Comparing Variable Zagreb Indices of Graphs *

Bolian Liu†, Meng Zhang, Yufei Huang

School of Mathematical Science, South China Normal University,
Guangzhou, 510631, P. R. China

(Received April 24, 2009)

Abstract

The variable first and second Zagreb indices are defined to be $\lambda M_1(G) = \sum_{u \in V}(d(u))^{2\lambda}$ and $\lambda M_2(G) = \sum_{uv \in E}(d(u)d(v))^{\lambda}$, where λ is any real number. In this paper, we prove that when $\lambda \in [0, 1]$ (resp. $\lambda \in (-\infty, 0)$), $\lambda M_1(G)/n \leq \lambda M_2(G)/m$ (resp. $\lambda M_1(G)/n \geq \lambda M_2(G)/m$) holds for graphs G satisfying one of the following conditions: $\Delta(G) - \delta(G) \leq 2$; $\Delta(G) - \delta(G) \leq 3$ and $\delta(G) \neq 2$; G is a chemical graph. When $\lambda \in (1, +\infty)$, the relationship of numerical value between $\lambda M_1(G)/n$ and $\lambda M_2(G)/m$ is indefinite for distinct graphs G even if $\Delta(G) - \delta(G) \leq 2$.

1 Introduction

A molecular graph is a representation of the structural formula of a chemical compound in terms of graph theory, whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. The first Zagreb index $M_1(G)$ and the second Zagreb index $M_2(G)$ are usually used in the study of molecular graphs, and they are defined in [2] as follows:

$$M_1(G) = \sum_{u \in V}(d(u))^2 \text{ and } M_2(G) = \sum_{uv \in E}d(u)d(v),$$

*Supported by NSF of China (NO.10771080) and SRFDP of China (NO.20070574006)
\†Corresponding author. E-mail: liubl@scnu.edu.cn (Bolian Liu)
where V is the set of vertices, E is the set of edges and $d(u)$ is degree of the vertex u of G. The research of Zagreb indices and their generalization are often found in chemistry and mathematical chemistry.

A natural issue is to compare the values of the Zagreb indices on the same graph. In [1], the AutoGraphiX system proposed the following conjecture:

Conjecture 1.1 ([1]) For all simple connected graphs G,

$$\frac{M_1(G)}{n} \leq \frac{M_2(G)}{m}$$

and the bound is tight for complete graphs.

However, this conjecture does not hold for all general graphs ([3]), while it is proved to be true for chemical graphs ([3]), trees ([10]) and unicyclic graphs([7]), and connected bicyclic graphs except one class ([9]). Besides, its generalization to the variable Zagreb indices has already been discussed (see e.g. [5, 6, 13]). The variable first and the variable second Zagreb indices are defined as:

$$\lambda M_1(G) = \sum_{u \in V} (d(u))^2$$

and

$$\lambda M_2(G) = \sum_{uv \in E} (d(u)d(v))^\lambda,$$

where λ is any real number. Clearly, $\frac{1}{2} M_1(G) = M_1(G)$ and $\frac{1}{2} M_2(G) = M_2(G)$.

Similarly as Conjecture 1.1, many mathematicians showed that

$$\frac{\lambda M_1(G)}{n} \leq \frac{\lambda M_2(G)}{m}$$

is true for the following cases: all chemical graphs and $\lambda \in [0, 1]$ ([11]), all trees and $\lambda \in [0, 1]$ ([12]), all unicyclic graphs and $\lambda \in [0, 1]$ ([4]).

On the other hand, the inequality

$$\frac{\lambda M_1(G)}{n} \geq \frac{\lambda M_2(G)}{m}$$

is true for the following cases: all unbalanced bipartite graphs and $\lambda \in R \setminus [0, 1]$ ([11]), all unicyclic graphs and $\lambda \in (-\infty, 0]$ ([14]).

Let G be an undirected, simple graph. Let $\Delta(G)$ and $\delta(G)$ denote the maximum and minimum degrees of G, respectively. A graph G is called a chemical graph if $\Delta(G) \leq 4$. A graph G is called k-regular if $d(v) = k$ for all $v \in V(G)$.

It is known to all that there are many molecular graphs with small difference between the maximum and minimum degrees. In [8], it has been proved that $M_1(G)/n \leq M_2(G)/m$ holds for graphs G with small difference between the maximum and minimum degrees, which implies the results in [3].
In this paper, we investigate the relationship of $\lambda M_1(G)/n$ and $\lambda M_2(G)/m$ in the graphs G with small difference between the maximum and minimum degrees for $\lambda \in R$. When $\lambda \in [0, 1]$ (resp. $\lambda \in (-\infty, 0)$), we show that (1) (resp. (2)) holds for graphs satisfying one of the following conditions: $\Delta(G) - \delta(G) \leq 3$ and $\delta(G) \neq 2$; all chemical graphs. Moreover, the extremal graphs (with the equality (1) or (2) holds) are characterized completely. When $\lambda \in (1, +\infty)$, the relationship of numerical value between $\lambda M_1(G)/n$ and $\lambda M_2(G)/m$ is indefinite for distinct graphs even if $\Delta(G) - \delta(G) \leq 2$.

2 Preliminaries

In this section, we introduce some notations and lemmas which are useful in the presentations and proofs of our main results.

Let $\{i, j\}, \{k, l\} \in (Z^+)^2$ and $\lambda \in R$. Suppose

$$f_{\lambda}^1(i, j, k, l) = i^{k+1}j^{l+1} + j^{k+1}i^{l+1} + f_{\lambda}^1 k + j f_{\lambda}^1 l + i f_{\lambda}^1 k + i j k l l - i j k l l.$$

In the following lemmas, let a, b, c, d be distinct positive integers.

Lemma 2.1 $f_{\lambda}^1(a, a, a, a) = 0$.

Proof. Obviously, we have $f_{\lambda}^1(a, a, a, a) = 4a^{2+3} - 4a^{2+3} = 0$. □

Lemma 2.2 $f_{\lambda}^1(a, a, a, b) = \begin{cases} > 0, & \text{if } 0 < \lambda \leq 1, \\ < 0, & \text{if } \lambda < 0. \end{cases}$

Proof. Note that $f_{\lambda}^1(a, a, a, b) = a^{2+2}b + a^{2+3} + 2a^{1+2}b^{1+1} - 3a^{2+2}b - a^2b^2$

$$= a^2(b^2 - a^2)(b - a)a^2 + ab(a^{a-1} - b^{a-1}).$$

Case 1. $0 \leq \lambda \leq 1$.

If $b > a > 0$, then $b^4 - a^4 > 0$, $(b - a)a^4 + ab(a^{a-1} - b^{a-1}) > 0$.

If $a > b > 0$, then $b^4 - a^4 < 0$, $(b - a)a^4 + ab(a^{a-1} - b^{a-1}) < 0$.

Therefore, we always have $f_{\lambda}^1(a, a, a, b) > 0$.

Case 2. $\lambda < 0$.

If $b > a > 0$, then $b^4 - a^4 < 0$, $(b - a)a^4 + ab(a^{a-1} - b^{a-1}) > 0$.

If $a > b > 0$, then $b^4 - a^4 > 0$, $(b - a)a^4 + ab(a^{a-1} - b^{a-1}) < 0$.

It can be seen that $f_{\lambda}^1(a, a, a, b) < 0$. □
Lemma 2.3 \(f_{(a, b), (b, b)} \) \[
\begin{aligned}
&< 0, \quad \text{if } \lambda < 0, \\
&> 0, \quad \text{if } 0 < \lambda \leq 1,
\end{aligned}
\]

Proof. Note that \(f_{(a, a), (b, b)} = 2a^{2t+2}b + 2ab^{2t+2} - 2a^{2t+1}b^2 - 2a^2b^{2t+1} \)

\[= 2ab(b - a)(b^{2t} - a^{2t}). \]

Case 1. \(0 < \lambda \leq 1 \). Without loss of generality, suppose \(b > a > 0 \). Then

\[b - a > 0, \quad b^{2t} - a^{2t} > 0.\]

Thus we have \(f_{(a, a), (b, b)} > 0 \).

Case 2. \(\lambda < 0 \). Without loss of generality, suppose \(b > a > 0 \). Then

\[b - a > 0, \quad b^{2t} - a^{2t} < 0.\]

It follows that \(f_{(a, a), (b, b)} < 0. \)

Lemma 2.4 \(f_{(a, b), (a, b)} \) \[
\begin{aligned}
&< 0, \quad \text{if } \lambda < 0, \\
&> 0, \quad \text{if } 0 < \lambda < 1,
\end{aligned}
\]

Proof. Note that \(f_{(a, b), (a, b)} = 2a^{t+1}b^{t+2} + 2a^{t+2}b^{t+1} - 2a^{t+1}b^2 - 2a^2b^{2t+1} \)

\[= 2a^2b^2(b^t - a^t)(a^{t-1} - b^{t-1}). \]

Without loss of generality, suppose \(b > a > 0 \).

Case 1. \(\lambda = 1 \). Then \(b^{t} - a^{t} > 0, \quad a^{t-1} - b^{t-1} = 0 \). Hence \(f_{(a, b), (a, b)} = 0 \).

Case 2. \(0 < \lambda < 1 \). Then \(b^{t} - a^{t} > 0, \quad a^{t-1} - b^{t-1} > 0 \). So \(f_{(a, b), (a, b)} > 0 \).

Case 3. \(\lambda < 0 \). Then \(b^{t} - a^{t} < 0, \quad a^{t-1} - b^{t-1} > 0 \). Thus \(f_{(a, b), (a, b)} < 0. \)

Lemma 2.5 \(f_{(a, b), (a, c)} \) \[
\begin{aligned}
&< 0, \quad \text{if } \lambda < 0, \\
&> 0, \quad \text{if } 0 < \lambda \leq 1,
\end{aligned}
\]

Proof. Notice that \(f_{(a, b), (a, c)} \)

\[= a^{t+1}b^{t+1}c + a^{t+2}b^{t+1} + a^{t+1}bc^{t+1} + a^{t+2}c^{t+1} - 2a^{t+1}bc - a^2b^2c - a^2bc^{2t} \]

\[= a^2bc[(a^{t-1} - b^{t-1})(b^t - a^t) + (a^{t-1} - c^{t-1})(c^t - a^t)] + a^{t+2}(c - b)(c^t - b^t). \]

Case 1. \(0 < \lambda \leq 1 \). Without loss of generality, suppose \(c > b > 0 \).
If $c > b > a > 0$, then
\[a^{d-1} - b^{d-1} \geq 0, \ b^1 - a^1 > 0, \ a^{d-1} - c^{d-1} \geq 0, \ c^d - a^d > 0, \ c^d - b^d > 0. \]

If $a > c > b > 0$, then
\[a^{d-1} - b^{d-1} \leq 0, \ b^1 - a^1 < 0, \ a^{d-1} - c^{d-1} \leq 0, \ c^d - a^d < 0, \ c^d - b^d > 0. \]

If $c > a > b > 0$, then
\[a^{d-1} - b^{d-1} \leq 0, \ b^1 - a^1 < 0, \ a^{d-1} - c^{d-1} \geq 0, \ c^d - a^d > 0, \ c^d - b^d > 0. \]

All in all, we always have $f^1_{[a, b], [a, c]} > 0$.

Case 2. $\lambda < 0$. Without loss of generality, suppose $c > b > 0$.

If $c > b > a > 0$, then
\[a^{d-1} - b^{d-1} > 0, \ b^1 - a^1 < 0, \ a^{d-1} - c^{d-1} > 0, \ c^d - a^d < 0, \ c^d - b^d < 0. \]

If $a > c > b > 0$, then
\[a^{d-1} - b^{d-1} < 0, \ b^1 - a^1 > 0, \ a^{d-1} - c^{d-1} < 0, \ c^d - a^d > 0, \ c^d - b^d < 0. \]

If $c > a > b > 0$, then
\[a^{d-1} - b^{d-1} < 0, \ b^1 - a^1 > 0, \ a^{d-1} - c^{d-1} > 0, \ c^d - a^d < 0, \ c^d - b^d < 0. \]

Therefore, it can be conclude that $f^1_{[a, b], [a, c]} < 0$. \(\square\)

Lemma 2.6 Let $c > b > 0$. If $c > a > b$, we suppose $bc \leq a^2$. Then
\[f^1_{[a, a], [b, c]} \begin{cases} \geq 0, & \text{if } \lambda = 1, \\ > 0, & \text{if } 0 < \lambda < 1, \\ < 0, & \text{if } \lambda < 0. \end{cases} \]

Proof.
\[
f^1_{[a, a], [b, c]} = a^{2d+2} + a^{2d+2} b + 2ab^{d+1} c^{d+1} - 2a^{2d+1} bc - a^2 b^2 c - a^2 bc^{2d-1}
= a^2 bc(c^d - b^d)(b^{d-1} - c^{d-1}) + a(2bc - ab - ac)(b^d c^d - a^{2d}). \]

Case 1. $0 < \lambda \leq 1$.

If $c > b > a > 0$, then
\[c^d - b^d > 0, \ b^{d-1} - c^{d-1} \geq 0, \ 2bc - ab - ac > 0, \ b^d c^d - a^{2d} > 0. \]
If $a > c > b > 0$, then
\[c^4 - b^4 > 0, \quad b^{d-1} - c^{d-1} \geq 0, \quad 2bc - ab - ac < 0, \quad b^4c^4 - a^{2d} < 0. \]

If $c > a > b > 0$, then
\[c^4 - b^4 > 0, \quad b^{d-1} - c^{d-1} \begin{cases} > 0, & \text{if } 0 < \lambda < 1, \\ = 0, & \text{if } \lambda = 1. \end{cases} \]

Since $bc \leq a^2$. Hence $b^4c^4 - a^{2d} \leq 0$, and
\[2bc - ab - ac \leq bc + a^2 - ab - ac = (c - a)(b - a) < 0. \]

It can be seen that $f^{\lambda}_{\{a, a\}, \{b, c\}} \begin{cases} > 0, & \text{if } 0 < \lambda < 1, \\ = 0, & \text{if } \lambda = 1. \end{cases}$

Case 2. $\lambda < 0$.
If $c > b > a > 0$, then
\[c^4 - b^4 < 0, \quad b^{d-1} - c^{d-1} > 0, \quad 2bc - ab - ac > 0, \quad b^4c^4 - a^{2d} < 0. \]

If $a > c > b > 0$, then
\[c^4 - b^4 < 0, \quad b^{d-1} - c^{d-1} > 0, \quad 2bc - ab - ac < 0, \quad b^4c^4 - a^{2d} > 0. \]

If $c > a > b > 0$, then $c^4 - b^4 < 0, \quad b^{d-1} - c^{d-1} > 0.$

Note that $bc \leq a^2$. Hence $b^4c^4 - a^{2d} \geq 0$, and
\[2bc - ab - ac \leq bc + a^2 - ab - ac = (c - a)(b - a) < 0. \]

Consequently, we conclude that $f^{\lambda}_{\{a, a\}, \{b, c\}} < 0$. \(\square\)

Lemma 2.7 Let $c > b > 0$. If $c > a > b$, we suppose $a, \quad b, \quad c \in \{p, \quad p + 1, \quad p + 2, \quad p + 3\}$ and $p \neq 2$. Then
\[
\begin{align*}
f^{\lambda}_{\{a, a\}, \{b, c\}} & \begin{cases} \geq 0, & \text{if } \lambda = 1, \\ > 0, & \text{if } 0 < \lambda < 1, \\ < 0, & \text{if } \lambda < 0. \end{cases}
\end{align*}
\]

Proof. From the proof of Lemma 2.6, we need to discuss the case $c > a > b$.

Case 1. $0 < \lambda \leq 1$. Thus
\[
\begin{align*}
c^4 - b^4 & > 0, \quad b^{d-1} - c^{d-1} \begin{cases} > 0, & \text{if } 0 < \lambda < 1, \\ = 0, & \text{if } \lambda = 1. \end{cases}
\end{align*}
\]

Subcase 1.1 $a = p + 1, \quad b = p, \quad c = p + 2$.
Subcase 1.2 $a = p + 2, \quad b = p, \quad c = p + 3$.
Subcase 1.3 $a = p + 2, \quad b = p + 1, \quad c = p + 3$.
For Subcase 1.1-1.3, since $bc \leq a^2$, by Lemma 2.6, the results are obtained.

Subcase 1.4 $a = p + 1$, $b = p$, $c = p + 3$. Then

$$b^4c^4 - a^2 = p^4(p + 3)^4 - (p + 1)^2 \begin{cases} > 0, & \text{if } p \geq 3; \\ = 0, & \text{if } p = 1. \end{cases}$$

$$2bc - ab - ac = p - 3 \geq 0 \text{ if } p \geq 3.$$

All in all, we obtain the results as desired.

Case 2. $\lambda < 0$. Then $c^4 - b^4 < 0$, $b^{l-1} - c^{l-1} > 0$.

Similarly, for Subcase 1.1-1.3, since $bc \leq a^2$, it follows from Lemma 2.6 that the results are obtained as desired.

If $a = p + 1$, $b = p$, $c = p + 3$, then

$$b^4c^4 - a^2 = p^4(p + 3)^4 - (p + 1)^2 \begin{cases} < 0, & \text{if } p \geq 3; \\ = 0, & \text{if } p = 1. \end{cases}$$

$$2bc - ab - ac = p - 3 \geq 0 \text{ if } p \geq 3.$$

Therefore, we always have $f_{\lambda}^4(a, b, c) < 0$ if $\lambda < 0$. □

Lemma 2.8 Let $d > c$ and $a = \min\{a, b, c, d\}$. If $b > d > c > a$, we suppose $a + b \geq c + d$, $ab \leq cd$. Thus

$$f_{\lambda}^4(a, b, c, d) \begin{cases} \geq 0, & \text{if } \lambda = 1, \\ > 0, & \text{if } 0 < \lambda < 1, \\ < 0, & \text{if } \lambda < 0. \end{cases}$$

Proof. Note that $f_{\lambda}^4(a, b, c, d)$

$$= a^{l+1}b^{l+1}d + a^{l+1}b^{l+1}c + bc^{l+1}d^{l+1} + ac^{l+1}d^{l+1} - a^{2l+1}bcd - ab^{2l+1}c - abc^{2l+1}d - abcd^{2l+1}$$

$$= abcd[(a^{l-1} - b^{l-1})(b^{l} - a^{l}) + (c^{l-1} - d^{l-1})(d^{l} - c^{l})] + [ac(d - b) + bd(c - a)](c^{l}d^{l} - a^{l}b^{l}).$$

Case 1. $0 < \lambda \leq 1$.

If $d > c > b > a > 0$ or $d > b > c > a > 0$, then

$$a^{l-1} - b^{l-1} \geq 0, b^{l} - a^{l} > 0, c^{l-1} - d^{l-1} \geq 0, d^{l} - c^{l} > 0,$$

$$ac(d - b) + bd(c - a) > 0, c^{l}d^{l} - a^{l}b^{l} > 0.$$
If \(b > d > c > a > 0 \), since \(a + b \ge c + d \) and \(ab \le cd \), then
\[
a^{t_1} - b^{t_1} = \begin{cases}
0, & \text{if } 0 < \lambda < 1, \\
> 0, & \text{if } \lambda = 1.
\end{cases}
\]
\[
c^4 d^4 - a^4 b^4 \ge 0, \quad ac(d - b) + bd(c - a) = cd(a + b) - ab(c + d) = ab(a + b - c - d) \ge 0.
\]
Therefore, we always have \(f^{t_1}_{(a, b), (c, d)} \ge 0, \) if \(0 < \lambda < 1 \).

Case 2. \(\lambda < 0 \).
If \(d > c > b > a > 0 \) or \(d > b > c > a > 0 \), then
\[
a^{t_1} - b^{t_1} > 0, \quad b^4 - a^4 < 0, \quad c^{t_1} - d^{t_1} > 0, \quad d^4 - c^4 < 0,
\]
\[
ac(d - b) + bd(c - a) > 0, \quad c^4 d^4 - a^4 b^4 < 0.
\]
If \(b > d > c > a > 0 \), note that \(a + b \ge c + d \) and \(ab \le cd \), then
\[
a^{t_1} - b^{t_1} > 0, \quad b^4 - a^4 < 0, \quad c^{t_1} - d^{t_1} > 0, \quad d^4 - c^4 < 0,
\]
\[
c^4 d^4 - a^4 b^4 \le 0, \quad ac(d - b) + bd(c - a) \ge ab(a + b - c - d) \ge 0.
\]
Therefore, it can be seen that \(f^{t_1}_{(a, b), (c, d)} < 0. \)

3 Main results

Let \(G \) be a finite, undirected and simple graph. If \(xy \in E(G) \), we say that \(y \) is a neighbor of \(x \) and denote by \(N(x) \) the set of neighbors of \(x \). And \(d(x) = |N(x)| \) is called the degree of \(x \). We denote the number of vertices of degree \(i \) in \(G \) by \(n_i \) and the number of edges that connect vertices of degree \(i \) and \(j \) by \(m_{ij} \), where we do not distinguish \(m_{ij} \) and \(m_{ji} \). Similarly as in paper [11] we show that:

Lemma 3.1 Let \(G \) be a graph with \(n \) vertices and \(m \) edges. Let \(N \) denote the set of the degrees of vertices in \(G \). Let \(\mu = \sum_{k \leq n} m_{kl} \cdot \sum_{k \leq n} m_{kl}(\frac{1}{k} + \frac{1}{l}) \). Then
\[
\lambda M_2(G) / m - \lambda M_1(G) / n = \frac{1}{\mu} \cdot \sum_{i, j, k, l \leq n} \left(f_{(i, j), (k, l)}^{t_1} \cdot \frac{m_{ij} m_{kl}}{i \cdot j \cdot k \cdot l} \right).
\]
Theorem 3.2 Let G be a graph with n vertices, m edges and $\Delta(G) - \delta(G) \leq 2$.

If $\lambda \in [0, 1]$, then $\lambda M_1(G)/n \leq \lambda M_2(G)/m$. \hfill (3)

If $\lambda \in (-\infty, 0)$, then $\lambda M_1(G)/n \geq \lambda M_2(G)/m$. \hfill (4)

Moreover, if $\lambda = 0$, the equality of (3) always holds.

If $\lambda = 1$, the equality of (3) holds if and only if all edges ij have the same pair (d_i, d_j) of degrees.

If $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$), the equality of (3) (resp. (4)) holds if and only if G is a regular graph.

Proof. For simplicity, let $\delta(G) = p$ and $N = \{p, p + 1, p + 2\}$.

Case 1. If $\lambda = 0$, it is obvious that

$$0 M_1(G)/n = (\sum_{v \in V} \lambda^2)/n = 1 = (\sum_{u \in E} \lambda^0)/m = 0 M_2(G)/m.$$

Case 2. If $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$), by Lemma 3.1,

$$\lambda M_2(G)/m - \lambda M_1(G)/n = \frac{1}{\mu} \sum_{i, j, k, l \in N^2} (f_{i, j, k, l}) \cdot \frac{m_{ij}m_{kl}}{i \cdot j \cdot k \cdot l}.$$

Note that all i, j, k and l can not be distinct numbers, we need to show that $f_{i, j, k, l} \geq 0$ (resp. ≤ 0) for each $(i, j), (k, l) \subseteq N^2$. Let a, b, c be distinct elements of N. Then we have the following subcases.

Subcase 2.1 $\{(i, j), (k, l)\} = \{(a, a), (a, a)\}$. By Lemma 2.1, $f_{i, j, k, l} = 0$.

Subcase 2.2 $\{(i, j), (k, l)\} = \{(a, a), (a, b)\}$. By Lemma 2.2,

$$f_{i, j, k, l} \begin{cases} > 0, & \text{if } 0 < \lambda \leq 1, \\ < 0, & \text{if } \lambda < 0. \end{cases}$$

Subcase 2.3 $\{(i, j), (k, l)\} = \{(a, a), (b, b)\}$. By Lemma 2.3,

$$f_{i, j, k, l} \begin{cases} > 0, & \text{if } 0 < \lambda \leq 1, \\ < 0, & \text{if } \lambda < 0. \end{cases}$$

Subcase 2.4 $\{(i, j), (k, l)\} = \{(a, b), (a, b)\}$. By Lemma 2.4,

$$f_{i, j, k, l} \begin{cases} = 0, & \text{if } \lambda = 1, \\ > 0, & \text{if } 0 < \lambda < 1, \\ < 0, & \text{if } \lambda < 0. \end{cases}$$
Subcase 2.5 \{\{i, j\}, \{k, l\}\} = \{\{a, b\}, \{a, c\}\}. By Lemma 2.5,

\[
\begin{align*}
 f_{\{i, j\}, \{k, l\}}^\lambda &> 0, \quad \text{if } 0 < \lambda \leq 1, \\
 &< 0, \quad \text{if } \lambda < 0.
\end{align*}
\]

Subcase 2.6 \{\{i, j\}, \{k, l\}\} = \{\{a, a\}, \{b, c\}\}. Without loss of generality, suppose \(i = j\) and \(l > k\). If \(k < i = j < l\), since \(N = \{p, p + 1, p + 2\}\), then \(kl = p(p + 2) \leq (p + 1)^2 = l^2\). By Lemma 2.6,

\[
\begin{align*}
 f_{\{i, j\}, \{k, l\}}^\lambda &\geq 0, \quad \text{if } \lambda = 1, \\
 &> 0, \quad \text{if } 0 < \lambda < 1, \\
 &< 0, \quad \text{if } \lambda < 0.
\end{align*}
\]

All in all, the inequality (3) (resp. (4)) is proved.

Moreover, if \(\lambda = 0\), then the equality of (3) always holds.

If \(\lambda = 1\), from the proof of Case 2, the equality of (3) holds if and only if \(f_{\{i, j\}, \{k, l\}}^\lambda = 0\) for all \(m_{ij} \cdot m_{kl} > 0\), which implies that all edges \(ij\) have the same pair \((d_i, d_j)\) of degrees (also see [8]).

If \(\lambda \in (0, 1)\) (resp. \(\lambda \in (-\infty, 0)\)), from the foregoing proof, the equality of (3) (resp. (4)) holds if and only if \(f_{\{i, j\}, \{k, l\}}^\lambda = 0\) for all \(m_{ij} \cdot m_{kl} > 0\), which means \(i = j = k = l\) for each \(\{i, j\}, \{k, l\} \subseteq N^2\), that is, \(G\) is a regular graph. \(\Box\)

From Theorem 3.2, we obtain the main result in [8] immediately.

Corollary 3.3 ([8]) Let \(G\) be a graph with \(n\) vertices, \(m\) edges and \(\Delta(G) - \delta(G) \leq 2\). Then \(\frac{M_1(G)}{n} \leq \frac{M_2(G)}{m}\), with the equality holds if and only if all edges \(ij\) have the same pair \((d_i, d_j)\) of degrees.

Let \(G^*\) denote the graphs with each edge connecting a 3-degree vertex and a 6-degree vertex. The star graph \(S_n\) is a tree on \(n\) vertices with one vertex having degree \(n - 1\) and the other vertices having degree 1.

Theorem 3.4 Let \(G\) be a graph with \(n\) vertices and \(m\) edges such that \(\Delta(G) - \delta(G) \leq 3\) and \(\delta(G) \neq 2\).

If \(\lambda \in [0, 1]\), then \(\frac{\lambda M_1(G)}{n} \leq \frac{\lambda M_2(G)}{m}\). \hspace{1cm} (5)

If \(\lambda \in (-\infty, 0)\), then \(\frac{\lambda M_1(G)}{n} \geq \frac{\lambda M_2(G)}{m}\). \hspace{1cm} (6)

Moreover, if \(\lambda = 0\), the equality of (5) always holds.
If \(\lambda = 1 \), the equality of (5) holds if and only if all edges \(ij \) have the same pair \((d_i, d_j)\) of degrees or if the graph is composed of disjoint stars \(S_5 \) and cycles of any length or if the graph is composed of disjoint \(G^2 \) and 4-regular graphs ([8]).

If \(\lambda \in (0, 1) \) (resp. \(\lambda \in (-\infty, 0) \)), the equality of (5) (resp. (6)) holds if and only if \(G \) is a regular graph.

Proof. For simplicity, let \(\delta(G) = p \) and \(N = \{p, p+1, p+2, p+3\} \). Let \(a, b, c, d \) be distinct elements of \(N \). If \(\lambda = 0 \), it is obvious that \(^0M_1(G)/n = ^0M_2(G)/m \).

If \(\lambda \in (0, 1) \) (resp. \(\lambda \in (-\infty, 0) \)), by Lemma 3.1, we just need to show that \(f_{[i, \ j], \ [k, \ l]} = 0 \) (resp. \(\leq 0 \)) for each \(\{i, \ j\}, \{k, \ l\} \subseteq N^2 \) \((i \leq j, k \leq l)\).

In the proof of Theorem 3.2, we found that \(f_{[i, \ j], \ [k, \ l]} = 0 \) holds for the case
\[
\begin{cases}
\geq 0, & \text{if } \lambda = 1, \\
\geq 0, & \text{if } 0 < \lambda < 1, \\
< 0, & \text{if } \lambda < 0
\end{cases}
\]

of \(\{i, \ j\}, \{k, \ l\} = \{\{a, a\}, \{a, a\}\} \), and \(f_{[i, \ j], \ [k, \ l]} > 0 \), \(if \ 0 < \lambda < 1 \), holds for the case \(\{i, \ j\}, \{k, \ l\} \) \(\geq 0 \) if \(\lambda = 1 \), \(\geq 0 \) if \(0 < \lambda < 1 \), \(< 0 \) if \(\lambda < 0 \)

cases \(\{i, \ j\}, \{k, \ l\} = \{\{a, a\}, \{a, b\}\}, \{\{a, a\}, \{b, b\}\}, \{\{a, b\}, \{a, b\}\} \) and \(\{\{a, b\}, \{a, c\}\} \). We only need to discuss the following two cases.

Case 1. \(\{i, \ j\}, \{k, \ l\} = \{\{a, a\}, \{a, b\}\} \). Without loss of generality, suppose \(i = j \) and \(l > k \). It follows from Lemma 2.7 that
\[
\begin{cases}
\geq 0, & \text{if } \lambda = 1, \\
> 0, & \text{if } 0 < \lambda < 1, \\
< 0, & \text{if } \lambda < 0
\end{cases}
\]

Case 2. \(\{i, \ j\}, \{k, \ l\} = \{\{a, b\}, \{c, d\}\} \). Without loss of generality, suppose \(l > k \) and \(i = \min\{i, j, k, l\} \). If \(i < k < l < j \), then \(i = p, k = p + 1, l = p + 2, j = p + 3 \), and it follows that \(i + j = 2p + 3 = k + l \), and \(ij = p^2 + 3p \leq p^2 + 3p + 2 = kl \).

Then by Lemma 2.8, we obtain that \(f_{[i, \ j], \ [k, \ l]} \)
\[
\begin{cases}
\geq 0, & \text{if } \lambda = 1, \\
> 0, & \text{if } 0 < \lambda < 1, \\
< 0, & \text{if } \lambda < 0
\end{cases}
\]

Therefore, the inequality (5) and (6) are proved.

Moreover, if \(\lambda = 0 \), the equality of (5) always holds.

If \(\lambda = 1 \), the equality of (5) in this case had been proved in [8].

If \(\lambda \in (0, 1) \) (resp. \(\lambda \in (-\infty, 0) \)), from the foregoing proof, the equality of (5) (resp. (6)) holds if and only if \(f_{[i, \ j], \ [k, \ l]} = 0 \) for all \(m_{ij} \cdot m_{kl} > 0 \), which means \(i = j = k = l \) for each \(\{i, j\}, \{k, l\} \subseteq N^2 \), that is, \(G \) is a regular graph. \(\square \)
If $\lambda = 1$, Hansen and Vukičević in [3] proved that $M_1(G)/n \leq M_2(G)/m$ for chemical graphs. Now we consider the case $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$).

Corollary 3.5 Let G be a chemical graph with n vertices and m edges.

If $\lambda \in (0, 1)$, then $\lambda M_1(G)/n \leq \lambda M_2(G)/m$. ([11])

(7)

If $\lambda \in (-\infty, 0)$, then $\lambda M_1(G)/n \geq \lambda M_2(G)/m$.

(8)

Moreover, if $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$), the equality of (7) (resp. (8)) holds if and only if G is a regular graph.

Proof. Note that G is a chemical graph, thus $\Delta \leq 4$. If $\delta = 1$, then $\Delta - \delta \leq 3$, by Theorem 3.4, the results are proved. If $\delta \geq 2$, we have $\Delta - \delta \leq 2$, and it follows from Theorem 3.2 that the results are obtained as desired. □

Let $e_i, e_j \in E$, where the degrees of their end vertices are $\{d_{i_1}, d_{i_2}\}$ ($d_{i_1} \leq d_{i_2}$) and $\{d_{j_1}, d_{j_2}\}$ ($d_{j_1} \leq d_{j_2}$), respectively. A pair of edges $[e_i, e_j]$ is called a degrees-nested edges pair if $d_{i_1} < d_{j_1} \leq d_{j_2} < d_{i_2}$ or $d_{j_1} < d_{i_1} \leq d_{i_2} < d_{j_2}$.

Corollary 3.6 Let G be a graph with n vertices, m edges, and G contains no degrees-nested edges pairs.

If $\lambda \in (0, 1)$, then $\lambda M_1(G)/n \leq \lambda M_2(G)/m$.

(9)

If $\lambda \in (-\infty, 0)$, then $\lambda M_1(G)/n \geq \lambda M_2(G)/m$.

(10)

Moreover, if $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$), the equality of (9) (resp. (10)) holds if and only if G is a regular graph.

Proof. If $\lambda \in (0, 1]$ (resp. $\lambda \in (-\infty, 0)$), by Lemma 3.1, we just need to show that $f_{\lambda}^{i, j, k, l} \geq 0$ (resp. ≤ 0) for each $\{i, j\}, \{k, l\} \subseteq \mathbb{N}^2$ ($i \leq j, k \leq l$) (*)

Since G contains no degrees-nested edges pairs, from the proof of Lemma 2.1-2.8, we conclude that (*) always holds, and this completes the proof. □

Finally, we consider the relationship of $\lambda M_1(G)/n$ and $\lambda M_2(G)/m$ for $\lambda > 1$. A simple graph on n vertices in which each pair of distinct vertices is joined by an edge is called a complete graph, and denoted by K_n. A complete bipartite graph is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if $|X| = n_1$ and $|Y| = n_2$, such a graph is denoted by K_{n_1, n_2}. The disjoint union of k copies of G is often written by kG.
Example 1 Let G_1 be a graph of order 9 created from K_3 and $3K_2$ by connecting each vertex of K_3 to a vertex of a K_2. Thus $\Delta(G_1) - \delta(G_1) = 3 - 1 = 2$, and

$$\lambda M_2(G_1)/m - \lambda M_1(G_1)/n = \frac{6^4 + 2^4 - 4^4 - 1}{3} > 0 \text{ for } \lambda > 1.$$

Example 2 Let $G_2 = K_{4, 5}$. Obviously, $\Delta(G_2) - \delta(G_2) = 5 - 4 = 1$, and

$$\lambda M_2(G_2)/m - \lambda M_1(G_2)/n = \frac{9 \cdot 20^4 - 4 \cdot 25^4 - 5 \cdot 16^4}{9} < 0 \text{ for } \lambda > 1.$$

Remark 1 It is known that the inequality $\lambda M_2(G)/m - \lambda M_1(G)/n < 0$ is true for all unbalanced bipartite graphs G and $\lambda \in \mathbb{R}\setminus[0, 1]$ ([11]).

Combining Example 1 and 2, when $\lambda > 1$, we can find a suitable graph G_1 such that $\lambda M_2(G_1)/m - \lambda M_1(G_1)/n > 0$, and a suitable graph G_2 such that $\lambda M_2(G_2)/m - \lambda M_1(G_2)/n < 0$. Besides, note that $\Delta(G_i) - \delta(G_i) \leq 2$ ($i = 1, 2$) and $|V(G_i)| = |V(G_2)|$, we conclude that when $\lambda \in (1, +\infty)$, the relationship of $\lambda M_1(G)/n$ and $\lambda M_2(G)/m$ is indefinite for distinct graphs G even if $\Delta(G) - \delta(G) \leq 2$.

References

