zagreb indices has already been discussed (see e.g. [5, 6, 13]). The

variable first and the variable second Zagreb indices are defined as:

λM1(G) =
∑

u∈V
(d(u))2λ and λM2(G) =

∑

uv∈E
(d(u)d(v))λ,

where λ is any real number. Clearly, 1M1(G) = M1(G) and 1M2(G) = M2(G).

Similarly as Conjecture 1.1, many mathematicians showed that

λM1(G)/n ≤ λM2(G)/m (1)

is true for the following cases: all chemical graphs and λ ∈ [0, 1] ([11]), all trees

and λ ∈ [0, 1] ([12]), all unicyclic graphs and λ ∈ [0, 1] ([4]).

On the other hand, the inequality

λM1(G)/n ≥ λM2(G)/m (2)

is true for the following cases: all unbalanced bipartite graphs and λ ∈ R\[0, 1]

([11]), all unicyclic graphs and λ ∈ (−∞, 0] ([14]).

Let G be an undirected, simple graph. Let Δ(G) and δ(G) denote the maximum

and minimum degrees of G, respectively. A graph G is called a chemical graph if

Δ(G) ≤ 4. A graph G is called k-regular if d(v) = k for all v ∈ V(G).

It is known to all that there are many molecular graphs with small difference

between the maximum and minimum degrees. In [8], it has been proved that

M1(G)/n ≤ M2(G)/m holds for graphs G with small difference between the max-

imum and minimum degrees, which implies the results in [3].
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In this paper, we investigate the relationship of λM1(G)/n and λM2(G)/m in

the graphs G with small difference between the maximum and minimum degrees

for λ ∈ R. When λ ∈ [0, 1] (resp. λ ∈ (−∞, 0)), we show that (1) (resp. (2))

holds for graphs satisfying one of the following conditions: Δ(G) − δ(G) ≤ 2;

Δ(G) − δ(G) ≤ 3 and δ(G) � 2; all chemical graphs. Moreover, the extremal

graphs (with the equality (1) or (2) holds) are characterized completely. When λ ∈
(1,+∞), the relationship of numerical value between λM1(G)/n and λM2(G)/m is

indefinite for distinct graphs even if Δ(G) − δ(G) ≤ 2.

2 Preliminaries

In this section, we introduce some notations and lemmas which are useful in the

presentations and proofs of our main results.

Let {i, j}, {k, l} ∈ (Z+)2 and λ ∈ R. Suppose

f λ{i, j}, {k, l} = iλ+1 jλ+1l+iλ+1 jλ+1k+ jkλ+1lλ+1+ikλ+1lλ+1−i2λ jkl−i j2λkl−i jk2λl−i jkl2λ.

In the following lemmas, let a, b, c, d be distinct positive integers.

Lemma 2.1 f λ{a, a}, {a, a} = 0.

Proof. Obviously, we have f λ{a, a}, {a, a} = 4a2λ+3 − 4a2λ+3 = 0. �

Lemma 2.2 f λ{a, a}, {a, b}

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ ≤ 1,

< 0, i f λ < 0.

Proof. Note that f λ{a, a}, {a, b} = a2λ+2b + a2λ+3 + 2aλ+2bλ+1 − 3a2λ+2b − a3b2λ

= a2(bλ − aλ)[(b − a)aλ + ab(aλ−1 − bλ−1)].

Case 1. 0 < λ ≤ 1.

If b > a > 0, then bλ − aλ > 0, (b − a)aλ + ab(aλ−1 − bλ−1) > 0.

If a > b > 0, then bλ − aλ < 0, (b − a)aλ + ab(aλ−1 − bλ−1) < 0.

Therefore, we always have f λ{a, a}, {a, b} > 0.

Case 2. λ < 0.

If b > a > 0, then bλ − aλ < 0, (b − a)aλ + ab(aλ−1 − bλ−1) > 0.

If a > b > 0, then bλ − aλ > 0, (b − a)aλ + ab(aλ−1 − bλ−1) < 0.

It can be seen that f λ{a, a}, {a, b} < 0. �
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Lemma 2.3 f λ{a, a}, {b, b}

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ ≤ 1,

< 0, i f λ < 0.

Proof. Note that f λ{a, a}, {b, b} = 2a2λ+2b + 2ab2λ+2 − 2a2λ+1b2 − 2a2b2λ+1

= 2ab(b − a)(b2λ − a2λ).

Case 1. 0 < λ ≤ 1. Without loss of generality, suppose b > a > 0. Then

b − a > 0, b2λ − a2λ > 0.

Thus we have f λ{a, a}, {b, b} > 0.

Case 2. λ < 0. Without loss of generality, suppose b > a > 0. Then

b − a > 0, b2λ − a2λ < 0.

It follows that f λ{a, a}, {b, b} < 0. �

Lemma 2.4 f λ{a, b}, {a, b}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

= 0, i f λ = 1,

> 0, i f 0 < λ < 1,

< 0, i f λ < 0.

Proof. Note that f λ{a, b}, {a, b} = 2aλ+1bλ+2 + 2aλ+2bλ+1 − 2a2λ+1b2 − 2a2b2λ+1

= 2a2b2(bλ − aλ)(aλ−1 − bλ−1).

Without loss of generality, suppose b > a > 0.

Case 1. λ = 1. Then bλ − aλ > 0, aλ−1 − bλ−1 = 0. Hence f λ{a, b}, {a, b} = 0.

Case 2. 0 < λ < 1. Then bλ − aλ > 0, aλ−1 − bλ−1 > 0. So f λ{a, b}, {a, b} > 0.

Case 3. λ < 0. Then bλ − aλ < 0, aλ−1 − bλ−1 > 0. Thus f λ{a, b}, {a, b} < 0. �

Lemma 2.5 f λ{a, b}, {a, c}

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ ≤ 1,

< 0, i f λ < 0.

Proof. Notice that f λ{a, b}, {a, c}

= aλ+1bλ+1c + aλ+2bλ+1 + aλ+1bcλ+1 + aλ+2cλ+1 − 2a2λ+1bc − a2b2λc − a2bc2λ

= a2bc[(aλ−1 − bλ−1)(bλ − aλ) + (aλ−1 − cλ−1)(cλ − aλ)] + aλ+2(c − b)(cλ − bλ).

Case 1. 0 < λ ≤ 1. Without loss of generality, suppose c > b > 0.
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If c > b > a > 0, then

aλ−1 − bλ−1 ≥ 0, bλ − aλ > 0, aλ−1 − cλ−1 ≥ 0, cλ − aλ > 0, cλ − bλ > 0.

If a > c > b > 0, then

aλ−1 − bλ−1 ≤ 0, bλ − aλ < 0, aλ−1 − cλ−1 ≤ 0, cλ − aλ < 0, cλ − bλ > 0.

If c > a > b > 0, then

aλ−1 − bλ−1 ≤ 0, bλ − aλ < 0, aλ−1 − cλ−1 ≥ 0, cλ − aλ > 0, cλ − bλ > 0.

All in all, we always have f λ{a, b}, {a, c} > 0.

Case 2. λ < 0. Without loss of generality, suppose c > b > 0.

If c > b > a > 0, then

aλ−1 − bλ−1 > 0, bλ − aλ < 0, aλ−1 − cλ−1 > 0, cλ − aλ < 0, cλ − bλ < 0.

If a > c > b > 0, then

aλ−1 − bλ−1 < 0, bλ − aλ > 0, aλ−1 − cλ−1 < 0, cλ − aλ > 0, cλ − bλ < 0.

If c > a > b > 0, then

aλ−1 − bλ−1 < 0, bλ − aλ > 0, aλ−1 − cλ−1 > 0, cλ − aλ < 0, cλ − bλ < 0.

Therefore, it can be conclude that f λ{a, b}, {a, c} < 0. �

Lemma 2.6 Let c > b > 0. If c > a > b, we suppose bc ≤ a2. Then

f λ{a, a}, {b, c}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

≥ 0, i f λ = 1,

> 0, i f 0 < λ < 1,

< 0, i f λ < 0.

Proof. f λ{a, a}, {b, c} = a2λ+2c + a2λ+2b + 2abλ+1cλ+1 − 2a2λ+1bc − a2b2λc − a2bc2λ

= a2bc(cλ − bλ)(bλ−1 − cλ−1) + a(2bc − ab − ac)(bλcλ − a2λ).

Case 1. 0 < λ ≤ 1.

If c > b > a > 0, then

cλ − bλ > 0, bλ−1 − cλ−1 ≥ 0, 2bc − ab − ac > 0, bλcλ − a2λ > 0.
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If a > c > b > 0, then

cλ − bλ > 0, bλ−1 − cλ−1 ≥ 0, 2bc − ab − ac < 0, bλcλ − a2λ < 0.

If c > a > b > 0, then cλ − bλ > 0, bλ−1 − cλ−1

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ < 1,

= 0, i f λ = 1.

Since bc ≤ a2. Hence bλcλ − a2λ ≤ 0, and

2bc − ab − ac ≤ bc + a2 − ab − ac = (c − a)(b − a) < 0.

It can be seen that f λ{a, a}, {b, c}

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ < 1,

≥ 0, i f λ = 1.
Case 2. λ < 0.

If c > b > a > 0, then

cλ − bλ < 0, bλ−1 − cλ−1 > 0, 2bc − ab − ac > 0, bλcλ − a2λ < 0.

If a > c > b > 0, then

cλ − bλ < 0, bλ−1 − cλ−1 > 0, 2bc − ab − ac < 0, bλcλ − a2λ > 0.

If c > a > b > 0, then cλ − bλ < 0, bλ−1 − cλ−1 > 0.

Note that bc ≤ a2. Hence bλcλ − a2λ ≥ 0, and

2bc − ab − ac ≤ bc + a2 − ab − ac = (c − a)(b − a) < 0.

Consequently, we conclude that f λ{a, a}, {b, c} < 0. �

Lemma 2.7 Let c > b > 0. If c > a > b, we suppose a, b, c ∈ {p, p + 1, p +
2, p + 3} and p � 2. Then

f λ{a, a}, {b, c}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

≥ 0, i f λ = 1,

> 0, i f 0 < λ < 1,

< 0, i f λ < 0.

Proof. From the proof of Lemma 2.6, we need to discuss the case c > a > b.

Case 1. 0 < λ ≤ 1. Thus cλ − bλ > 0, bλ−1 − cλ−1

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ < 1,

= 0, i f λ = 1.
Subcase 1.1 a = p + 1, b = p, c = p + 2.

Subcase 1.2 a = p + 2, b = p, c = p + 3.

Subcase 1.3 a = p + 2, b = p + 1, c = p + 3.
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For Subcase 1.1-1.3, since bc ≤ a2, by Lemma 2.6, the results are obtained.

Subcase 1.4 a = p + 1, b = p, c = p + 3. Then

bλcλ − a2λ = pλ(p + 3)λ − (p + 1)2λ

⎧⎪⎪⎨⎪⎪⎩
> 0, i f p ≥ 3,

= 0, i f p = 1.

2bc − ab − ac = p − 3 ≥ 0 i f p ≥ 3.

All in all, we obtain the results as desired.

Case 2. λ < 0. Then cλ − bλ < 0, bλ−1 − cλ−1 > 0.

Similarly, for Subcase 1.1-1.3, since bc ≤ a2, it follows from Lemma 2.6 that

the results are obtained as desired.

If a = p + 1, b = p, c = p + 3, then

bλcλ − a2λ = pλ(p + 3)λ − (p + 1)2λ

⎧⎪⎪⎨⎪⎪⎩
< 0, i f p ≥ 3,

= 0, i f p = 1.

2bc − ab − ac = p − 3 ≥ 0 i f p ≥ 3.

Therefore, we always have f λ{a, a}, {b, c} < 0 if λ < 0. �

Lemma 2.8 Let d > c and a = min{a, b, c, d}. If b > d > c > a, we suppose
a + b ≥ c + d, ab ≤ cd. Thus

f λ{a, b}, {c, d}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

≥ 0, i f λ = 1,

> 0, i f 0 < λ < 1,

< 0, i f λ < 0.

Proof. Note that f λ{a, b}, {c, d}

= aλ+1bλ+1d+aλ+1bλ+1c+bcλ+1dλ+1+acλ+1dλ+1−a2λbcd−ab2λcd−abc2λd−abcd2λ

= abcd[(aλ−1−bλ−1)(bλ−aλ)+(cλ−1−dλ−1)(dλ−cλ)]+[ac(d−b)+bd(c−a)](cλdλ−aλbλ).

Case 1. 0 < λ ≤ 1.

If d > c > b > a > 0 or d > b > c > a > 0, then

aλ−1 − bλ−1 ≥ 0, bλ − aλ > 0, cλ−1 − dλ−1 ≥ 0, dλ − cλ > 0,

ac(d − b) + bd(c − a) > 0, cλdλ − aλbλ > 0.
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If b > d > c > a > 0, since a + b ≥ c + d and ab ≤ cd, then

aλ−1 − bλ−1

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ < 1,

= 0, i f λ = 1.
, bλ − aλ > 0, cλ−1 − dλ−1 ≥ 0, dλ − cλ > 0,

cλdλ−aλbλ ≥ 0, ac(d−b)+bd(c−a) = cd(a+b)−ab(c+d) ≥ ab(a+b−c−d) ≥ 0.

Therefore, we always have f λ{a, b}, {c, d}

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ < 1,

≥ 0, i f λ = 1.
Case 2. λ < 0.

If d > c > b > a > 0 or d > b > c > a > 0, then

aλ−1 − bλ−1 > 0, bλ − aλ < 0, cλ−1 − dλ−1 > 0, dλ − cλ < 0,

ac(d − b) + bd(c − a) > 0, cλdλ − aλbλ < 0.

If b > d > c > a > 0, note that a + b ≥ c + d and ab ≤ cd, then

aλ−1 − bλ−1 > 0, bλ − aλ < 0, cλ−1 − dλ−1 > 0, dλ − cλ < 0,

cλdλ − aλbλ ≤ 0, ac(d − b) + bd(c − a) ≥ ab(a + b − c − d) ≥ 0.

Therefore, it can be seen that f λ{a, b}, {c, d} < 0. �

3 Main results

Let G be a finite, undirected and simple graph. If xy ∈ E(G), we say that y is a

neighbor of x and denote by N(x) the set of neighbors of x. And d(x) = |N(x)| is
called the degree of x. We denote the number of vertices of degree i in G by ni

and the number of edges that connect vertices of degree i and j by mi j, where we

do not distinguish mi j and mji. Similarly as in paper [11] we show that:

Lemma 3.1 Let G be a graph with n vertices and m edges. Let N denote the set
of the degrees of vertices in G. Let μ =

∑
k≤l∈N mkl ·∑k≤l∈N mkl(

1
k +

1
l ). Then

λM2(G)/m − λM1(G)/n =
1

μ
·
∑

i≤ j, k≤l,
{i, j}, {k, l}⊆N2

( f λ{i, j}, {k, l} ·
mi jmkl

i · j · k · l ).
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Theorem 3.2 Let G be a graph with n vertices, m edges and Δ(G) − δ(G) ≤ 2.

I f λ ∈ [0, 1], then λM1(G)/n ≤ λM2(G)/m. (3)

I f λ ∈ (−∞, 0), then λM1(G)/n ≥ λM2(G)/m. (4)

Moreover, if λ = 0, the equality of (3) always holds.
If λ = 1, the equality of (3) holds if and only if all edges i j have the same pair

(di, dj) of degrees.
If λ ∈ (0, 1) (resp. λ ∈ (−∞, 0)), the equality of (3) (resp. (4)) holds if and

only if G is a regular graph.

Proof. For simplicity, let δ(G) = p and N = {p, p + 1, p + 2}.
Case 1. If λ = 0, it is obvious that

0M1(G)/n = (
∑

v∈V
[d(v)]2·0)/n = 1 = (

∑

uv∈E
[d(u)d(v)]0)/m = 0M2(G)/m.

Case 2. If λ ∈ (0, 1] (resp. λ ∈ (−∞, 0)), by Lemma 3.1,

λM2(G)/m − λM1(G)/n =
1

μ
·
∑

i≤ j, k≤l,
{i, j}, {k, l}⊆N2

( f λ{i, j}, {k, l} ·
mi jmkl

i · j · k · l ).

Note that all i, j, k and l can not be distinct numbers, we need to show that

f λ{i, j}, {k, l} ≥ 0 (resp. ≤ 0) for each {i, j}, {k, l} ⊆ N2. Let a, b, c be distinct

elements of N. Then we have the following subcases.

Subcase 2.1 {{i, j}, {k, l}} = {{a, a}, {a, a}}. By Lemma 2.1, f λ{i, j}, {k, l} = 0.

Subcase 2.2 {{i, j}, {k, l}} = {{a, a}, {a, b}}. By Lemma 2.2,

f λ{i, j}, {k, l}

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ ≤ 1,

< 0, i f λ < 0.

Subcase 2.3 {{i, j}, {k, l}} = {{a, a}, {b, b}}. By Lemma 2.3,

f λ{i, j}, {k, l}

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ ≤ 1,

< 0, i f λ < 0.

Subcase 2.4 {{i, j}, {k, l}} = {{a, b}, {a, b}}. By Lemma 2.4,

f λ{i, j}, {k, l}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

= 0, i f λ = 1,

> 0, i f 0 < λ < 1,

< 0, i f λ < 0.
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Subcase 2.5 {{i, j}, {k, l}} = {{a, b}, {a, c}}. By Lemma 2.5,

f λ{i, j}, {k, l}

⎧⎪⎪⎨⎪⎪⎩
> 0, i f 0 < λ ≤ 1,

< 0, i f λ < 0.

Subcase 2.6 {{i, j}, {k, l}} = {{a, a}, {b, c}}. Without loss of generality,

suppose i = j and l > k. If k < i = j < l, since N = {p, p + 1, p + 2}, then

kl = p(p + 2) ≤ (p + 1)2 = i2. By Lemma 2.6,

f λ{i, j}, {k, l}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

≥ 0, i f λ = 1,

> 0, i f 0 < λ < 1,

< 0, i f λ < 0.

All in all, the inequality (3) (resp. (4)) is proved.

Moreover, if λ = 0, then the equality of (3) always holds.

If λ = 1, from the proof of Case 2, the equality of (3) holds if and only if

f λ{i, j}, {k, l} = 0 for all mi j · mkl > 0, which implies that all edges i j have the same

pair (di, dj) of degrees (also see [8]).

If λ ∈ (0, 1) (resp. λ ∈ (−∞, 0)), from the foregoing proof, the equality of

(3) (resp. (4)) holds if and only if f λ{i, j}, {k, l} = 0 for all mi j · mkl > 0, which means

i = j = k = l for each {i, j}, {k, l} ⊆ N2, that is, G is a regular graph. �

From Theorem 3.2, we obtain the main result in [8] immediately.

Corollary 3.3 ([8]) Let G be a graph with n vertices, m edges and Δ(G)− δ(G) ≤
2. Then M1(G)/n ≤ M2(G)/m, with the equality holds if and only if all edges i j
have the same pair (di, dj) of degrees.

Let G∗ denote the graphs with each edge connecting a 3-degree vertex and a

6-degree vertex. The star graph S n is a tree on n vertices with one vertex having

degree n − 1 and the other vertices having degree 1.

Theorem 3.4 Let G be a graph with n vertices and m edges such that Δ(G) −
δ(G) ≤ 3 and δ(G) � 2.

I f λ ∈ [0, 1], then λM1(G)/n ≤ λM2(G)/m. (5)

I f λ ∈ (−∞, 0), then λM1(G)/n ≥ λM2(G)/m. (6)

Moreover, if λ = 0, the equality of (5) always holds.
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If λ = 1, the equality of (5) holds if and only if all edges i j have the same pair
(di, dj) of degrees or if the graph is composed of disjoint stars S 5 and cycles of
any length or if the graph is composed of disjoint G∗ and 4-regular graphs ([8]).

If λ ∈ (0, 1) (resp. λ ∈ (−∞, 0)), the equality of (5) (resp. (6)) holds if and
only if G is a regular graph.

Proof. For simplicity, let δ(G) = p and N = {p, p+1, p+2, p+3}. Let a, b, c, d
be distinct elements of N. If λ = 0, it is obvious that 0M1(G)/n = 0M2(G)/m.

If λ ∈ (0, 1] (resp. λ ∈ (−∞, 0)), by Lemma 3.1, we just need to show that

f λ{i, j}, {k, l} ≥ 0 (resp. ≤ 0) for each {i, j}, {k, l} ⊆ N2 (i ≤ j, k ≤ l).
In the proof of Theorem 3.2, we found that f λ{i, j}, {k, l} = 0 holds for the case

{{i, j}, {k, l}} = {{a, a}, {a, a}}, and f λ{i, j}, {k, l}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

≥ 0, i f λ = 1,

> 0, i f 0 < λ < 1,

< 0, i f λ < 0

holds for the

cases {{i, j}, {k, l}} = {{a, a}, {a, b}}, {{a, a}, {b, b}}, {{a, b}, {a, b}} and

{{a, b}, {a, c}}. We only need to discuss the following two cases.

Case 1. {{i, j}, {k, l}} = {{a, a}, {b, c}}. Without loss of generality, suppose

i = j and l > k. It follows from Lemma 2.7 that

f λ{i, j}, {k, l}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

≥ 0, i f λ = 1,

> 0, i f 0 < λ < 1,

< 0, i f λ < 0.

Case 2. {{i, j}, {k, l}} = {{a, b}, {c, d}}. Without loss of generality, suppose

l > k and i = min{i, j, k, l}. If i < k < l < j, then i = p, k = p + 1, l = p + 2, j =
p + 3, and it follows that

i + j = 2p + 3 = k + l, and i j = p2 + 3p ≤ p2 + 3p + 2 = kl.

Then by Lemma 2.8, we obtain that f λ{i, j}, {k, l}

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

≥ 0, i f λ = 1,

> 0, i f 0 < λ < 1,

< 0, i f λ < 0.
Therefore, the inequality (5) and (6) are proved.

Moreover, if λ = 0, the equality of (5) always holds.

If λ = 1, the equality of (5) in this case had been proved in [8].

If λ ∈ (0, 1) (resp. λ ∈ (−∞, 0)), from the foregoing proof, the equality of

(5) (resp. (6)) holds if and only if f λ{i, j}, {k, l} = 0 for all mi j · mkl > 0, which means

i = j = k = l for each {i, j}, {k, l} ⊆ N2, that is, G is a regular graph. �
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If λ = 1, Hansen and Vukičević in [3] proved that M1(G)/n ≤ M2(G)/m for

chemical graphs. Now we consider the case λ ∈ (0, 1) (resp. λ ∈ (−∞, 0)).

Corollary 3.5 Let G be a chemical graph with n vertices and m edges.

I f λ ∈ (0, 1), then λM1(G)/n ≤ λM2(G)/m. ([11]) (7)

I f λ ∈ (−∞, 0), then λM1(G)/n ≥ λM2(G)/m. (8)

Moreover, if λ ∈ (0, 1)) (resp. λ ∈ (−∞, 0)), the equality of (7) (resp. (8))

holds if and only if G is a regular graph.

Proof. Note that G is a chemical graph, thus Δ ≤ 4. If δ = 1, then Δ − δ ≤ 3, by

Theorem 3.4, the results are proved. If δ ≥ 2, we have Δ − δ ≤ 2, and it follows

from Theorem 3.2 that the results are obtained as desired. �

Let ei, e j ∈ E, where the degrees of their end vertices are {di1 , di2} (di1 ≤ di2)

and {dj1 , dj2} (dj1 ≤ dj2), respectively. A pair of edges [ei, e j] is called a degrees-

nested edges pair if di1 < dj1 ≤ dj2 < di2 or dj1 < di1 ≤ di2 < dj2 .

Corollary 3.6 Let G be a graph with n vertices, m edges, and G contains no
degrees-nested edges pairs.

I f λ ∈ (0, 1), then λM1(G)/n ≤ λM2(G)/m. (9)

I f λ ∈ (−∞, 0), then λM1(G)/n ≥ λM2(G)/m. (10)

Moreover, if λ ∈ (0, 1) (resp. λ ∈ (−∞, 0)), the equality of (9) (resp. (10))

holds if and only if G is a regular graph.

Proof. If λ ∈ (0, 1] (resp. λ ∈ (−∞, 0)), by Lemma 3.1, we just need to show

that f λ{i, j}, {k, l} ≥ 0 (resp. ≤ 0) for each {i, j}, {k, l} ⊆ N2 (i ≤ j, k ≤ l) (∗).
Since G contains no degrees-nested edges pairs, from the proof of Lemma

2.1-2.8, we conclude that (∗) always holds, and this completes the proof. �

Finally, we consider the relationship of λM1(G)/n and λM2(G)/m for λ > 1. A

simple graph on n vertices in which each pair of distinct vertices is joined by an

edge is called a complete graph, and denoted by Kn. A complete bipartite graph is

a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined

to each vertex of Y; if |X| = n1 and |Y | = n2, such a graph is denoted by Kn1, n2
.

The disjoint union of k copies of G is often written by kG.
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Example 1 Let G1 be a graph of order 9 created from K3 and 3K2 by connecting
each vertex of K3 to a vertex of a K2. Thus Δ(G1) − δ(G1) = 3 − 1 = 2, and

λM2(G1)/m − λM1(G1)/n =
6λ + 2λ − 4λ − 1

3
> 0 f or λ > 1.

Example 2 Let G2 = K4, 5. Obviously, Δ(G2) − δ(G2) = 5 − 4 = 1, and

λM2(G2)/m − λM1(G2)/n =
9 · 20λ − 4 · 25λ − 5 · 16λ

9
< 0 f or λ > 1.

Remark 1 It is known that the inequality λM2(G)/m − λM1(G)/n < 0 is true for
all unbalanced bipartite graphs G and λ ∈ R\[0, 1] ([11]).

Combining Example 1 and 2, when λ > 1, we can find a suitable graph G1 such

that λM2(G1)/m− λM1(G1)/n > 0, and a suitable graph G2 such that λM2(G2)/m−
λM1(G2)/n < 0. Besides, note that Δ(Gi) − δ(Gi) ≤ 2 (i = 1, 2) and |V(G1)| =
|V(G2)|, we conclude that when λ ∈ (1,+∞), the relationship of λM1(G)/n and
λM2(G)/m is indefinite for distinct graphs G even if Δ(G) − δ(G) ≤ 2.
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