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Abstract

Recently Hansen and Vukičević [11] proved that the inequality M1/n ≤ M2/m, where
M1 and M2 are the first and second Zagreb indices, holds for chemical graphs, and Vukičević
and Graovac [23] proved that this also holds for trees. In both works a distinct counterex-
ample is given for which this inequality is false in general. Here, we present some classes of
graphs with prescribed degrees, that satisfy M1/n ≤ M2/m . Namely every graph G whose
degrees of vertices are in the interval [c, c+�√c �] for some integer c, satisfies this inequality.
In addition, we prove that for any Δ ≥ 5 , there is an infinite family of connected graphs of
maximum degree Δ , such that the inequality is false.

1 Introduction

The first and second Zagreb indices are among the oldest topological indices [2, 8, 10, 14, 21],

defined in 1972 by Gutman and Trinajstić [9], and are given different names in the literature,
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such as the Zagreb group indices, the Zagreb group parameters and most often, the Zagreb

indices. Zagreb indices were among the first indices introduced, and have since been used to

study molecular complexity, chirality, ZE-isomerism and hetero-systems. Overall, Zagreb

indices exhibit a potential applicability for deriving multi-linear regression models. The

article [18] was responsible for a new research wave concerning Zagreb indices.

In the following, let G = (V,E) be a simple graph with n = |V | vertices and m = |E|

edges. These indices are defined as

M1(G) =
∑
v∈V

d(v)2 and M2(G) =
∑
uv∈E

d(u)d(v) .

For the sake of simplicity, we often use M1 and M2 instead of M1(G) and M2(G) , re-

spectively. See [6, 7, 16, 12, 26, 27, 28] for more work done on these indices. Comparing

the values of these indices on the same graph gives interesting results. At first the next

conjecture was proposed [1, 3, 4]:

Conjecture 1.1. For all simple graphs G ,

M1(G)

n
≤ M2(G)

m
(1)

and the bound is tight for complete graphs.

One can see that this relation becomes an equality on regular graphs, but also when

G is a star. Besides, the inequality is true for trees [23], graphs of maximum degree four,

so called chemical graphs [11] and unicyclic graphs [25], even though it does not hold for

general graphs. See [11, 23, 5, 13, 20] for various examples of graphs dissatisfying the

inequality (1).

In this article, we present some other classes of graphs with prescribed degrees for which

(1) holds, and more generally conditions on the distribution of degrees in a graph G implying

the relation (1). We also show that there are arbitrarily long intervals [a, b] such that a graph

with minimal degree at least a and maximum degree at most b satisfies the same relation.

Namely, every graph G , such that its vertex degrees are in the interval [c, c+ �√c �] for any

integer c , satisfies this inequality. We also prove that for any Δ ≥ 5 , there is an infinite

family of connected graphs of maximum degree Δ such that the inequality is false.

We denote by Ka,b the complete bipartite graph with a vertices in one class and b vertices

in the other one. We call k-star the star on k edges, and k-path the path of length k. Since
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we discuss necessary conditions for (1) to hold, we denote for the sake of simplicity by mi,j

the number of edges that connect vertices of degrees i and j in the graph G. Then, as

shown in [11]:

M2

m
− M1

n
=

∑
i≤j
k≤l

(i,j),(k,l)∈N2

[(
i j

(
1

k
+

1

l

)
+ k l

(
1

i
+

1

j

)
− i− j − k − l

)
mi,j mk,l

]
. (2)

Sometimes in order to examine whether the inequality (1) holds, one can consider

whether M2/m − M1/n is non-negative. The difference that we are considering is given

by (2). In order to simplify (2), we will define a function f , and study some of its proper-

ties. Now, for integers i, j, k, l, let

f(i, j, k, l) = i j

(
1

k
+

1

l

)
+ k l

(
1

i
+

1

j

)
− i− j − k − l .

Then (2) can be restated as

M2

m
− M1

n
=

∑
i≤j,k≤l

(i,j),(k,l)∈N2

f(i, j, k, l)mi,j mk,l . (3)

2 Some properties of f

In the sequel, we study some properties of the function f .

Lemma 2.1. For any integers i, j, k, l , it holds f(i, j, k, l) < 0 if and only if

(a) ij > kl and
1

k
+

1

l
<

1

i
+

1

j
or

(b) ij < kl and
1

k
+

1

l
>

1

i
+

1

j
.

Proof. This result follows immediately by the decomposition of f . Namely

f(i, j, k, l) =
ij

kl
(k + l)− (k + l) +

kl

ij
(i+ j)− (i+ j)

= (k + l)

[
ij − kl

kl

]
+ (i+ j)

[
kl − ij

ij

]
= (ij − kl)

(
1

k
+

1

l
− 1

i
− 1

j

)
.
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Notice that the function f has some symmetry properties, namely for every i, j, k and

l :

f(i, j, k, l) = f(j, i, k, l) and f(i, j, k, l) = f(k, l, i, j) .

Determining the sign of the function f will help us to see whether the difference M2/m−

M1/n is non-negative. The following lemma gives us orderings of the integers i, j, k , and

l , for which f(i, j, k, l) can be negative.

Lemma 2.2. If f(i, j, k, l) < 0 for some integers i ≤ j and k ≤ l , then

i < k ≤ l < j or k < i ≤ j < l .

Proof. Suppose first that i ≤ k . There are only three possibilities:

• i ≤ j ≤ k ≤ l ;

• i ≤ k ≤ j ≤ l ;

• i ≤ k ≤ l ≤ j .

If i ≤ j ≤ k ≤ l , then ij ≤ kl , but 1
k +

1
l <

1
i +

1
j , so this is impossible by Lemma 2.1(a).

If i ≤ k ≤ j ≤ l , then ij ≤ kl and 1
k + 1

l < 1
i +

1
j . This ordering is also impossible by

Lemma 2.1(a). So, the only possible ordering for f(i, j, k, l) to be negative is i ≤ k ≤ l ≤ j .

Now, if i = k (i = k ≤ l ≤ j) , then ij ≥ kl and 1
i +

1
j > 1

k + 1
l , which contradicts

Lemma 2.1 (a). So, we conclude that i < k . Similarly, one can show that l �= j . Thus, we

obtain the first ordering i < k ≤ l < j given in the lemma.

Suppose now that k ≤ i . Applying a similar argument as above, one obtains that

k < i ≤ j < l is the only possible ordering.

3 Small good sets

It is easy to see that if G is a k-regular graph, then (1) is valid, since

M1

n
= k2 =

M2

m
.

As Conjecture 1.1 is false in general, but true for k-regular graphs, one may wonder if

it also holds for “almost regular” graphs, i.e., graphs with only few vertex degrees. Now,
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we verify that this holds for graphs with only two vertex degrees. We give a direct short

proof avoiding using the properties of the function f .

Proposition 3.1. Let x, y ∈ N , and let G be a graph with n vertices, m edges, and d(v) ∈

{x, y} for every vertex v of G . Then, the inequality (1) holds for G .

Proof. Since d(v) = x or y for every vertex v ∈ V , we conclude that mi,j = 0 , whenever

i, j �∈ {x, y} . By (2), we infer

M2

m
− M1

n
= 2

[
x3(x− y)2

x3y
mx,xmx,y +

2xy(x− y)2(x+ y)

x2y2
mx,xmy,y

+
y3(x− y)2

xy3
mx,y my,y

]
= 2(x− y)2

[
1

y
mx,xmx,y + 2

(
1

x
+

1

y

)
mx,xmy,y +

1

x
mx,y my,y

]
≥ 0

which establishes the claim.

Let D(G) be the set of the vertex degrees of G , i.e., D(G) = {d(v) | v ∈ V } . Motivated

by the above proposition, one may be interested to look for the sets D with property that

for every graph G with D(G) ⊆ D the inequality (1) holds. Hence, it is reasonable to

introduce the following definition: A set S of integers is good if for every graph G with

D(G) ⊆ S , the inequality (1) holds. Otherwise, S is a bad set. Thus, by above any set of

integers of size ≤ 2 is good.

In Proposition 3.1 we have shown that for a graph G with |D(G)| = 2 , the inequality

(1) holds. Sun and Chen [19] showed that any graph G with Δ(G)− δ(G) ≤ 2 satisfies (1).

Thus, any interval of length three is good. One can generalize this result in the following

way:

Proposition 3.2. Let s, x ∈ N . For every graph G with n vertices, m edges, and D(G) ⊆

{x− s, x, x+ s} , the inequality (1) holds.

Proof. The inequality (1) holds if M2/m − M1/n is non-negative. The difference (3) is

non-negative if for any integers i, j, k, l , the function f(i, j, k, l) is non-negative. So we are

interested whether f(i, j, k, l) can be negative for some integers i, j, k, l . By Lemma 2.2,

we may assume, up to symmetry, that the ordering of i, j, k, l is i < k ≤ l < j . Since
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i, j, k, l ∈ {x−s, x, x+s} , we have that f(i, j, k, l) , can be negative only if i = x−s, k = l = x

and j = x+ s . But f(x− s, x+ s, x, x) =
1

x− s
− 2

x
+

1

x+ s
> 0 . Hence, we conclude that

M2

m
− M1

n
=

∑
i≤j,k≤l

(i,j),(k,l)∈N2

f(i, j, k, l)mi,j mk,l > 0 .

Notice that the above result cannot be extended to any interval of length 4 as Sun and

Chen [19] gave a non-connected counterexample. For connected one, consider the graph

G(l, k, s) with l = 4 from Fig. 2. It is obvious that D (G(4, k, s)) is a subset of the interval

[2, 5] , but this graph for proper values of k and s does not satisfy the inequality (1), see

Theorem 5.1. Both graphs contain vertices of degree 2. It is interesting that Sun and Chen

[19] proved that any graph G with Δ(G) − δ(G) ≤ 3 and δ(G) �= 2 satisfy (1). Thus, any

interval [x, x+ 3] is good with only exception of [2, 5] .

The proof of Proposition 3.2 motivates a more general conclusion.

Proposition 3.3. The set of integers {a, b, c} , where a < b < c , is good if and only if

(a) b2 ≥ ac and b(a+ c) ≥ 2ac , or

(b) b2 ≤ ac and b(a+ c) ≤ 2ac .

Proof. Since a < b < c , by Lemma 2.2 the function f can be negative in f(i, j, k, l) only if

either i = a, k = l = b and j = c , or k = a, i = j = b and l = c , i.e., only f(a, c, b, b) =

f(b, b, a, c) = (ac− b2)

(
2

b
− 1

a
− 1

c

)
can be negative. If (a) or (b) holds, then it is obvious

that f(i, j, k, l) ≥ 0 for any integers i, j, k, l ∈ {a, b, c} , and the inequality (1) is valid for

every graph G such that D(G) = {a, b, c} .

For the other direction, suppose that neither (a) nor (b) holds. If this is the case, then

only f(a, c, b, b) < 0 . We construct a graph Gx,y with D(Gx,y) = {a, b, c} , ma,a = mc,c = 0

and ma,b = mb,c = 1 (see Fig. 1). The graph Gx,y can be created in the following way:

• Make a sequence of x copies of Ka,c and then continue that sequence with y copies of

Kb,b .

• Choose an edge from the first Ka,c graph and another edge from the second Ka,c .

Then replace these edges by edges connecting the “a”-vertex from the first graph with

“c”-vertex from the second graph, and another edge connecting the “c”-vertex from
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the first graph with “a”-vertex from the second graph. This way the degrees of the

vertices are not changed. Continue this procedure between all x copies of Ka,c .

• Next, chose an edge from the last Ka,c in the sequence and one edge from the first

Kb,b graph, replace these edges by edges connecting the “a”-vertex with one of the

“b”-vertices and the “c”-vertex with the other “b”-vertex.

• The same procedure is applied between all consecutive graphs Kb,b in the sequence

and this way is Gx,y constructed.

We emphasize that this binding procedure is done only once between Ka,c and Kb,b graphs.

Now,

M2

m
− M1

n
=

∑
i≤j,k≤l

i,j,k,l∈{a,b,c}

f(i, j, k, l)mi,j mk,l

= 2
[
f(a, c, b, b)ma,cmb,b +

[
f(a, c, a, b) + f(a, c, b, c)

]
ma,c

+
[
f(a, b, b, b) + f(c, b, b, b)

]
mb,b + f(a, b, b, c)

]
.

If we increase the number of Ka,c and Kb,b graphs, i.e., x and y , in the graph Gx,y , shown

on Fig. 1, then ma,c and mb,b will increase as well. For ma,c and mb,b big enough, the

difference M2/m−M1/n will be negative.

a

bc

a b

b

b

c

a

c

b

b

Figure 1: A connected graph G with D(G) = {a, b, c} . The edges that should be
removed are drown with dashed lines.

4 Long good intervals

Our next goal is to determine long good intervals. We will need the following lemma to

prove Theorem 4.1.
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Lemma 4.1. For integers c, i, j , and p ≤ �√c � holds:

c(c+ p) > (c+ i)(c+ j) if and only if i+ j < p .

Proof. First notice that ij ≤ (i+ j)2

4
. If c(c+ p) > (c+ i)(c+ j) and i+ j ≥ p , then

c2 + c p > c2 + (i+ j)c+ ij

c p > (i+ j)c+ ij,

which is impossible. For the other direction, suppose that i+ j < p . Then

(c+ i)(c+ j) = c2 + (i+ j)c+ ij

≤ c2 + c(i+ j) +
(i+ j)2

4

≤ c2 + c(p− 1) +
(p− 1)2

4

< c(c+ p)− c+
(
√
c)2

4

< c(c+ p).

This argument completes the proof.

Using the previous lemma we can construct good intervals of any size. Notice that

the following result holds for c ≤ 9 by the results of Sun and Chen [19] mentioned in the

previous section, as in these cases the considered interval is of length at most 4.

Theorem 4.1. For every integer c , the interval [c, c+ �√c �] is good.

Proof. In order to prove the theorem, it is enough to show that f(i, j, k, l) ≥ 0 whenever

i, j, k, l ∈ [c, c + �√c �] . Suppose in contrary that for some i, j, k, l from this interval

f(i, j, k, l) < 0 . By Lemma 2.2, without loss of generality we can assume that i < k ≤ l < j .

Now, let k = i+ s, l = i+ t, j = i+ q where 0 < s ≤ t < q ≤ �√c � . Now

1

k
+

1

l
=

2i+ s+ t

(i+ s)(i+ t)
and

1

i
+

1

j
=

2i+ q

i(i+ q)
.

If ij > kl , then by Lemma 4.1 s+ t < q . Hence st <
q2

4
. By Lemma 2.1, f(i, j, k, l) < 0 ,
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if
1

k
+

1

l
<

1

i
+

1

j
. Hence

2i+ s+ t

(i+ s)(i+ t)
<

2i+ q

i(i+ q)

(2i+ s+ t)(i2 + iq) < (2i+ q)(i2 + (s+ t)i+ st)

2i3 + (s+ t+ 2q)i2 + (s+ t)iq < 2i3 + (2s+ 2t+ q)i2 + 2sti+ (s+ t)iq + stq

i2 q < (s+ t) i2 + 2s t i+ s t q

i2 q < (q − 1) i2 + 2s t i+ s t q

from here

i2 < 2s t i+ s t q

< 2
q2

4
i+

q3

4

which is clearly impossible since q ≤ �
√
i � .

Similarly, if ij < kl , then s+ t ≥ q . The function f in f(i, j, k, l) is negative if and only

if
1

i
+

1

j
>

1

k
+

1

l
. The last inequality implies

i2 q > (s+ t) i2 + 2s t i+ s t q

≥ q i2 + 2s t i+ s t q

and obviously this is impossible.

So f(i, j, k, l) ≥ 0 , for arbitrary i, j, k, l from the interval [c, c+ �√c �] .

Theorem 4.1 is best in the sense that for c = 2 the interval [2, 4] is good, but the interval

[2, 5] is not. The following corollaries are immediate consequences of the above theorem.

Corollary 4.1. If G is a graph with Δ(G)− δ(G) ≤ �√c � and δ(G) ≥ c for some integer

c , then G satisfies the inequality (1).

Corollary 4.2. There are arbitrary long good intervals.
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5 Graphs of maximum degree at least 5

As we already mentioned, the inequality (1) holds for chemical graphs, but not in general.

In [11, 23, 5, 13, 20, 19], examples of connected simple graph G are given such that M1/n >

M2/m . What strikes the eye in these counterexamples is that either the maximum vertex

degree is at least 10 or the graph is disconnected. We now produce for each Δ ≥ 5 an

infinite family of connected planar counterexamples to (1) of maximum degree Δ .

Theorem 5.1. There exists infinitely many graphs G of maximum degree ≥ 5 for which

M1

n
>

M2

m
.

{
2k

{ l

y1 y2

ys

y3

ys-1

Figure 2: G(l, k, s)

Proof. Let G be the graph shown on the Fig. 2. This graph has 2k vertices of degree

5, 2s + 2 of degree 3, 5k + l vertices of degree 2 and two vertices of degree l + 1 . Also

m5,2 = 10k−2, m3,3 = 3s+2, m3,5 = 2 and ml+1,2 = 2(l+1) . Then n = 7k+2s+l+4, m =

10k+3s+2l+4 , M1 = 2(35k+9s+ l2 +4l+10) , M2 = 100k+27s+4l2 +8l+32 . From

here one can obtained that

mM1 − nM2 = −2l2s+ k(−144 + 64l − 8l2 + s)− 8(6 + 5s) + l(8 + 17s) .

For every l , we can find k and s big enough such that mM1−nM2 > 0 . Obviously, we can

find infinitely many such pair (k, s) .

Observe that the right side of the graphG(l, k, s) is the cubic graphK2�Cs with one edge

twice subdivided. This graph can be substituted with any other cubic graph of appropriate
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size. G(4, 9, 33) is the smallest graph for which the inequality of Theorem 5.1 holds, and it

has 137 vertices.
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