Comparing Variable Zagreb Indices of Graphs *

Bolian Liu[†], Meng Zhang, Yufei Huang

School of Mathematical Science, South China Normal University, Guangzhou, 510631, P. R. China

(Received April 24, 2009)

Abstract

The variable first and second Zagreb indices are defined to be ${}^{\lambda}M_1(G) = \sum_{u \in V} (d(u))^{2\lambda} \ and \ {}^{\lambda}M_2(G) = \sum_{uv \in E} (d(u)d(v))^{\lambda}, \text{ where } \lambda \text{ is any real number.}$ In this paper, we prove that when $\lambda \in [0, 1]$ ($resp. \ \lambda \in (-\infty, 0)$), ${}^{\lambda}M_1(G)/n \leq {}^{\lambda}M_2(G)/m$ ($resp. \ {}^{\lambda}M_1(G)/n \geq {}^{\lambda}M_2(G)/m$) holds for graphs G satisfying one of the following conditions: $\Delta(G) - \delta(G) \leq 2$; $\Delta(G) - \delta(G) \leq 3$ and $\delta(G) \neq 2$; G is a chemical graph. When $A \in (1, +\infty)$, the relationship of numerical value between ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ is indefinite for distinct graphs G even if $\Delta(G) - \delta(G) \leq 2$.

1 Introduction

A molecular graph is a representation of the structural formula of a chemical compound in terms of graph theory, whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. The first Zagreb index $M_1(G)$ and the second Zagreb index $M_2(G)$ are usually used in the study of molecular graphs, and they are defined in [2] as follows:

$$M_1(G) = \sum_{u \in V} (d(u))^2 \text{ and } M_2(G) = \sum_{uv \in E} d(u)d(v),$$

^{*}Supported by NSF of China (NO.10771080) and SRFDP of China (NO.20070574006)

[†]Corresponding author. E-mail: liubl@scnu.edu.cn (Bolian Liu)

where V is the set of vertices, E is the set of edges and d(u) is degree of the vertex u of G. The research of Zagreb indices and their generalization are often found in chemistry and mathematical chemistry.

A natural issue is to compare the values of the Zagreb indices on the same graph. In [1], the AutoGraphiX system proposed the following conjecture:

Conjecture 1.1 ([1]) For all simple connected graphs G,

$$M_1(G)/n \leq M_2(G)/m$$

and the bound is tight for complete graphs.

However, this conjecture does not hold for all general graphs ([3]), while it is proved to be true for chemical graphs ([3]), trees ([10]) and unicyclic graphs([7]), and connected bicyclic graphs except one class ([9]). Besides, its generalization to the variable Zagreb indices has already been discussed (see e.g. [5, 6, 13]). The variable first and the variable second Zagreb indices are defined as:

$${}^{\lambda}M_1(G) = \sum_{u \in V} (d(u))^{2\lambda} \ and \ {}^{\lambda}M_2(G) = \sum_{uv \in E} (d(u)d(v))^{\lambda},$$

where λ is any real number. Clearly, ${}^{1}M_{1}(G) = M_{1}(G)$ and ${}^{1}M_{2}(G) = M_{2}(G)$. Similarly as Conjecture 1.1, many mathematicians showed that

$${}^{\lambda}M_1(G)/n \le {}^{\lambda}M_2(G)/m \tag{1}$$

is true for the following cases: all chemical graphs and $\lambda \in [0, 1]$ ([11]), all trees and $\lambda \in [0, 1]$ ([12]), all unicyclic graphs and $\lambda \in [0, 1]$ ([4]).

On the other hand, the inequality

$${}^{\lambda}M_1(G)/n \ge {}^{\lambda}M_2(G)/m \tag{2}$$

is true for the following cases: all unbalanced bipartite graphs and $\lambda \in R \setminus [0, 1]$ ([11]), all unicyclic graphs and $\lambda \in (-\infty, 0]$ ([14]).

Let G be an undirected, simple graph. Let $\Delta(G)$ and $\delta(G)$ denote the maximum and minimum degrees of G, respectively. A graph G is called a chemical graph if $\Delta(G) \leq 4$. A graph G is called k-regular if d(v) = k for all $v \in V(G)$.

It is known to all that there are many molecular graphs with small difference between the maximum and minimum degrees. In [8], it has been proved that $M_1(G)/n \le M_2(G)/m$ holds for graphs G with small difference between the maximum and minimum degrees, which implies the results in [3].

In this paper, we investigate the relationship of ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ in the graphs G with small difference between the maximum and minimum degrees for $\lambda \in R$. When $\lambda \in [0, 1]$ (resp. $\lambda \in (-\infty, 0)$), we show that (1) (resp. (2)) holds for graphs satisfying one of the following conditions: $\Delta(G) - \delta(G) \leq 2$; $\Delta(G) - \delta(G) \leq 3$ and $\delta(G) \neq 2$; all chemical graphs. Moreover, the extremal graphs (with the equality (1) or (2) holds) are characterized completely. When $\lambda \in (1, +\infty)$, the relationship of numerical value between ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ is indefinite for distinct graphs even if $\Delta(G) - \delta(G) \leq 2$.

2 Preliminaries

In this section, we introduce some notations and lemmas which are useful in the presentations and proofs of our main results.

Let
$$\{i, j\}$$
, $\{k, l\} \in (Z^+)^2$ and $\lambda \in R$. Suppose

$$f_{(i,-l),-(k,-l)}^{\lambda} = i^{\lambda+1} j^{\lambda+1} l + i^{\lambda+1} j^{\lambda+1} k + j k^{\lambda+1} l^{\lambda+1} + i k^{\lambda+1} l^{\lambda+1} - i^{2\lambda} j k l - i j^{2\lambda} k l - i j k^{2\lambda} l - i j k l^{2\lambda}.$$

In the following lemmas, let a, b, c, d be distinct positive integers.

Lemma 2.1
$$f_{(a-a)-(a-a)}^{\lambda} = 0.$$

Proof. Obviously, we have
$$f_{\{a, a\}, \{a, a\}}^{\lambda} = 4a^{2\lambda+3} - 4a^{2\lambda+3} = 0.$$

$$\mbox{Lemma 2.2} \quad f^{\lambda}_{(a,\ a),\ (a,\ b)} \begin{cases} >0, & \ if\ 0<\lambda\leq 1, \\ <0, & \ if\ \lambda<0. \end{cases}$$

Proof. Note that
$$f_{(a, a), (a, b)}^{\lambda} = a^{2\lambda+2}b + a^{2\lambda+3} + 2a^{\lambda+2}b^{\lambda+1} - 3a^{2\lambda+2}b - a^3b^{2\lambda}$$

= $a^2(b^{\lambda} - a^{\lambda})[(b - a)a^{\lambda} + ab(a^{\lambda-1} - b^{\lambda-1})].$

Case 1.
$$0 < \lambda \le 1$$
.

If
$$b > a > 0$$
, then $b^{\lambda} - a^{\lambda} > 0$, $(b - a)a^{\lambda} + ab(a^{\lambda - 1} - b^{\lambda - 1}) > 0$.

If
$$a > b > 0$$
, then $b^{\lambda} - a^{\lambda} < 0$, $(b - a)a^{\lambda} + ab(a^{\lambda - 1} - b^{\lambda - 1}) < 0$.

Therefore, we always have $f_{\{a, a\}, \{a, b\}}^{\lambda} > 0$.

Case 2. $\lambda < 0$.

If
$$b > a > 0$$
, then $b^{\lambda} - a^{\lambda} < 0$, $(b - a)a^{\lambda} + ab(a^{\lambda - 1} - b^{\lambda - 1}) > 0$.

If
$$a > b > 0$$
, then $b^{\lambda} - a^{\lambda} > 0$, $(b - a)a^{\lambda} + ab(a^{\lambda - 1} - b^{\lambda - 1}) < 0$.

It can be seen that $f_{\{a, a\}, \{a, b\}}^{\lambda} < 0$.

Lemma 2.3
$$f_{(a, a), (b, b)}^{\lambda} \begin{cases} > 0, & if \ 0 < \lambda \le 1, \\ < 0, & if \ \lambda < 0. \end{cases}$$

Proof. Note that
$$f^{\lambda}_{\{a, a\}, \{b, b\}} = 2a^{2\lambda+2}b + 2ab^{2\lambda+2} - 2a^{2\lambda+1}b^2 - 2a^2b^{2\lambda+1}$$

= $2ab(b-a)(b^{2\lambda}-a^{2\lambda})$.

Case 1. $0 < \lambda \le 1$. Without loss of generality, suppose b > a > 0. Then

$$b - a > 0$$
, $b^{2\lambda} - a^{2\lambda} > 0$.

Thus we have $f_{\{a, a\}, \{b, b\}}^{\lambda} > 0$.

Case 2. $\lambda < 0$. Without loss of generality, suppose b > a > 0. Then

$$b - a > 0$$
, $b^{2\lambda} - a^{2\lambda} < 0$.

It follows that $f_{\{a,a\},\{b,b\}}^{\lambda} < 0$.

Proof. Note that
$$f_{(a, b), (a, b)}^{\lambda} = 2a^{\lambda+1}b^{\lambda+2} + 2a^{\lambda+2}b^{\lambda+1} - 2a^{2\lambda+1}b^2 - 2a^2b^{2\lambda+1}$$

= $2a^2b^2(b^{\lambda} - a^{\lambda})(a^{\lambda-1} - b^{\lambda-1})$.

Without loss of generality, suppose b > a > 0.

Case 1. $\lambda = 1$. Then $b^{\lambda} - a^{\lambda} > 0$, $a^{\lambda - 1} - b^{\lambda - 1} = 0$. Hence $f^{\lambda}_{(a, b), \{a, b\}} = 0$. Case 2. $0 < \lambda < 1$. Then $b^{\lambda} - a^{\lambda} > 0$, $a^{\lambda - 1} - b^{\lambda - 1} > 0$. So $f^{\lambda}_{(a, b), \{a, b\}} > 0$. Case 3. $\lambda < 0$. Then $b^{\lambda} - a^{\lambda} < 0$, $a^{\lambda - 1} - b^{\lambda - 1} > 0$. Thus $f^{\lambda}_{(a, b), \{a, b\}} < 0$.

Proof. Notice that $f_{(a,b),(a,c)}^{\lambda}$

$$= a^{\lambda + 1} b^{\lambda + 1} c + a^{\lambda + 2} b^{\lambda + 1} + a^{\lambda + 1} b c^{\lambda + 1} + a^{\lambda + 2} c^{\lambda + 1} - 2a^{2\lambda + 1} b c - a^2 b^{2\lambda} c - a^2 b c^{2\lambda} b c^{2\lambda} + a^{2\lambda + 1} b c^{2\lambda} b$$

$$= a^{2}bc[(a^{\lambda-1} - b^{\lambda-1})(b^{\lambda} - a^{\lambda}) + (a^{\lambda-1} - c^{\lambda-1})(c^{\lambda} - a^{\lambda})] + a^{\lambda+2}(c - b)(c^{\lambda} - b^{\lambda}).$$

Case 1. $0 < \lambda \le 1$. Without loss of generality, suppose c > b > 0.

If c > b > a > 0, then

$$a^{\lambda-1} - b^{\lambda-1} \ge 0, \ b^{\lambda} - a^{\lambda} > 0, \ a^{\lambda-1} - c^{\lambda-1} \ge 0, \ c^{\lambda} - a^{\lambda} > 0, \ c^{\lambda} - b^{\lambda} > 0.$$

If a > c > b > 0, then

$$a^{\lambda-1} - b^{\lambda-1} \le 0, \ b^{\lambda} - a^{\lambda} < 0, \ a^{\lambda-1} - c^{\lambda-1} \le 0, \ c^{\lambda} - a^{\lambda} < 0, \ c^{\lambda} - b^{\lambda} > 0.$$

If c > a > b > 0, then

$$a^{\lambda-1} - b^{\lambda-1} \le 0, \ b^{\lambda} - a^{\lambda} < 0, \ a^{\lambda-1} - c^{\lambda-1} \ge 0, \ c^{\lambda} - a^{\lambda} > 0, \ c^{\lambda} - b^{\lambda} > 0.$$

All in all, we always have $f_{\{a, b\}, \{a, c\}}^{\lambda} > 0$.

Case 2. $\lambda < 0$. Without loss of generality, suppose c > b > 0.

If c > b > a > 0, then

$$a^{\lambda-1} - b^{\lambda-1} > 0$$
, $b^{\lambda} - a^{\lambda} < 0$, $a^{\lambda-1} - c^{\lambda-1} > 0$, $c^{\lambda} - a^{\lambda} < 0$, $c^{\lambda} - b^{\lambda} < 0$.

If a > c > b > 0, then

$$a^{\lambda-1} - b^{\lambda-1} < 0, \ b^{\lambda} - a^{\lambda} > 0, \ a^{\lambda-1} - c^{\lambda-1} < 0, \ c^{\lambda} - a^{\lambda} > 0, \ c^{\lambda} - b^{\lambda} < 0.$$

If c > a > b > 0, then

$$a^{\lambda-1} - b^{\lambda-1} < 0, \ b^{\lambda} - a^{\lambda} > 0, \ a^{\lambda-1} - c^{\lambda-1} > 0, \ c^{\lambda} - a^{\lambda} < 0, \ c^{\lambda} - b^{\lambda} < 0.$$

Therefore, it can be conclude that $f_{\{a, b\}, \{a, c\}}^{\lambda} < 0$.

Lemma 2.6 Let c > b > 0. If c > a > b, we suppose $bc \le a^2$. Then

$$f^{\lambda}_{\{a,\ a\},\ \{b,\ c\}} \begin{cases} \geq 0, & if\ \lambda = 1, \\ > 0, & if\ 0 < \lambda < 1, \\ < 0, & if\ \lambda < 0. \end{cases}$$

Proof.
$$f^{\lambda}_{[a, a], [b, c]} = a^{2\lambda+2}c + a^{2\lambda+2}b + 2ab^{\lambda+1}c^{\lambda+1} - 2a^{2\lambda+1}bc - a^2b^{2\lambda}c - a^2bc^{2\lambda}c - a^2bc^{2\lambda}c - a^2b^{2\lambda}c - a$$

Case 1. $0 < \lambda \le 1$.

If c > b > a > 0, then

$$c^{\lambda} - b^{\lambda} > 0$$
, $b^{\lambda - 1} - c^{\lambda - 1} \ge 0$, $2bc - ab - ac > 0$, $b^{\lambda}c^{\lambda} - a^{2\lambda} > 0$.

If a > c > b > 0, then

$$c^{\lambda} - b^{\lambda} > 0, \ b^{\lambda - 1} - c^{\lambda - 1} \ge 0, \ 2bc - ab - ac < 0, \ b^{\lambda}c^{\lambda} - a^{2\lambda} < 0.$$

If
$$c > a > b > 0$$
, then $c^{\lambda} - b^{\lambda} > 0$, $b^{\lambda - 1} - c^{\lambda - 1} \begin{cases} > 0, & \text{if } 0 < \lambda < 1, \\ = 0, & \text{if } \lambda = 1. \end{cases}$

Since $bc \le a^2$. Hence $b^{\lambda}c^{\lambda} - a^{2\lambda} \le 0$, and

$$2bc - ab - ac \le bc + a^2 - ab - ac = (c - a)(b - a) < 0.$$

$$\label{eq:final_state} \text{It can be seen that} \ \ f^{\lambda}_{\{a,\ a\},\ \{b,\ c\}} \begin{cases} >0, & if\ 0<\lambda<1, \\ \geq 0, & if\ \lambda=1. \end{cases}$$

Case 2. $\lambda < 0$.

If c > b > a > 0, then

$$c^{\lambda} - b^{\lambda} < 0, \ b^{\lambda - 1} - c^{\lambda - 1} > 0, \ 2bc - ab - ac > 0, \ b^{\lambda}c^{\lambda} - a^{2\lambda} < 0.$$

If a > c > b > 0, then

$$c^{\lambda} - b^{\lambda} < 0, \ b^{\lambda - 1} - c^{\lambda - 1} > 0, \ 2bc - ab - ac < 0, \ b^{\lambda}c^{\lambda} - a^{2\lambda} > 0.$$

If c > a > b > 0, then $c^{\lambda} - b^{\lambda} < 0$, $b^{\lambda - 1} - c^{\lambda - 1} > 0$.

Note that $bc \le a^2$. Hence $b^{\lambda}c^{\lambda} - a^{2\lambda} \ge 0$, and

$$2bc - ab - ac \le bc + a^2 - ab - ac = (c - a)(b - a) < 0.$$

Consequently, we conclude that $f_{(a,a)}^{\lambda}$ (b,c) < 0.

2, p + 3 and $p \neq 2$. Then

$$f^{\lambda}_{[a,\ a],\ [b,\ c]} \begin{cases} \geq 0, & if\ \lambda = 1, \\ > 0, & if\ 0 < \lambda < 1, \\ < 0, & if\ \lambda < 0. \end{cases}$$

Proof. From the proof of Lemma 2.6, we need to discuss the case c > a > b.

Case 1.
$$0 < \lambda \le 1$$
. Thus $c^{\lambda} - b^{\lambda} > 0$, $b^{\lambda-1} - c^{\lambda-1} \begin{cases} > 0, & \text{if } 0 < \lambda < 1, \\ = 0, & \text{if } \lambda = 1. \end{cases}$

Subcase 1.1 a = p + 1, b = p, c = p + 2.

Subcase 1.2 a = p + 2, b = p, c = p + 3.

Subcase 1.3 a = p + 2, b = p + 1, c = p + 3.

For Subcase 1.1-1.3, since $bc \le a^2$, by Lemma 2.6, the results are obtained. **Subcase 1.4** a = p + 1, b = p, c = p + 3. Then

$$b^{\lambda}c^{\lambda} - a^{2\lambda} = p^{\lambda}(p+3)^{\lambda} - (p+1)^{2\lambda} \begin{cases} > 0, & if \ p \ge 3, \\ = 0, & if \ p = 1. \end{cases}$$

$$2bc - ab - ac = p - 3 \ge 0 \ if \ p \ge 3.$$

All in all, we obtain the results as desired.

Case 2. $\lambda < 0$. Then $c^{\lambda} - b^{\lambda} < 0$, $b^{\lambda - 1} - c^{\lambda - 1} > 0$.

Similarly, for Subcase 1.1-1.3, since $bc \le a^2$, it follows from Lemma 2.6 that the results are obtained as desired.

If a = p + 1, b = p, c = p + 3, then

$$b^{\lambda}c^{\lambda} - a^{2\lambda} = p^{\lambda}(p+3)^{\lambda} - (p+1)^{2\lambda} \begin{cases} <0, & if \ p \geq 3, \\ =0, & if \ p=1. \end{cases}$$

$$2bc - ab - ac = p - 3 \ge 0 \ if \ p \ge 3.$$

Therefore, we always have $f_{\{a, a\}, \{b, c\}}^{\lambda} < 0$ if $\lambda < 0$.

Lemma 2.8 Let d > c and $a = min\{a, b, c, d\}$. If b > d > c > a, we suppose $a + b \ge c + d$, $ab \le cd$. Thus

$$f^{\lambda}_{[a,\ b],\ [c,\ d]} \begin{cases} \geq 0, & if\ \lambda = 1, \\ > 0, & if\ 0 < \lambda < 1, \\ < 0, & if\ \lambda < 0. \end{cases}$$

Proof. Note that $f_{\{a, b\}, \{c, d\}}^{\lambda}$

$$=a^{\lambda+1}b^{\lambda+1}d+a^{\lambda+1}b^{\lambda+1}c+bc^{\lambda+1}d^{\lambda+1}+ac^{\lambda+1}d^{\lambda+1}-a^{2\lambda}bcd-ab^{2\lambda}cd-abc^{2\lambda}d-abcd^{2\lambda}d^{\lambda+1}d^{\lambda+1}+ac^{\lambda+1}d^{\lambda+1}-a^{2\lambda}bcd-ab^{2\lambda}cd-abcd^{2\lambda}d^{\lambda+1}d^{\lambda+1}+ac^{\lambda+1}d^{\lambda+1}-a^{2\lambda}bcd-ab^{2\lambda}cd-abcd^{\lambda+1}d^{\lambda+1}+ac^{\lambda+1}d^{\lambda+1}-a^{\lambda+1}d^{\lambda+1}-a^{\lambda+1}d^{\lambda+1}-a^{\lambda+1}d^{\lambda+1}-ab^{\lambda+$$

$$= abcd[(a^{\lambda-1} - b^{\lambda-1})(b^{\lambda} - a^{\lambda}) + (c^{\lambda-1} - d^{\lambda-1})(d^{\lambda} - c^{\lambda})] + [ac(d-b) + bd(c-a)](c^{\lambda}d^{\lambda} - a^{\lambda}b^{\lambda}).$$

Case 1. $0 < \lambda < 1$.

If d > c > b > a > 0 or d > b > c > a > 0, then

$$a^{\lambda-1} - b^{\lambda-1} \ge 0, \ b^{\lambda} - a^{\lambda} > 0, \ c^{\lambda-1} - d^{\lambda-1} \ge 0, \ d^{\lambda} - c^{\lambda} > 0,$$

$$ac(d-b) + bd(c-a) > 0, \ c^{\lambda}d^{\lambda} - a^{\lambda}b^{\lambda} > 0.$$

If b > d > c > a > 0, since $a + b \ge c + d$ and $ab \le cd$, then

$$a^{\lambda-1} - b^{\lambda-1} \begin{cases} > 0, & \text{if } 0 < \lambda < 1, \\ = 0, & \text{if } \lambda = 1. \end{cases}, \ b^{\lambda} - a^{\lambda} > 0, \ c^{\lambda-1} - d^{\lambda-1} \ge 0, \ d^{\lambda} - c^{\lambda} > 0,$$

$$c^{\lambda}d^{\lambda}-a^{\lambda}b^{\lambda}\geq 0$$
, $ac(d-b)+bd(c-a)=cd(a+b)-ab(c+d)\geq ab(a+b-c-d)\geq 0$.

Therefore, we always have
$$f_{\{a, b\}, \{c, d\}}^{\lambda} \begin{cases} > 0, & \text{if } 0 < \lambda < 1, \\ \geq 0, & \text{if } \lambda = 1. \end{cases}$$

Case 2. $\lambda < 0$.

If d > c > b > a > 0 or d > b > c > a > 0, then

$$a^{\lambda-1} - b^{\lambda-1} > 0, \ b^{\lambda} - a^{\lambda} < 0, \ c^{\lambda-1} - d^{\lambda-1} > 0, \ d^{\lambda} - c^{\lambda} < 0,$$

$$ac(d-b)+bd(c-a)>0,\ c^{\lambda}d^{\lambda}-a^{\lambda}b^{\lambda}<0.$$

If b > d > c > a > 0, note that $a + b \ge c + d$ and $ab \le cd$, then

$$a^{\lambda-1} - b^{\lambda-1} > 0, \ b^{\lambda} - a^{\lambda} < 0, \ c^{\lambda-1} - d^{\lambda-1} > 0, \ d^{\lambda} - c^{\lambda} < 0,$$

$$c^{\lambda}d^{\lambda} - a^{\lambda}b^{\lambda} \le 0$$
, $ac(d-b) + bd(c-a) \ge ab(a+b-c-d) \ge 0$.

Therefore, it can be seen that $f_{(a,b),(c,d)}^{\lambda} < 0$.

3 Main results

Let G be a finite, undirected and simple graph. If $xy \in E(G)$, we say that y is a neighbor of x and denote by N(x) the set of neighbors of x. And d(x) = |N(x)| is called the degree of x. We denote the number of vertices of degree i in G by n_i and the number of edges that connect vertices of degree i and j by m_{ij} , where we do not distinguish m_{ij} and m_{ji} . Similarly as in paper [11] we show that:

Lemma 3.1 Let G be a graph with n vertices and m edges. Let N denote the set of the degrees of vertices in G. Let $\mu = \sum_{k \le l \in \mathbb{N}} m_{kl} \cdot \sum_{k \le l \in \mathbb{N}} m_{kl} (\frac{1}{k} + \frac{1}{l})$. Then

$${}^{\lambda}M_{2}(G)/m - {}^{\lambda}M_{1}(G)/n = \frac{1}{\mu} \cdot \sum_{\stackrel{i \leq j, \ k \leq l,}{i.i. \ j. \ k. \ l \leq N^{2}}} (f_{[i, \ j], \ [k, \ l]}^{\lambda} \cdot \frac{m_{ij}m_{kl}}{i \cdot j \cdot k \cdot l}).$$

Theorem 3.2 Let G be a graph with n vertices, m edges and $\Delta(G) - \delta(G) \leq 2$.

If
$$\lambda \in [0, 1]$$
, then ${}^{\lambda}M_1(G)/n \le {}^{\lambda}M_2(G)/m$. (3)

If
$$\lambda \in (-\infty, 0)$$
, then ${}^{\lambda}M_1(G)/n \ge {}^{\lambda}M_2(G)/m$. (4)

Moreover, if $\lambda = 0$ *, the equality of* (3) *always holds.*

If $\lambda = 1$, the equality of (3) holds if and only if all edges ij have the same pair (d_i, d_j) of degrees.

If $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$), the equality of (3) (resp. (4)) holds if and only if G is a regular graph.

Proof. For simplicity, let $\delta(G) = p$ and $N = \{p, p+1, p+2\}$.

Case 1. If $\lambda = 0$, it is obvious that

$${}^0M_1(G)/n = (\sum_{v \in V} [d(v)]^{2 \cdot 0})/n = 1 = (\sum_{u v \in E} [d(u)d(v)]^0)/m = {}^0M_2(G)/m.$$

Case 2. If $\lambda \in (0, 1]$ (resp. $\lambda \in (-\infty, 0)$), by Lemma 3.1,

$${}^{\lambda}M_{2}(G)/m - {}^{\lambda}M_{1}(G)/n = \frac{1}{\mu} \cdot \sum_{\stackrel{i \leq j, \ k \leq l,}{(i, \ j, \ k, \ l \leq N^{2})}} (f_{(i, \ j), \ (k, \ l)}^{\lambda} \cdot \frac{m_{ij}m_{kl}}{i \cdot j \cdot k \cdot l}).$$

Note that all i, j, k and l can not be distinct numbers, we need to show that $f_{(i, j), (k, l)}^{\lambda} \ge 0$ (resp. ≤ 0) for each $\{i, j\}, \{k, l\} \subseteq N^2$. Let a, b, c be distinct elements of N. Then we have the following subcases.

Subcase 2.1 $\{\{i, j\}, \{k, l\}\} = \{\{a, a\}, \{a, a\}\}\}$. By Lemma 2.1, $f^{\lambda}_{\{i, j\}, \{k, l\}} = 0$. **Subcase 2.2** $\{\{i, j\}, \{k, l\}\} = \{\{a, a\}, \{a, b\}\}\}$. By Lemma 2.2,

$$f_{\{i, j\}, \{k, l\}}^{\lambda} \begin{cases} > 0, & if \ 0 < \lambda \le 1, \\ < 0, & if \ \lambda < 0. \end{cases}$$

Subcase 2.3 $\{\{i, j\}, \{k, l\}\} = \{\{a, a\}, \{b, b\}\}$. By Lemma 2.3,

$$f_{\{i, j\}, \{k, l\}}^{\lambda} \begin{cases} > 0, & if \ 0 < \lambda \le 1, \\ < 0, & if \ \lambda < 0. \end{cases}$$

Subcase 2.4 $\{\{i, j\}, \{k, l\}\} = \{\{a, b\}, \{a, b\}\}\}$. By Lemma 2.4,

$$f_{(i, j), (k, l)}^{\lambda} \begin{cases} = 0, & if \ \lambda = 1, \\ > 0, & if \ 0 < \lambda < 1, \\ < 0, & if \ \lambda < 0. \end{cases}$$

Subcase 2.5 $\{\{i, j\}, \{k, l\}\} = \{\{a, b\}, \{a, c\}\}\}$. By Lemma 2.5,

$$f_{(i, j), (k, l)}^{\lambda} \begin{cases} > 0, & if \ 0 < \lambda \le 1, \\ < 0, & if \ \lambda < 0. \end{cases}$$

Subcase 2.6 {{*i*, *j*}, {*k*, *l*}} = {{*a*, *a*}, {*b*, *c*}}. Without loss of generality, suppose i = j and l > k. If k < i = j < l, since $N = \{p, p + 1, p + 2\}$, then $kl = p(p + 2) \le (p + 1)^2 = i^2$. By Lemma 2.6,

$$f^{\lambda}_{(i,\ j),\ \{k,\ l\}} \begin{cases} \geq 0, & if\ \lambda = 1, \\ > 0, & if\ 0 < \lambda < 1, \\ < 0, & if\ \lambda < 0. \end{cases}$$

All in all, the inequality (3) (resp. (4)) is proved.

Moreover, if $\lambda = 0$, then the equality of (3) always holds.

If $\lambda = 1$, from the proof of Case 2, the equality of (3) holds if and only if $f_{(i, j), (k, l)}^{\lambda} = 0$ for all $m_{ij} \cdot m_{kl} > 0$, which implies that all edges ij have the same pair (d_i, d_i) of degrees (also see [8]).

If $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$), from the foregoing proof, the equality of (3) (resp. (4)) holds if and only if $f_{\{i, j\}, \{k, l\}}^{\lambda} = 0$ for all $m_{ij} \cdot m_{kl} > 0$, which means i = j = k = l for each $\{i, j\}, \{k, l\} \subseteq N^2$, that is, G is a regular graph. \square

From Theorem 3.2, we obtain the main result in [8] immediately.

Corollary 3.3 ([8]) Let G be a graph with n vertices, m edges and $\Delta(G) - \delta(G) \le 2$. Then $M_1(G)/n \le M_2(G)/m$, with the equality holds if and only if all edges if have the same pair (d_i, d_i) of degrees.

Let G^* denote the graphs with each edge connecting a 3-degree vertex and a 6-degree vertex. The star graph S_n is a tree on n vertices with one vertex having degree n-1 and the other vertices having degree 1.

Theorem 3.4 Let G be a graph with n vertices and m edges such that $\Delta(G) - \delta(G) \leq 3$ and $\delta(G) \neq 2$.

If
$$\lambda \in [0, 1]$$
, then ${}^{\lambda}M_1(G)/n \le {}^{\lambda}M_2(G)/m$. (5)

If
$$\lambda \in (-\infty, 0)$$
, then ${}^{\lambda}M_1(G)/n \ge {}^{\lambda}M_2(G)/m$. (6)

Moreover, if $\lambda = 0$ *, the equality of* (5) *always holds.*

If $\lambda = 1$, the equality of (5) holds if and only if all edges i j have the same pair (d_i, d_i) of degrees or if the graph is composed of disjoint stars S_5 and cycles of any length or if the graph is composed of disjoint G^* and 4-regular graphs ([8]).

If $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$), the equality of (5) (resp. (6)) holds if and only if G is a regular graph.

Proof. For simplicity, let $\delta(G) = p$ and $N = \{p, p+1, p+2, p+3\}$. Let a, b, c, d be distinct elements of N. If $\lambda = 0$, it is obvious that ${}^{0}M_{1}(G)/n = {}^{0}M_{2}(G)/m$.

If $\lambda \in (0, 1]$ (resp. $\lambda \in (-\infty, 0)$), by Lemma 3.1, we just need to show that
$$\begin{split} f_{[i,\ j],\ [k,\ l]}^{\lambda} &\geq 0 \text{ (resp.} \leq 0) \text{ for each } \{i,\ j\},\ \{k,\ l\} \subseteq N^2 \ (i \leq j,\ k \leq l). \\ &\text{In the proof of Theorem 3.2, we found that } f_{[i,\ j],\ [k,\ l]}^{\lambda} &= 0 \text{ holds for the case} \end{split}$$

$$(\geq 0, if \lambda = 1,$$

 $\{\{i,\ j\},\ \{k,\ l\}\} = \{\{a,\ a\},\ \{a,\ a\}\}, \ \text{and} \ f^{\lambda}_{(i,\ j),\ (k,\ l)} \begin{cases} \geq 0, & if\ \lambda = 1, \\ > 0, & if\ 0 < \lambda < 1, \ \text{holds for the} \\ < 0, & if\ \lambda < 0 \end{cases}$

cases $\{\{i, j\}, \{k, l\}\} = \{\{a, a\}, \{a, b\}\}, \{\{a, a\}, \{b, b\}\}$ $\{\{a, b\}, \{a, c\}\}\}$. We only need to discuss the following two cases.

Case 1. $\{\{i, j\}, \{k, l\}\} = \{\{a, a\}, \{b, c\}\}\$. Without loss of generality, suppose i = j and l > k. It follows from Lemma 2.7 that

$$f_{(i, j), (k, l)}^{\lambda} \begin{cases} \geq 0, & if \ \lambda = 1, \\ > 0, & if \ 0 < \lambda < 1, \\ < 0, & if \ \lambda < 0. \end{cases}$$

Case 2. $\{\{i, j\}, \{k, l\}\} = \{\{a, b\}, \{c, d\}\}$. Without loss of generality, suppose l > k and $i = min\{i, j, k, l\}$. If i < k < l < j, then i = p, k = p + 1, l = p + 2, j = lp + 3, and it follows that

$$i + j = 2p + 3 = k + l$$
, and $ij = p^2 + 3p \le p^2 + 3p + 2 = kl$.

 $i+j=2p+3=k+l, \ and \ ij=p^2+3p\leq p^2+3p+2=kl.$ Then by Lemma 2.8, we obtain that $f^{\lambda}_{(i,\ j),\ (k,\ l)} \begin{cases} \geq 0, & \ if\ \lambda=1,\\ >0, & \ if\ 0<\lambda<1,\\ <0, & \ if\ \lambda<0. \end{cases}$

Therefore, the inequality (5) and (6) are prove

Moreover, if $\lambda = 0$, the equality of (5) always holds.

If $\lambda = 1$, the equality of (5) in this case had been proved in [8].

If $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$), from the foregoing proof, the equality of (5) (resp. (6)) holds if and only if $f_{(i, j), (k, l)}^{\lambda} = 0$ for all $m_{ij} \cdot m_{kl} > 0$, which means i = j = k = l for each $\{i, j\}$, $\{k, l\} \subseteq N^2$, that is, G is a regular graph.

If $\lambda = 1$, Hansen and Vukičević in [3] proved that $M_1(G)/n \le M_2(G)/m$ for chemical graphs. Now we consider the case $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$).

Corollary 3.5 Let G be a chemical graph with n vertices and m edges.

If
$$\lambda \in (0, 1)$$
, then ${}^{\lambda}M_1(G)/n \le {}^{\lambda}M_2(G)/m$. ([11])

If
$$\lambda \in (-\infty, 0)$$
, then ${}^{\lambda}M_1(G)/n \ge {}^{\lambda}M_2(G)/m$. (8)

Moreover, if $\lambda \in (0, 1)$) (resp. $\lambda \in (-\infty, 0)$), the equality of (7) (resp. (8)) holds if and only if G is a regular graph.

Proof. Note that G is a chemical graph, thus $\Delta \leq 4$. If $\delta = 1$, then $\Delta - \delta \leq 3$, by Theorem 3.4, the results are proved. If $\delta \geq 2$, we have $\Delta - \delta \leq 2$, and it follows from Theorem 3.2 that the results are obtained as desired.

Let e_i , $e_j \in E$, where the degrees of their end vertices are $\{d_{i_1}, d_{i_2}\}$ $(d_{i_1} \le d_{i_2})$ and $\{d_{j_1}, d_{j_2}\}$ $(d_{j_1} \le d_{j_2})$, respectively. A pair of edges $[e_i, e_j]$ is called a degreesnested edges pair if $d_{i_1} < d_{j_1} \le d_{j_2} < d_{i_2}$ or $d_{j_1} < d_{i_1} \le d_{i_2} < d_{j_2}$.

Corollary 3.6 Let G be a graph with n vertices, m edges, and G contains no degrees-nested edges pairs.

If
$$\lambda \in (0, 1)$$
, then ${}^{\lambda}M_1(G)/n \le {}^{\lambda}M_2(G)/m$. (9)

If
$$\lambda \in (-\infty, 0)$$
, then ${}^{\lambda}M_1(G)/n \ge {}^{\lambda}M_2(G)/m$. (10)

Moreover, if $\lambda \in (0, 1)$ (resp. $\lambda \in (-\infty, 0)$), the equality of (9) (resp. (10)) holds if and only if G is a regular graph.

Proof. If $\lambda \in (0, 1]$ (resp. $\lambda \in (-\infty, 0)$), by Lemma 3.1, we just need to show that $f_{(i, j), (k, l)}^{\lambda} \ge 0$ (resp. ≤ 0) for each $\{i, j\}, \{k, l\} \subseteq N^2$ $(i \le j, k \le l)$ (*).

Since G contains no degrees-nested edges pairs, from the proof of Lemma 2.1-2.8, we conclude that (*) always holds, and this completes the proof.

Finally, we consider the relationship of ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ for $\lambda > 1$. A simple graph on n vertices in which each pair of distinct vertices is joined by an edge is called a complete graph, and denoted by K_n . A complete bipartite graph is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if $|X| = n_1$ and $|Y| = n_2$, such a graph is denoted by K_{n_1, n_2} . The disjoint union of k copies of G is often written by kG.

Example 1 Let G_1 be a graph of order 9 created from K_3 and $3K_2$ by connecting each vertex of K_3 to a vertex of a K_2 . Thus $\Delta(G_1) - \delta(G_1) = 3 - 1 = 2$, and

$${}^{\lambda}M_{2}(G_{1})/m - {}^{\lambda}M_{1}(G_{1})/n = \frac{6^{\lambda} + 2^{\lambda} - 4^{\lambda} - 1}{3} > 0 \ for \ \lambda > 1.$$

Example 2 Let $G_2 = K_{4, 5}$. Obviously, $\Delta(G_2) - \delta(G_2) = 5 - 4 = 1$, and

$${}^{\lambda}M_{2}(G_{2})/m - {}^{\lambda}M_{1}(G_{2})/n = \frac{9 \cdot 20^{\lambda} - 4 \cdot 25^{\lambda} - 5 \cdot 16^{\lambda}}{9} < 0 \ for \ \lambda > 1.$$

Remark 1 It is known that the inequality ${}^{\lambda}M_2(G)/m - {}^{\lambda}M_1(G)/n < 0$ is true for all unbalanced bipartite graphs G and $\lambda \in R\setminus [0, 1]$ ([11]).

Combining Example 1 and 2, when $\lambda > 1$, we can find a suitable graph G_1 such that ${}^{\lambda}M_2(G_1)/m - {}^{\lambda}M_1(G_1)/n > 0$, and a suitable graph G_2 such that ${}^{\lambda}M_2(G_2)/m - {}^{\lambda}M_1(G_2)/n < 0$. Besides, note that $\Delta(G_i) - \delta(G_i) \le 2$ (i = 1, 2) and $|V(G_1)| = |V(G_2)|$, we conclude that when $\lambda \in (1, +\infty)$, the relationship of ${}^{\lambda}M_1(G)/n$ and ${}^{\lambda}M_2(G)/m$ is indefinite for distinct graphs G even if $\Delta(G) - \delta(G) \le 2$.

References

- [1] G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system, *Discr. Math.* **212** (2000) 29–44.
- [2] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total πelectron energy of alternant hydrocarbons, *Chem. Phys. Lett.* 17 (1972) 535– 538.
- [3] P. Hansen, D. Vukičević, Comparing the Zagreb indices, Croat. Chem. Acta 80 (2007) 165–168.
- [4] B. Horoldagva, K. C. Das, Comparing variable Zagreb indices for unicyclic graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 725–730.
- [5] Z. Huang, Y. Guo, A new comparison between the modified Zagreb M_{2*} index and the Randić index for benzenoid systems, MATCH Commun. Math. Comput. Chem. 62 (2009) 731–739.
- [6] A. Ilić, D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 681–687.

- [7] B. Liu, On a conjecture about comparing Zagreb indices, in: I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008, pp. 205–209.
- [8] L. Sun, T. Chen, Comparing the Zagreb indices for graphs with small difference between the maximum and minimum degrees, *Discr. Appl. Math.* 157 (2009) 1650–1654.
- [9] L. Sun, S. Wei, Comparing the Zagreb indices for connected bicyclic graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 699–714.
- [10] D. Vukičević, A. Graovac, Comparing Zagreb M₁ and M₂ indices for acyclic molecules, MATCH Commun. Math. Comput. Chem. 57 (2007) 587–590.
- [11] D. Vukičević, Comparing variable Zagreb indices, MATCH Commun. Math. Comput. Chem. 57 (2007) 633–641.
- [12] D. Vukičević, A. Graovac, Comparing variable Zagreb M₁ and M₂ indices for acyclic molecules, MATCH Commun. Math. Comput. Chem. 60 (2008) 37–44.
- [13] D. Vukičević, Variable Zagreb indices of K_{r+1} -free graphs, MATCH Commun. Math. Comput. Chem. **62** (2009) 715–724.
- [14] M. Zhang, B. Liu, On comparing variable Zagreb indices for unicyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 461–468.