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The concept of geometric–arithmetic indices (GA) was introduced in the
chemical graph theory very recently. In spite of this, several papers have
already appeared dealing with these indices. The main goal of this survey
is to collect all hitherto obtained results on GA indices (both chemical
and mathematical).

1. Introduction

Molecular descriptors play a significant role in mathematical chemistry especially in

QSPR/QSAR investigations. Among them, special place is reserved for so-called topo-

logical descriptors. Nowadays, there exists a legion of topological indices that found some

applications in chemistry [42, 43, 81]. They can be classified by the structural properties

of the graphs used for their calculation. Hence, the probably best known and most widely

used Wiener index [12,90,93] is based on topological distance of vertices in the respective

graph, the Hosoya index [53,66] is calculated by counting non-incident edges in a graph,

the energy [31, 35, 46] and the Estrada index [23, 94] are based on the spectrum of the

graph, the Randić connectivity index [22,79] and the Zagreb group indices [10,49,69] are

calculated using the degrees of vertices, etc.
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Here, a new class of topological descriptors, based on some properties of vertices of

graph is presented. These indices are named as “geometric–arithmetic indices” (GAgeneral)

and their definition is as follows [24]:

GAgeneral = GAgeneral(G) =
∑

uv∈E(G)

√
Qu Qv

1
2
(Qu +Qv)

(1)

where Qu is some quantity that in a unique manner can be associated with the vertex u

of the graph G .

The name of this class of indices is evident from their definition. Namely, indices

belonging to this group are calculated as the ratio of geometric and arithmetic means of

some properties of adjacent vertices u and v (vertices u and v connected by an edge).

Summation goes over all edges in the respective graph G . Three members of GA group

topological indices have been put forward up to now.

The first member [87] is the so-called geometric–arithmetic index GA1 , defined as

GA1 = GA1(G) =
∑

uv∈E(G)

√
du dv

1
2
(du + dv)

(2)

where uv is an edge of the (molecular) graph G connecting the vertices u and v , where

du stands for the degree of the vertex u , and where the summation goes over all edges of

G .

In the rest of the text we calling GA1 the “first geometric–arithmetic index”.

Another member of this class, denoted by GA2 , is – tentatively – referred to as the

second geometric–arithmetic index . Whereas GA1 is defined so as to be related to the

famous Randić index [79], GA2 is constructed in such a manner that it is related with

the Szeged [33] and vertex Padmakar–Ivan [62] indices (see below).

Let G be a connected graph with n vertices and m edges, with vertex set V (G) and

edge set E(G) . As usual [5], the distance d(x, y|G) between two vertices x, y ∈ V (G) is

defined as the length (= number of edges) of the shortest path that connects x and y .

Let e = uv be an edge of G , connecting the vertices u and v . Define the sets

N(e, u,G) = { x ∈ V (G) | d(x, u|G) < d(x, v|G) }

N(e, v, G) = { x ∈ V (G) | d(x, u|G) > d(x, v|G) } .

consisting, respectively, of vertices of G lying closer to u than to v , and lying closer to v

than to u . The number of such vertices is then

nu(e) = nu(e,G) = |N(e, u,G)| and nv(e) = nv(e) = |N(e, v, G)| . (3)
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Note that vertices equidistant to u and v are not included into either N(e, u,G) or

N(e, v, G) . Such vertices exist only if the edge uv belongs to an odd-membered cycle.

Hence, in the case of bipartite graphs, N(e, u,G)∪N(e, v, G) = V (G) and, consequently,

nu(e,G) + nv(e,G) = n (4)

for all edges of the graph G .

It is also worth noting that u ∈ N(e, u,G) and v ∈ N(e, v, G) , which implies that

nu(e) ≥ 1 and nv(e) ≥ 1 .

Motivated by the expressions for calculation of Szeged (Sz) and recently introduced

vertex Padmakar–Ivan (PIv) indices, and in view of the general formula (1), the second

geometric–arithmetic index is defined as

GA2 = GA2(G) =
∑

uv∈E(G)

√
nu · nv

1
2
[nu + nv]

. (5)

Currently, the last introduced topological index belonging to the GA class is the so-

called the “third geometric–arithmetic index”, denoted as GA3 [96]. In order to define it,

some preparation must be done.

Let x be a vertex and uv be an edge of the graph G . The distance between x and uv

is defined as d(x, uv|G) = min{d(x, u|G), d(x, v|G)} . For uv ∈ E(G), let

mu = |{f ∈ E(G) : d(u, f |G) < d(v, f |G}| .

It should be noted thatmu is not a quantity that in a unique manner can be associated

with the vertex u of the graph G , but that it depends on the edge uv . Yet, this restriction

is not relevant for the definition of GA3 . Note that in all cases mu ≥ 0 and mu +mv ≤
m− 1 .

Then, incorporatingmu as vertex quantity into Eq. (1), the third geometric–arithmetic

index is defined as

GA3 = GA3(G) =
∑

uv∈E(G)

√
mu ·mv

1
2
[mu +mv]

. (6)

Similarly to GA2 , the third geometric–arithmetic index is defined so as to be related

to the recently introduced edge Szeged (Sze) index [36] and edge Padmakar–Ivan (PIe)

index [60].
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2. Is the Ratio between Geometric and

Arithmetic Means the Right Choice?

Statistical researches are practically unimaginable without using the means. That is

why the means attracted mathematicians over the centuries. The results on means are

numerous and several books have appeared collecting them (see for example [50, 72]).

The majority of people is familiar with the well-known arithmetic and geometric

means. However, the number of means is practically infinite, and a general formula for

their calculation is as follows:

Mp = Mp(x1, x2, . . . , xn) =

(
1

n

n∑
i=1

(xi)
p

)1/p

. (7)

It can be easily seen that arithmetic mean is attained when p = 1 , and geometric

mean when p = 0 . Therefore, the definition of geometric–arithmetic indices can be

rewritten in the following manner:

GAgeneral(G) =
∑

uv∈E(G)

M0(QuQv)

M1(QuQv)
.

Taking into mind Eq. (7), it is natural asking ourselves the question pointed out in

the title of this section. In the rest of this section, this problem will be analyzed for all

three geometric–arithmetic indices.

In order to determine if the ratio between geometric and arithmetic means, in the

case of the first geometric–arithmetic index, is the right choice, an exhaustive computer

research was performed [20].

Let us define a general class of indices based on means as follows:

Zp,q(G) =
∑

uv∈E(G)

Mp(du, dv)

Mq(du, dv)
.

It is evident that GA1(G) ≡ Z0,1 . In addition, it should be noted that also Z−1,0

coincides with GA1(G) , which can be deduced from the well-known equality (M0)
2 =

M1 ·M−1 [20].

We examined correlations between indices Zp,q for −2 ≤ p, q ≤ 2 with GA1 index for

several sets of trees. In all studied cases (namely, Z−2,−1, Z−2,0, Z−2,1, Z−2,2, Z−1,−2, Z−1,1,

Z−1,2, Z0,−2, Z0,−1, Z0,2, Z1,−2, Z1,−1, Z1,0, Z1,2, Z2,−2, Z2,−1, Z2,0, Z2,1), it was found that the

GA1 index is well correlated. Two examples of these correlations are given in Figs. 1 and

2.
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Figure 1. Correlation between Zp,q (p = −1, q = −2) index and first

geometric–arithmetic index for 10-vertex trees
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Figure 2. Correlation between Zp,q (p = 1, q = 2) index and first

geometric–arithmetic index for 10-vertex trees

The obtained results indicate that the ratio between geometric and arithmetic means

in the definition of the first geometric–arithmetic index is not a necessary choice. Other
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Zp,q indices may be used in chemical researches instead of it. However, there is no scientific

justification for introducing new indices of this kind, because the GA1 index gathers the

same information on observed molecule as other Zp,q indices.

Recently the same “experiment” was made for the second and the third geometric–

arithmetic indices. Similarly, as above we defined new classes of indices as follows:

Z ′
p,q(G) =

∑
uv∈E(G)

Mp(nu, nv)

Mq(nu, nv)
GA2(G) ≡ Z ′

0,1

Z ′′
p,q(G) =

∑
uv∈E(G)

Mp(mu,mv)

Mq(mu,mv)
GA3(G) ≡ Z ′′

0,1

where, −2 ≤ p, q ≤ 2 .

Few examples are shown on Figs. 3–6.
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Figure 3. Correlation between Z ′
p,q (p = 2, q = −1) index and second

geometric–arithmetic index for 10-vertex trees
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Figure 4. Correlation between Z ′
p,q (p = −2, q = 1) index and second

geometric–arithmetic index for 10-vertex trees
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Figure 5. Correlation between Z ′′
p,q (p = 2, q = −1) index and third

geometric–arithmetic index for 10-vertex trees
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Figure 6. Correlation between Z ′′
p,q (p = −2, q = 1) index and third

geometric–arithmetic index for 10-vertex trees

From these figures it is seen that there is no straightforward correlation between GA2

(respectively GA3 ) index and other Z ′
p,q (respectively Z ′′

p,q ) indices. Nevertheless, by

detailed inspection, it was observed that the data-points are clustered into several groups

by the number of pendent vertices. The data-points belonging to a group with the same

number of pendent vertices are further clumped by the number of subgraphs consisting

of two adjacent vertices of degree 1 and 2. These results show that indices Z ′
p,q and

Z ′′
p,q carry information on the structure of graphs somewhat different than GA2(G) and

GA3(G) and should be investigated as separate structural descriptors.

3. The First Geometric–Arithmetic Index

Investigations of topological indices based on end–vertex degrees of edges have been

conducted over 35 years. Among them, several indices are recognized to be useful tools in

chemical researches. Probably, the best know such descriptor is the Randić connectivity

index (χ) [79]. There are more than thousand papers and a couple of books dealing with

this molecular descriptor (for example see [41, 67, 68] and the references cited therein).

During years of research, scientists were trying to improve the predictive power of the
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Randić index. This led to the introduction of a number of modifications and new topo-

logical descriptors resembling the original χ–index. The first geometric–arithmetic index

(GA1) may be viewed as one of the successors of the Randić connectivity index.

The GA1 index, defined by Eq. (2), has been introduced less than a year ago [87].

However, a few papers already appeared dealing with this quantity. In the subsequent

section, the hitherto obtained results on GA1 will be summarized.

3.1. GA1 as a tool for QSAR/QSPR researches

The reason for introducing a new index is to gain prediction of target property (prop-

erties) of molecules somewhat better than obtained by already presented indices. There-

fore, a test study of predictive power of a new index must be done. As a standard for

testing new topological descriptors, the properties of octanes are commonly used. A

benchmark data sets can be found at www.moleculardescriptors.eu . This data set

contains 16 physico–chemical properties of octanes: boiling point (BP ), melting point

(MP ), heat capacity at V constant (CV ), heat capacity at P constant (CP ), Entropy

(S), density (DENS), enthalpy of vaporization (HV AP ), standard enthalpy of vapor-

ization (DHV AP ), enthalpy of formation (HFORM), standard enthalpy of formation

(DHFORM), motor octane number (MON), molar refraction (MR), acentric factor

(AcenFac), total surface area (TSA), octanol–water partition coefficient (LogP ), and

molar volume (MV ). The correlations between theGA1 index and these physico–chemical

properties are given on the following figures:
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In [87] the predictive ability of GA1 was compared with that of the Randić connec-

tivity index using the following physico–chemical properties of octanes: Boiling point

(BP ), Entropy (S), Enthalpy of vaporization (HV AP ), Standard enthalpy of vaporiza-

tion (DHV AP ), Enthalpy of formation (HFORM), and Acentric factor (AcenFac) .

The motivation for choosing just these physico–chemical properties is that both GA1

and the Randić connectivity indices give relatively good linear correlations, i. e., the re-

spective correlation coefficients are greater than 0.8 . The results are presented in Table

1.
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Correlation coefficient (R)
1−RQR(%)

GA1 index Randić index
BP 0.823 0.821 0.562
S 0.912 0.906 2.942
HV AP 0.941 0.936 4.152
DHV AP 0.966 0.958 9.005
HFORM 0.858 0.850 2.494
AcenFac 0.912 0.904 4.051

Table 1. Correlation coefficients for GA1 and Randić index and some

physico–chemical properties of octanes. RQR is the ratio of quadratic

mean of residuals.

A superficial glance on R’s does not justify the introduction of the GA1 index because

(even though the GA1 gives better correlation coefficients than χ) the differences between

them are not significant. However, the predicting ability of the GA1 index compared with

Randić index is reasonably better, which is indicated by the ratio of quadratic mean of

residuals, RQR1(see Table 1).

Benzenoid hydrocarbons (B) belong to the most important polycyclic aromatic com-

pounds. They consist of fused benzene rings. Their characteristic physico–chemical

properties, especially their thermal stability, was subject to intensive research. Benzenoid

hydrocarbons found a number of applications in industry. They are also big pollutants

and some of them are carcinogenic chemicals. Nowadays, there are numerous published

researches, both experimental and theoretical, dealing with this class of molecules. More

information about them can be found in the book [37] and the references cited therein.

Whereas nowadays only ca. 1000 benzenoid hydrocarbons are known, the number of

possible benzenoid hydrocarbons is unimaginatively large. For instance, the number of

possible benzenoid hydrocarbons with 35 benzene rings is 5851000265625801806530 [85].

Therefore, the modeling of their physico–chemical properties is very important in order

to predict properties of currently unknown species.

Here, the heat of formation of 25 benzenoid hydrocarbons is modeled using the GA1

index. The data set, collected from the article [82], is given in Table 2.

1The RQR value can be calculated using the following formula

RQR =

√∑n
i=1 [a(GA1)i + b− Expi]

2∑n
i=1 [a

′χi + b′ − Expi]
2 .

-606-



Name n ΔHf (g) (kJ/mol) GA1

benzene 6 82.9 6.000
naphthalene 10 150.6 10.919
anthracene 14 227.7 15.838
phenanthrene 14 207.1 15.879
pyrene 16 225.7 18.838
benzo[a]anthracene 18 291.0 20.798
benzo[c]phenathrene 18 302.4 20.838
chrysene 18 262.8 20.838
napthacene 18 291.4 20.758
triphenylene 18 269.8 20.879
benzo[a]pyrene 20 301.0 23.798
benzo[e]pyrene 20 304.0 23.838
perylene 20 324.0 23.838
benzo[b]chrysene 22 346.0 25.758
benzo[c]chrysene 22 334.0 25.798
benzo[g ]chrysene 22 333.0 25.838
benzo[a]napthacene 22 359.0 25.717
dibenzo[a,c]anthracene 22 345.0 25.798
dibenzo[a,h]antharacene 22 343.0 25.758
dibenzo[a,j ]antharcene 22 343.0 25.758
dibenzo[b,g ]phenanthrene 22 347.0 25.758
dibenzo[c,g ]phenanthrene 22 335.0 25.798
pentacene 22 374.5 25.677
pentaphene 22 359.0 25.717
picene 22 334.0 25.798

Table 2. Heat of formation and the GA1 index of some benzenoid

hydrocarbons

The correlation graphic between the GA1 indices and heat of formation of the 25

benzenoid hydrocarbons from Table 2 is shown in Fig. 7. It is evident from this graphic

that between GA1 and the heat of formation of benzenoid hydrocarbons there exists a

good linear correlation. The respective correlation coefficient is equal to 0.972 .

However, it is well known that the heat of formation roughly depends on the number

of atoms in the molecule, and therefore the correlation shown in Fig. 7 may, in fact,

look unrealistically good. In order to overcome this problem, the examination of corre-

lation between heat of formation and GA1 index should be limited to isomers. Among

experimental results given in Table 1 there are all twelve catacondensed2 benzenoid hy-

drocarbons with 5 benzene rings (i. e., 22 carbon atoms). The correlation between the

GA1 index and heat of formation for the 12 catacondensed benzenoid hydrocarbons with

2Benzenoid hydrocarbons containing no internal carbons atoms (carbons atoms belonging to three
sic-membered rings) are said to be “catacondensed”.
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5 benzene rings is shown in Fig. 8.

Figure 7. Heat of formation vs. GA1 for the 25 benzenoid hydrocarbons

from Table 2.

Figure 8. Correlation between GA1 and the heat of formation for all

catacondensed benzenoid hydrocarbons with 5 hexagons (i. e., with 22

carbon atoms)

The correlation coefficient is −0.939 . It should be noted from Fig. 8 that two outliers

exist. By inspecting the data set of twelve catacondensed benzenoid hydrocarbons with

5 benzene rings, we determined which molecules correspond to these two outliers. These

are benzo[g ]chrysene and dibenz[a,c]anthracene, the only two branched catacondensed

benzenoid hydrocarbons in this data set. This observation leads to the conclusion that

for the modeling of the heat of formation of benzenoid hydrocarbons, other structural

details should be incorporated beside the GA1 index.
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3.2. Mathematical properties of the GA1 index

In this subsection, the mathematical results on the first geometric–arithmetic index

are presented. All results apply to simple graphs, i. e., to graphs without loops, multiple

edges, and directed edges.

3.2.1. Lower and upper bounds for GA1

Knowing the fact that the geometric mean is less than or equal to the arithmetic

mean, it is obvious that all indices belonging to the GA class satisfy GAgeneral ≤ m .

In addition, it is evident from Eq. (1) that GAgeneral is equal to 0 for an empty graph.

Taking that into account we get for all simple graphs

0 ≤ GAgeneral(G) ≤ m ≤
(
n

2

)
. (8)

The equality on the right–hand side of (8) is attained if and only if G is a regular

graph with
(
n
2

)
edges. The only such graph is the complete graph (Kn).

Eq. (8) applied to GA1 yields the first inequality for that index [87]:

0 = GA1(Kn) ≤ GA1(G) ≤
(
n

2

)
= GA1(Kn)

where Kn is the complement graph of the complete graph Kn . In other words, this is

the empty graph with n vertices.

In [87] the following inequality was obtained for all connected simple graphs with n

vertices:
2(n− 1)3/2

n
= GA1(Sn) ≤ GA1(G) ≤

(
n

2

)
= GA1(Kn) .

The lower bond is achieved if and only if G is the star (Sn).

The authors of [95] found for triangle–free graphs with n vertices and m edges the

inequality

GA1(G) ≥
(
2m

n

)2

with equality attained if and only if G is the regular complete bipartite graph.

In [73] the following lower and upper bounds are reported for GA1 of a simple n-vertex

graph, with no isolated vertex, and m edges, in terms of the first Zagreb index (M1) and

the second Zagreb index (M2):
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(i) GA1(G) ≥ 2m

n
(9)

(ii) GA1(G) ≥
√

M2(G)

(n− 1)2
+

4m(m− 1)

n2
(10)

(iii) GA1(G) ≤ 1

2
M1(G) (11)

with equality if and only if G is a union of K2 ;

(iv) GA1(G) ≤
√

mM2(G) (12)

with equality if and only if G is a union of K2 ;

(v) GA1(G) ≤
√

M2(G) +m(m− 1) (13)

with equality if and only if G is a union of K2 ;

(vi) GA1(G) ≤
⌈
m− 1

2

⌉
+

√⌈
m− 1

2

⌉2

+M2(G) (14)

with equality if and only if G is a union of an odd number of K2 .

In [11] a lower bound for GA1 of a simple graph G with m edges, in terms of maximum

vertex degree (Δ) and minimum vertex degree (δ) was presented.

GA1(G) ≥ 2m
√
Δ · δ

Δ+ δ
.

Equality holds if and only if G is a regular graph or G is a bipartite semi–regular graph.

Also, in [11] a lower and an upper bound for GA1 was reported in following terms:

δ1 – minimum non-pendent vertex degree

d1, d2, . . . , dn – degree sequence

M2(G) – second Zagreb index

ν – number of pendent vertices

m− ν = μ – number of non-pendent edges

2ν
√
Δ

Δ+ 1
+

√√√√μ2 − μ

4δ21

[
n∑

i=1

d3i − 2M2(G)− ν (δ1 − 1)2
]
− μ2

4

(
1− 2

√
Δδ1

Δ+ δ1

)2

≤ GA1(G) ≤

2ν
√
δ1

δ1 + 1
+

√√√√μ2 − μ

4Δ2

[
n∑

i=1

d3i − 2M2(G)− ν(Δ− 1)2

]
.
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The lower and upper bounds are equal when G is a regular graph or a (Δ, 1)-semiregular

graph.

In [13] a lower bound for GA1 of a simple connected graph with m edges, in terms of

maximum degree (Δ), minimum non-pendent vertex degree (δ1) and number of pendent

vertices (ν) was presented.

GA1(G) ≥ 2ν
√
Δ

Δ+ 1
+

1

Δ

√
M2(G)− νΔ+ (m− ν)(m− ν − 1)δ21

with equality if and only if G ∼= K1,n−1 or G is isomorphic to regular graph or G is

isomorphic to (Δ, 1)-semiregular graph.

In the same paper another lower bound for all connected graphs with m edges it

was given, in terms of maximum degree (Δ), minimum non-pendent vertex degree (δ1),

number of pendent vertices (ν) and degree sequence d1, d2, . . . , dn

GA(G) ≥ 2ν
√
Δ

Δ+ 1

+

√
8(Δ + δ1)

√
Δ δ1

(
√
Δ+

√
δ1)2

√√√√(m− ν)2 − m− ν

4δ21

(
n∑

i=1

d3i − 2M2(G)− ν(δ1 − 1)2

)

where M2(G) is the second Zagreb index of G. Moreover, the equality holds if and only

if G is isomorphic to a regular graph or G is isomorphic to a (Δ, 1)-semiregular graph.

A further lower bound on GA1 is [13]:

GA1(G) ≥ 2m
√

2(n− 1)

n+ 1
− 2ν

(√
2(n− 1)

n+ 1
−

√
n− 1

n

)
(15)

with equality if and only if G is isomorphic to the star K1,n−1 or G is isomorphic to the

complete graph K3 .

An analogous upper bound on GA1 for connected graphs with m edges, in terms of

second Zagreb index (M2) and minimum degree (δ) is [13]:

GA1(G) ≤
√

mM2(G)

δ
(16)

with equality if and only if G is isomorphic to a regular graph. Moreover [13],

1

Δ

√
M2(G) +m(m− 1) δ2 ≤ GA1(G) ≤ 1

δ

√
M2(G) +m(m− 1)Δ2 (17)
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with equality on the both sides if and only if G is isomorphic to regular graph. For

all connected graphs the lower and upper bounds in (17) are better than (10) and (13),

respectively.

Nordhaus–Gaddum type [76] lower and upper bounds for a connected graph G and

its connected complement graph G were obtained in [11]:

2k

k2 + 1

(
n

2

)
≤ GA1(G) +GA1(G) ≤

(
n

2

)
− ν

(√
δ1 − 1

)2
δ1 + 1

− ν

(√
δ1 − 1

)2

δ1 + 1

where k = max
{√

Δ
δ
,
√

n−1−δ
n−1−Δ

}
. ν , ν , and δ1 , δ1 are the number of pendent vertices

and minimum non-pendent vertex degrees in G and G , respectively.

The lower and upper bounds are equal when G is a regular graph.

The Cartesian product G1×G2 of graphs G1 and G2 is a graph such that V (G1×G2) =

V (G1)×V (G2), and any two vertices (a, b) and (u, v) are adjacent in G1×G2 if and only

if either a = u and b is adjacent with v, or b = v and a is adjacent to u . In [73] the GA1

indices for Pk × Pl and Ck × Pl were found to be the following:

GA1(Pk × Pl) = 2kl − 3(k + l) + 8(k + l − 4)

√
3

7
+

16
√
6

5

and

GA1(Ck × Pl) = 2k(l − 1) +
8k

√
3

7
.

3.2.1.1. Lower and upper bounds for GA1 of molecular graphs

A connected graph with maximum vertex degree at most 4 is said to be a “molecular

graph”. Its graphical representation may resemble a structural formula of some (usually

organic) molecule. That was a primary reason for employing graph theory in chemistry.

Nowadays this area of mathematical chemistry is called chemical graph theory [83].

In [95] lower and upper bounds for molecular graph G with n ≥ 4 vertices and

m ∈ [n− 1, 2n] edges are given:

17m− 4n

15
≤ GA1(G) ≤ 1

3

[(
9− 4

√
2
)
m−

(
6− 4

√
2
)
n
]
.

The left equality is attained if and only if G has only vertices of degree four and one.

The right equality is reached if and only if G is a path or a cycle.
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3.2.2. Lower and upper bounds for GA1 of trees

The simplest connected graphs are the trees (T ). Hence, the mathematical properties

of some graph invariant are usually first investigated on them.

Therefore, the authors of the paper [87] explored mathematical properties of GA1 of

trees and chemical trees. They obtained the following tight lower and upper bounds for

trees:

2(n− 1)3/2

n
= GA1(Sn) ≤ GA1(T ) ≤ GA1(Pn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 n = 1

1 n = 2

4
√
2

3
+ n− 3 n ≥ 3 .

(18)

The lower bound is achieved if and only if T is the star (Sn), and the upper bound is

achieved if and only if T is the path (Pn).

3.2.2.1. The GA1 index of chemical trees

A tree in which the maximum vertex degree does not exceed 4 is said to be a “chemical

tree”. Since a path is a chemical tree, the upper bound for chemical trees is the same as

in the inequality (18). The lower bound for chemical trees is given in [87]:

GA1(T ) ≥
13n− 17

15
.

The equality holds for chemical trees containing only vertices of degrees one and four. In

other words, the chemical tree(s) with n = 3k + 2, k = 1, 2, . . . , vertices are those with

minimal GA1 index.

Among chemical trees with n = 3k+2 vertices, the minimal GA1 index may belong to

more than one tree. In Table 3 are given the numbers of chemical trees having minimal

GA1 index up to 20 vertices.

n η
5 1
8 1
11 1
14 2
17 3
20 5

Table 3 Among chemical trees with n vertices there are η trees having

minimal GA1 index.
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In [95] chemical trees with first, second, and third minimal GA1 index were deter-

mined. Three cases can be distinguished:

Case I : If n ≡ 2 (mod 3) , then among the n-vertex chemical trees,

(a) for n ≥ 5 , the ones with only degrees 1 and 4 are the trees with minimum

GA1 index, which is equal to 13n−17
15

;

(b) for n ≥ 17 , the ones with a single vertex of degree 2 adjacent to two

vertices of degree 4, and a single vertex of degree 3 adjacent to three

vertices of degree 4 are the chemical trees having second minimum GA1

index equal to 13
15
n+ 12

√
3

7
+ 4

√
2

3
− 89

15
;

(c) for n ≥ 17 , the ones with three vertices of degree 2, each adjacent to

two vertices of degree 4, and without vertices of degree 3 are the chemical

trees with third minimum GA1 index equal to 13n+60
√
2−101

15
.

Case II : If n ≡ 1 (mod 3) , then among the n–vertex chemical trees,

(a) for n ≥ 13 , the ones with a single vertex of degree 3 adjacent to three

vertices of degree 4, and without vertices of degree 2 are the chemical trees

with the minimum GA1 index equal to 13
15
n+ 12

√
3

7
− 61

15
;

(b) for n ≥ 13 , the ones with two vertices of degree 2 adjacent to four vertices

of degree 4, and without vertices of degree 3 are the chemical trees with

the second minimum GA1 index equal to 13n+40
√
2−3

15
;

(c) for n ≥ 25 , the ones with a single vertex of degree 2 adjacent to two

vertices of degree 4, and two vertices of degree 3, each adjacent to three

vertices of degree 4 are the chemical trees with the third minimum GA1

index equal to 13
15
n+ 4

√
2

3
+ 24

√
3

7
− 133

15
.

Case III : If n ≡ 0 (mod 3) , then among the n–vertex chemical trees,

(a) for n ≥ 9 , the ones with a single vertex of of degree 2 adjacent to two

vertices of degree 4, and without vertices of degree 3 are the chemical trees

with minimum GA1 index equal to 13n+20
√
2−45

15
;
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(b) for n ≥ 21 , the ones with two vertices of degree 3, each adjacent to three

vertices of degree 4, and without vertices of degree 2 are the chemical trees

with second minimum GA1 index equal to 13
15
n+ 24

√
3

7
− 7 ;

(c) for n ≥ 21 , the ones with two vertices of degree 2, each adjacent to two

vertices of degree 4, and a single vertex of degree 3 adjacent to three

vertices of degree 4 are the chemical trees with the third minimum GA1

index equal to 13
15
n+ 8

√
2

3
+ 12

√
3

7
− 39

5
.

In addition, the same authors determined the chemical trees with second and third

maximal GA1 index.

(a) Among all n–vertex chemical trees, the path is the unique tree with the maximum

GA1 index equal to n− 3 + 4
√
2

3
;

(b) for n ≥ 7 the chemical trees possessing a single vertex of degree 3 adjacent to three

vertices of degree 2 and without vertices of degree 4 are the trees with second maxi-

mum GA1 index equal to n− 7 + 2
√
2 + 6

√
6

5
;

(c) for n ≥ 7 the ones with a single vertex of degree 3 adjacent to two vertices of degree

2 and one vertex of degree 1, and without vertices of degree 4 are the chemical trees

with third maximum GA1 index equal to n− 6 + 4
√
2

3
+ 4

√
6

5
+

√
3
2
.

Recently, a paper appeared considering among others the GA1 index of eight classes

of graphs. [21]

3.2.3. GA1 index of benzenoid hydrocarbons and phenylenes

Benzenoid systems (graph representations of benzenoid hydrocarbons) are defined

as finite plane graphs with no cut–vertices, in which all interior regions are mutually

congruent regular hexagons. One example of benzenoid hydrocarbon is given in Fig. 9

(a). Hexahelicene (Fig. 9 (b)) does not belong to the class of benzenoid hydrocarbons

because it does not obey the condition of planarity.
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fjord
cove

bay
inner vertices

lagoon

(a) (b)
Figure 9. (a) dinaphtho[1,2-a:2’,1’-k ]perylene possesses all structural

properties that can be found on the perimeter of a benzenoid system;

(b) ordinary benzenoid hydrocarbons do not possess structural details

called lagoon. Phenanthro[3,4-c]phenanthrene (hexahelicene) is the first

member of a class of molecules referred to as helicenes and it has a

lagoon.

Phenylenes are a class of alternant polycyclic conjugated molecules consisting of six–

and four–membered rings, so that each four–membered ring is adjacent to two (disjoint)

six–membered rings, and no two six–membered rings are adjacent. K. P. C. Vollhardt

with his group synthesized a large number of phenylenes (for details see [88, 89]). They

attracted much attention of theoretical chemists because of their specific structure (con-

taining both stabilizing six–membered, and destabilizing four–membered rings) [4,40,84] .

Structural features such as bays, coves, fjords, and lagoons can be found also in the struc-

tural formulas of phenylenes (see Fig. 10(a)). Phenylenes do not have internal vertices.

Numerous theoretical researches had shown that there exist relations between a num-

ber of topological descriptors of a phenylene and its hexagonal squeeze, HS, (benzenoid

hydrocarbon whose topology corresponds to the considered phenylene) [26, 27, 29, 32, 34,

38,40,45,47,48,77,78]. In other words, each phenylene is in a one–to–one correspondence

with a catacondensed benzenoid hydrocarbon called hexagonal squeeze. The construction

of the hexagonal squeezes of phenylenes should be obvious from Fig. 10(b).

Names of structural features that are used here and notations of their counts is in

accordance with the terminology proposed by Cyvin and one of the present authors [9,37].

Thus,

ni = number of internal vertices
h = number of hexagons
B = number of bays
C = number of coves

F = number of fjords
L = number of lagoons
b = number of bay regions; b = B + 2C + 3F + 4L
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PH1 PH2 PH3

HS1 HS2 HS3

fjord

bay

cove

lagoon

(a)

(b)
Figure 10. (a) Phenylenes possess all structural properties noticed

already in benzenoid hydrocarbons (cf. Fig. 9), except internal ver-

tices. (b) Phenylenes PH1 , PH2 , PH3 and the corresponding hexago-

nal squeezes HS1 , HS2 , HS3 .

Using the above specified structural parameters, it is easy to derive the exact formula

for calculation of the GA1 index of benzenoid hydrocarbons:

GA1(B) =
8
√
6 + 5

5
h− 4

√
6− 10

5
b− 4

√
6− 5

5
ni −

8
√
6− 25

5
. (19)

For catacondensed benzenoid hydrocarbons (i. e., hexagonal squeezes) Eq. (19) is reduced

by deleting the term 4
√
6−5
5

ni :

GA1(HS) =
8
√
6 + 5

5
h− 4

√
6− 10

5
b− 8

√
6− 25

5
. (20)
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In similar way the formula for calculating GA1 of phenylenes is obtained:

GA1(PH) =
8
√
6 + 20

5
h− 4

√
6− 10

5
b− 8

√
6− 10

5
. (21)

Combining Eqs. (20) and (21) we get linear relation between GA1 of phenylene and its

hexagonal squeeze [91]:

GA1(PH)−GA1(HS) = 3(h− 1) .

3.2.4. GA1 index of nanostructures

Since the discovery of buckminsterfullerene [65] and latter of nanotubes [57], the

investigation of nanomolecules, both by experimental and theoretical chemists, has been

intensively conducted. Nowadays, there is a vast number of papers and several books

dealing with these molecules. Theoreticians examined many structures of fullerenes,

nanotubes, nanotoruses, . . . , expecting to be synthesized in the future [19].

One class of such nanomolecules are the TUC4C8(S) nanotubes. There are several

papers where various topological indices of these molecules were investigated [1,2,51,52,

58,59,92]. In Fig. 11 is shown the structure of this type of nanotubes.

Figure 11. A TUC4C8(S) nanotube

In [30] exact formulas for the calculation of the GA1 index of the two-dimensional

lattice of the TUC4C8(S) graph (KTUC[p, q]), TUC4C8(S) nanotube (GTUC[p, q]), and
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TUC4C8(S) nanotorus (HTUC[p, q]) are found, in terms of the parameters p and q . The

two-dimensional lattice of the TUC4C8(S) graph is tessellated by alternating squares (C4)

and octagons (C8) as it is shown in Fig. 12.

1 2

2

p

q

Figure 12. A TUC4C8(S) lattice, where p and q denotes the number

of octagons in rows and columns, respectively.

The same authors obtained for two-dimensional lattice of the TUC4C8(S) graph

(KTUC[p, q]) the following formula:

GA1(KTUC[p, q]) = 12p q +

(
8
√
6

5
− 6

)
(q − p) + 8− 16

√
6

5
.

For TUC4C8(S) nanotube (GTUC[p, q]), they found the following expression:

GA1(GTUC[p, q]) = 12p q +

(
8
√
6

5
− 6

)
p .

Since nanotoruses are 3-regular graphs, then the GA1 index is equal to the number of

edges. In this case, the first geometric–arithmetic index is simply

GA1(HTUC[p, q]) = 12p q .

The results on GA1 index of nanostructures are continuously growing. For example

see [7, 54].
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4. The Second Geometric–Arithmetic Index

The “second geometric–arithmetic index” has been put forward very recently as a

continuation of research on geometric–arithmetic indices [24]. It is also based on Eq. (1),

and its definition is given by Eq. (5).

4.1. GA2 as a tool for QSAR/QSPR researches

The GA2 index was correlated with the already established GA1 index in the case of

octanes. In Table 4 are given values of GA1 and GA2 indices for octane isomers. Fig. 13

shows the correlation between these two indices.

By a superficial inspection of the correlation, it appears to be linear but weak. The

data points 15, 13, 5, 9, 2, and 1 form an almost perfect straight line with increasing

slope. If we denote the number of quaternary and tertiary carbon atoms by n4 and n3 ,

we may immediately check that for these isomers (n4, n3) is equal to (2, 0) , (1, 1) , (1, 0) ,

(0, 2) , (0, 1) , and (0, 0) , respectively. This shows that both GA1 and GA2 are increasing

functions of the extent of branching of the molecular skeleton. It is worth noting that

the molecules 15, 13, 5, 9, and 2 are all branched at the very end of their carbon–atom

chains.

# octanes GA1 GA2 GA3

1 n–octane 6.88562 5.99142 4.37633
2 2–methyl heptane 6.65466 5.78683 3.63097
3 3–methyl heptane 6.71124 5.68461 3.43352
4 4–methyl heptane 6.71124 5.65286 3.37633
5 2,2–dimethyl hexane 6.28562 5.48002 2.68817
6 3,3–dimethyl hexane 6.37124 5.34605 2.43352
7 2,3–dimethyl hexane 6.52068 5.44827 2.63097
8 2,4–dimethyl hexane 6.48027 5.48002 2.68817
9 2,5–dimethyl hexane 6.42369 5.58224 2.88562
10 3,4–dimethyl hexane 6.57726 5.37780 2.49071
11 2,3,4–trimethyl pentane 6.33013 5.24368 1.88562
12 2,2,3–trimethyl pentane 6.17837 5.17321 1.74536
13 2,2,4–trimethyl pentane 6.05466 5.27543 1.94281
14 2,3,3–trimethyl pentane 6.20741 5.14146 1.68817
15 2,2,3,3–tetramethyl butane 5.80000 4.96863 1.00000
16 3–ethyl–2–methyl pentane 6.57726 5.34605 2.43352
17 3–ethyl–3–methyl pentane 6.45685 5.24383 2.23607
18 3–ethyl hexane 6.76781 5.55064 3.17888

Table 4. GA1 , GA2 , and GA3 indices of all 18 octane isomers
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Figure 13. Correlations between GA1 and GA2 of octanes; the num-

bering of the data points corresponds to Table 4.

A detailed examination of Fig. 13 reveals that the data points are grouped into several

clusters. By direct checking it is verified that each cluster corresponds to a particular

choice of (n4, n3) . The apparent outlier 11 pertains to 2,3,4-trimethyl pentane, the only

octane isomer for which (n4, n3) = (0, 3) .

Thus, the isomers belonging to the same cluster are those similarly branched. Within

each such cluster (provided that there are two or more data points), the proportionality

between GA1 and GA2 is inverse. For instance, the data points 7, 8, 9, 10, and 16, all

pertaining to (n4, n3) = (0, 2) , lie nearly on a straight line with decreasing slope.

The above described relations between GA1 and GA2 , which hold not only for oc-

tanes, but for all chemical trees, indicate that these indices depend in the same way on

one structural feature (namely, on branching), but have a different dependence on some

other details of molecular structure. This gives hope that GA1 and GA2 will both be

simultaneously applicable in QSPR and QSAR studies.

Similarly as in sub-section 2.1, we are showing the correlations between the GA2 index

and 16 physico–chemical properties of octanes.
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From the above figures it can be seen that there exists a useful linear correlation

between GA2 and only four physico–chemical properties, i. e., entropy (S), standard
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enthalpy of vaporization (DHV AP ), motor octane number (MON), and acentric factor

(Acenfac). The respective correlation coefficients are given in Table 5.
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Physico–chemical property Correlation coefficient (R)
S 0.890

DHV AP 0.843
MON 0.968

AcenFac 0.973

Table 5.

4.2. Mathematical properties of GA2

In this section we are concerned with connected simple graphs with n vertices and m

edges.

4.2.1. Lower and upper bounds for GA2

Lower and upper bounds of GA2 index for bipartite graphs were communicated in

[24,96]:

2(n− 1)3/2

n
= GA2(Sn) ≤ GA2(G) = GA2(K�n

2
�,	n

2

) ≤

⎧⎨⎩
n2/4 if n is even

(n2 − 1)3/2/4n if n is odd.

Furthermore, the star Sn has minimum second geometric–arithmetic index among all

connected graphs. This comes from the following inequality that is true for all connected

graphs [24]:

GA2(G) ≥ 2m
√
n− 1

n
. (22)

Equality in (22) is achieved if and only if G ∼= Sn (i. e., G is the star).

Other lower and upper bounds of GA2 index are in terms of vertex Padmakar–Ivan

index and Szeged index.

The vertex Padmakar–Ivan index (PIv) [62] has been introduced recently inspired

by the definition of the “original” PI index which already had many applications in

chemistry (e.g. see [18] and references cited therein).

PIv(G) =
∑

uv∈E(G)

[nu(e) + nv(e)] .

The definition of nu(e) and nv(e) is given by Eq. (3). More details about vertex PI index

can be found in [61, 71,74,75].
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The Szeged index was introduced in 1994 as an extension to all graphs of the well-

known Wiener’s formula for the calculation of the Wiener index of trees [33]:

Sz(G) =
∑

uv∈E(G)

nu(e) · nv(e)

where nu and nv are defined by Eq. (3). This index was extensively studied in past fifteen

years. Mathematical properties of the Szeged index are outlined in a number of papers;

for a review see [39]. Chemical applications of the Szeged index were presented in the

book [18].

For all connected graphs the following inequality is true [24]:

GA2(G) ≤ 1

2
PIv(G)

where equality holds if and only if G is the complete graph.

In the same paper it was shown that for all connected graphs with m edges

GA2(G) ≤
√

mSz(G) (23)

where equality holds if and only if the G is the complete graph.

In [96] a similar inequality was reported, applicable to bipartite connected graphs

with n vertices and m edges:

GA2(G) ≤ 2

n

√
mSz(G)

with equality if and only if nu nv is a constant for any uv ∈ E(G) .

In [24] it was proven that for all connected graphs:

GA2(G) ≤
√
Sz(G) +m(m− 1) (24)

with equality if and only if G ∼= Kn .

For the complete graph, the inequalities (23) and (24) are equivalent. For all other

connected graphs, the upper bound (24) is better than (23).

In the same paper a lower bound for the GA2 index for connected graphs with n

vertices and m edges in terms of the Sz index was established:

GA2(G) ≥ 2

n

√
Sz(G) +m(m− 1) . (25)

Equality in (25) is attained if and only if G ∼= K2 .
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For the complete graph with two vertices, inequalities (25) and (22) are equivalent.

For all other connected graphs the lower bound (22) is better than (25).

In addition, in [24] it was also proven that the star K1,n−1 is the connected n-vertex

graph with minimum second geometric–arithmetic index.

In [14] a lower bound for GA2 of a simple graph G on n vertices with m edges and

number of pendent vertices ν was presented:

GA2(G) ≥ 2m
√
n− 2

n− 1
− 2ν

(√
n− 2

n− 1
−

√
n− 1

n

)
. (26)

Equality holds if and only if G is isomorphic to the star K1,n−1 or G is isomorphic to the

complete graph K3 .

For all connected graphs the lower bound (26) is better than the lower bounds (22)

and (25).

Let Γ1 be the class of graphs H1 = (V1, E1) such that H1 is connected with ni = nj

for each edge ij ∈ E(H1). For example, K1,n−1, Kn ∈ Γ1 . Denote by C∗
n a unicyclic

graph of order n and cycle length k such that each vertex in the cycle is adjacent to one

pendent vertex, n = 2k . Let Γ2 be the class of graphs H2 = (V2, E2) such that H2 is

connected with ni = nj for each non-pendent edge ij ∈ E(H2) . For example, C∗
n ∈ Γ2 .̇

In [14] an upper bound on GA2 index of simple connected graph G of order n with m

edges and ν pendent vertices was obtained:

GA2(G) ≤ 2ν
√
n− 1

n
+m− ν . (27)

Equality holds if and only if G ∼= K1,n−1 or G ∈ Γ1 or G ∈ Γ2 .

For all connected graphs the upper bound (27) is better than the upper bounds (23)

and (24).

Nordhaus–Gaddum-type [76] lower and upper bounds for a connected graph G and

its connected complement G were obtained in [14].
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2
√
n− 2

n− 1

(
n

2

)
− 2(ν + ν)

(√
n− 2

n− 1
−

√
n− 1

n

)
< GA2(G) +GA2(G) ≤ (28)(

n

2

)
− (ν + ν)

(
1− 2

√
n− 1

n

)
,

where n is the number of vertices, ν and ν are the number of pendent vertices in G and

G , respectively.

4.2.2. Extremal values of the GA2 index of trees

The trees with extremal values of GA2 index are presented in the paper [24]. There

the following was shown:

GA2(Sn) ≤ GA2(T ) ≤ GA2(Pn)

where T is any n-vertex tree. If T � Sn, Pn , then the above inequalities are strict. Thus,

the tree with smallest GA2 index is the star, and the path has the greatest value of GA2 .

A tree is said to be starlike if exactly one of its vertices has degree greater than two.

By S(2r, s) (r ≥ 1, s ≥ 1), we denote the starlike tree with diameter less than or equal

to 4, which has a vertex v1 of degree r + s and which has the property S(2r, s) \ {v1} =

P2 ∪ P2 ∪ . . . ∪ P2︸ ︷︷ ︸
r

∪P1 ∪ P1 ∪ P1︸ ︷︷ ︸
s

. This tree has 2r+ s+ 1 = n vertices. We say that the

starlike tree S(2r, s) has r + s branches, the lengths of which are 2, 2, . . . , 2︸ ︷︷ ︸
r

, 1, 1, . . . , 1︸ ︷︷ ︸
s

,

respectively. For p, q ≥ 2, let Sp,q be the (p + q)-vertex tree, formed by adding an edge

between the centers of the stars K1,p−1 and K1,q−1 .

In [14] a lower bound for GA2 of a tree T on n vertices with ν pendent vertices was

presented:

GA2(T ) ≥
2m

√
2(n− 2)

n
− 2ν

n

(√
2(n− 2)−

√
n− 1

)
.

Equality holds if and only if T ∼= K1,n−1 or T ∼= S(2r, s) , n = 2r + s+ 1 .

In the same paper an upper bound for GA2 was obtained:

GA2(T ) ≤ n− 1− ν +
2ν

√
n− 1

n
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with equality if and only if T ∼= K1,n−1 or T ∼= Sq,q , n = 2q .

Let Pd+1

(
i, n−d−1

)
denote the tree in Tn,d obtained from the path Pd+1 = v1 · · · vd+1

by attaching to its ith vertex (2 ≤ i ≤ d) n − d − 1 leaves. Denote by Tn,d, the set of

trees with n vertices and diameter d.

In [55] it has been shown that among all trees in Tn,d , the tree Pd+1

(
�d+1

2
�, n−d−1

)
has the minimum GA2 index. More on the mathematical properties of GA2 index can be

found in [56, 80].

5. The Third Geometric–Arithmetic Index

The “third geometric–arithmetic index” (GA3) is at the present moment (December

2009) the last index belonging to the GA class. It has been introduced in the paper [96]

and is defined by Eq. (6). Some of its properties are discussed in this section.

5.1. GA3 as a tool for QSAR/QSPR researches

In order to check if the GA3 index is a possible tool for QSAR/QSPR researches, we

first examine its correlation with other indices from a GA class.

The correlation between the GA3 index and the GA1 and GA2 indices are studied in

the case of octanes. The values of those three indices are given in Table 4, whereas Figs.

14 and 15 show these correlations.

Comparing Figs. 13 and 14 it is evident that they are qualitatively very similar.

Therefore, all conclusions derived for the correlation between GA1 and GA2 indices are

applicable also in this case. Briefly, there exists a weak linear correlation betweenGA1 and

GA3 , and the clustering of the points in Fig. 14 is caused by the number of quaternary

(n4) and tertiary (n3) carbon atoms. It can be seen that both the GA1 and GA3 indices

are increasing functions of the extent of branching in acyclic molecules.

The correlation between GA2 and GA3 indices is shown in Fig. 15.
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Figure 14.

Figure 15.

By a superficial glance at Fig. 15 it appears that between GA2 and GA3 there exists
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a reasonably good linear correlation (R = 0.989). In addition, it is noticed that all points

are grouped into few nearly parallel lines. By inspecting the data more carefully we found

that the points are clustered by the number of pendent vertices (ν) in a tree (i. e., by

the number CH3 groups in the corresponding alkanes). The octanes belonging to each

line as well as the parameters of lines and correlation coefficients are given in Table 6.

ν Molecule∗ a±Δa b±Δb R
2 1 – – –
3 2, 3, 4, 18 1.910± 0.010 −7.43± 0.06 0.99997
4 5, 6, 7, 8, 9, 10, 16, 17 1.917± 0.006 −7.82± 0.03 0.99997
5 11, 12, 13, 14 1.920± 0.030 −8.20± 0.10 0.99982
6 15 – – –
∗ The given numbers correspond to numbering of octanes in Table 4.

Table 6. ν is the number of pendent vertices; a and Δa are the slope of

the line and the respective absolute error; b and Δb are the intercept of

the line and the respective absolute error; R is the correlation coefficient.

From the results presented in Table 6, it is evident that there exists a correlation

between GA3 and GA2 in the following sense:

GA3(T ) = α ∗GA2(T ) + β ∗ ν + γ (29)

We succeeded to mathematically explain this peculiar correlation between GA2 and

GA3 indices by showing that GA3 is bounded from both below and above by an expression

that is an increasing function of GA2 and a decreasing function of ν [28, 44].

n

n− 2
GA2(T )−

2
√

2(n− 1)(n− 2)− 2(n− 1)

(n− 2)
√
2(n− 2)

ν − 2(n− 1)2

(n− 2)
√
2(n− 2)

< GA3(T ) <

n

n− 2
GA2(T )−

2

√
(n− 1)

⌈n
2

⌉ ⌊n
2

⌋
− n+ 1

(n− 2)

√⌈n
2

⌉ ⌊n
2

⌋ ν − (n− 1)2

(n− 2)

√⌈n
2

⌉ ⌊n
2

⌋ (30)

These subtle differences of dependence on some structural properties gives us hope

that the GA3 index may be applicable in QSAR/QSPR investigations.
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In the following pictures are given the correlations between the GA3 index and the

16 physico–chemical properties of octane isomers, same as those used in the previous

sections.
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From the above figures it can be seen that there exist useful linear correlations (R ≥
0.8) between GA3 and five physico–chemical properties of octanes, namely entropy (S),

enthalpy of vaporization (HV AP ), standard enthalpy of vaporization (DHV AP ), motor

octane number (MON), and acentric factor (AcenFac). Without any further discussion,

the corresponding correlation coefficients are given in Table 7.

Physico–chemical property Correlation coefficient (R)
S 0.909

HV AP 0.828
DHV AP 0.890
MON 0.970

AcenFac 0.975

Table 7.

Comparing the R’s from Table 7 with those presented in Table 5 (for the GA2 index) it

can be concluded that the GA3 index gives somewhat better predictions of the presented

properties than GA2 .

5.2. Mathematical properties of GA3

As in the previous sections on mathematical properties of the GA indices, we are

going to consider only simple connected graphs. The tree Tn(Δ) is formed by attaching

Δ− 1 pendent vertices to a terminal vertex of the path Pn−Δ+1 , where 2 ≤ Δ ≤ n− 1 .

The tree T (n, 2) is obtained from the path (Pn−1) by attaching a pendent vertex to its

vertex at distance 2 from a terminal vertex.

The edge–Szeged index has been put forward recently. It is defined as [36]

Sze(G) =
∑

uv∈E(G)

mu ·mv .
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For more results about the edge–Szeged index consult the papers [3, 6, 8, 63, 64, 86].

5.2.1. Lower and upper bounds for GA3

For all connected graphs with n vertices the following inequality holds [96]:

0 = GA3(Sn) ≤ GA3(G) ≤ GA3(Kn) =
n(n− 1)

2
.

In the same paper, some more bounds were obtained for GA3 for simple connected graphs

with m ≥ 2 edges in terms of the edge–Szeged index:

2

m− 1

√
Sze(G) ≤ GA3(G) ≤

√
Sze(G) +m(m− 1) . (31)

The left equality is achieved if and only if G ∼= Sm+1 or G ∼= Sp,m+1−p with 2 ≤ p ≤
�(m + 1)/2� . The right equality is attained if and only if the G is the triangle or the

quadrangle.

In [15] it another lower bound for GA3 was obtained, for connected graphs with m

edges and ν pendent vertices:

GA3(G) ≥ 2(m− ν)
√
m− 2

m− 1
(32)

with equality if and only if G ∼= K1,n−1 or G ∼= K3 or G ∼= S(2r, s), n = 2r + s+ 1 .

Also in [15] another lower bound was deduced,

GA3(G) ≥ 2

m− 1

√
Sze(G) + (m− ν)(m− ν − 1)(δ1 − 1)2 (33)

where Sze(G) and δ1 are the edge-Szeged index and minimum non-pendent vertex degree

in G , respectively. Equality holds if and only if G ∼= K1,m or G ∼= K3 or G ∼= Sν,m+1−ν ,

2 ≤ ν ≤ �(m+ 1)/2� .

For all connected graphs the lower bound (33) is better than the lower bound (31).

Let Γ3 be the class of graphs H3 = (V3, E3) such that H3 is connected with mi = mj

for each edge ij ∈ E(H3) . For example, Kn, Cn ∈ Γ3. Let Γ4 be the class of graphs

H4 = (V4, E4) such that H4 is connected with mi = mj for each non-pendent edge

ij ∈ E(H4) . For example, C∗
n ∈ Γ4 . Now we are ready to give an upper bound on

GA3(G) of graph G .
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In [15] an upper bound for GA3 was obtained:

GA3(G) ≤ m− ν (34)

with equality if and only if G ∼= K1,m or G ∈ Γ3 or G ∈ Γ4 .

For all connected graphs the upper bound (34) is better than (31).

Nordhaus–Gaddum-type [76] lower and upper bounds for a connected graph G and

its connected complement G were obtained in [15].

2(m− ν)
√
m− 2

m− 1
+

2(m− ν)
√
m− 2

m− 1
≤ GA3(G) +GA3(G) ≤

(
n

2

)
− (ν + ν) (35)

where n is the number of vertices, and ν , ν , andm , m are the number of pendent vertices

and edges in G and G , respectively.

5.2.2. Extremal values of the GA3 index of trees

In [96] the trees with minimum and maximum values of GA3 index were determined.

There the following inequality was obtained:

GA3(Sn) ≤ GA3(T ) ≤ GA3(Pn) .

In the same work also the trees with second, third, fourth, and fifth minimum GA3 index

were characterized.

The unique tree with the second minimum GA3 index is S2,n−2 for n ≥ 4 and

GA3(S2,n−2) =
2
√
n− 3

n− 2
.

For n ≥ 6 vertices S3,n−3 is the unique tree with the third minimum GA3 index equal

to

GA3(S3,n−3) =
2
√

2(n− 4)

n− 2
.

For trees with n ≥ 8 vertices S4,n−4 is the tree with fourth smallest GA3 index, equal

to

GA3(S4,n−4) =
2
√

3(n− 5)

n− 2
.

The tree with the fifth minimum GA3 index with n ≥ 10 vertices is S5,n−5 and

GA3(S5,n−5) =
2
√

4(n− 6)

n− 2
.
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As it was previously stated, the tree with maximum GA3 index among all n-vertex

trees is the path Pn . Its GA3-values can be calculated as:

GA3(Pn) =
2

n− 2

n−3∑
i=1

√
i(n− 2− i) .

The tree with the second maximum GA3 index can be formed by attaching two pen-

dent vertices to an end–vertex of the path Pn−2. Let us label this tree by T (n, 1) . Its

GA3-value is equal to

GA3(T (n, 1)) =
2

n− 2

n−4∑
i=1

√
i(n− 2− i) .

Among the n–vertex trees with n ≥ 6 , T (n, 2) is the unique tree with the third

maximum GA3-value, equal to

GA3(T (n, 2)) =
2

n− 2

[
n−3∑
i=1

√
i(n− 2− i)− 2(n− 4)

]
.

Let G be a tree with n vertices and maximum vertex degree Δ, where 2 ≤ Δ ≤ n−1 .

Then

GA3(G) ≤ 2

n− 2

∑
i=1

n−Δ− 1
√

i(n− 2− i)

where equality is attained if and only if G ∼= Tn(Δ) .

5.2.3. Relation between GA3 and GA2 indices of unicyclic graphs

In [28] the relation (30) between the GA2– and GA3-indices of a tree T (� K1,n−1)

on n vertices with ν pendent vertices (2 ≤ ν ≤ n − 2) was obtained. In this section we

present the analogous result for unicyclic graphs.

For unicyclic graphs with girth g , let c1, c2, . . . , cg be the vertices belonging to the

cycle C , that is, V (C) = {c1, c2, . . . , cg} . Let s be the number of vertices of one of

maximal components of G− V (C) . In [70] the following relation between GA2 and GA3

of a unicyclic graph G with even girth and ν pendent vertices was obtained. If s ≤ n/2 ,

then

n

n− 1

(
1− n− 1

2(n− 2)

)
GA2(G)− 2ν√

n− 1

(
1− n− 1

2(n− 2)

)

< GA3(G) <
n

n− 2

(
1− n− 1

2
⌊
n
2

⌋ ⌈
n
2

⌉)GA2(G)− 2
√
n− 1

n− 2

(
1− n− 1

2
⌊
n
2

⌋ ⌈
n
2

⌉) ν
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and

n

n− 1
GA2(G)−

(
2√
n− 1

−
√
2√

n− 2

)
ν −

√
2n√

n− 2
< GA3(G)

<
n

n− 2
GA2(G)−

⎛⎝2
√
n− 1

n− 2
− n− 1

(n− 2)
√⌊

n
2

⌋ ⌈
n
2

⌉
⎞⎠ ν − (n− 1)n

(n− 2)
√⌊

n
2

⌋ ⌈
n
2

⌉ .

In the same paper [70] also the following relations and given:

n

n− 1

[
1− n− 1

2(n− 2)

]
GA2(G)− 2ν√

n− 1

[
1− n− 1

2(n− 2)

]

< GA3(G) < GA2(G)− 2ν
√
n− 1

n
+

(3n− 8)(n− 6)

4

and

GA2(G)− (n− g − ν)
√
n− 2− 2ν

√
n− 1

n

< GA3(G) < GA2(G)− (n− g − ν)

n(n− 1)

√
2(n− 2)− 2ν

√
n− 1

n
.

provided the girth g girth of G is odd.

5.2.4. Comparing the geometric–arithmetic indices

In [17] the geometric–arithmetic indices were compared for different types of graphs.

(i) For a chemical tree T of order n ,

GA1(T ) ≥ GA2(T )

with equality if and only if G is isomorphic to the star K1,i , i = 1, 2, 3, 4 .

(ii) For a starlike tree S(r1, r2, . . . , rk) (r1 + r2 + . . .+ rk + 1 = n) of order n ,

GA1(S) ≥ GA2(S)

with equality if and only if S is isomorphic to star the K1,n−1 .

(iii) For any tree T ,

GA2(T ) > GA3(T ) .

In [16] the first geometric–arithmetic index and the ABC-index (see [25]) were com-

pared for different types of graphs. Denote by K1,4 the star on 5 vertices. Also denote
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by T ∗ the tree on 8 vertices, obtained by joining the central vertices of two stars K1,3 by

an edge.

(i) For a chemical tree T of order n ,

GA(T ) > ABC(T ) T � K1,4, T ∗.

(ii) For a molecular graph G of order n,

GA(G) > ABC(G) G � K1,4, T ∗.

(iii) Let G be a simple graph with maximum degree Δ and minimum degree δ . If

Δ− δ ≤ 3 and G � K1,4, T
∗ , then

GA(G) > ABC(G) .

6. Conclusion

In this survey, probably all results on GA indices known around the middle of 2010

have been outlined. We believe that in the future the research on this class of indices will

continue. The results obtained so far give us hope that the GA class of indices will find

reasonable applications in QSAR/QSPR researches.
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Chem. 59 (2008) 127–156.

[69] M. Liu, A simple approach to order the first Zagreb indices of connected graphs,

MATCH Commun. Math. Comput. Chem. 63 (2010) 425–432.

[70] P. Liu, B. Liu, The second and the third geometric–arithmetic indices of unicyclic

graphs, submitted.

[71] T. Mansour, M. Schork, The vertex PI index and Szeged index of bridge graphs,

Discr. Appl. Math. 157 (2009) 1600–1606.
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