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Abstract

The first and second Zagreb indices of a graph G are defined as M1(G) =
∑

u∈V d2
u and

M2(G) =
∑

uv∈E dudv , where du denotes the degree of a vertex u in G . The Zagreb indices

have been generalized to variable first and second Zagreb indices: λM1(G) =
∑

u∈V d2λ
i

and λM2 =
∑

uv∈E dλi dλj , where λ is an arbitrary real number. Recently, it has been

conjectured that M1/n ≤ M2/m . In [7], D. Vukičević considered a generalization of

the conjecture, i. e., λM1(G)/n ≤ λM2(G)/m . This paper outlines results on comparing

Zagreb indices and variable Zagreb indices.

1. Introduction

Let G = (V,E) be a simple graph with n = |V| vertices and m = |E| edges. Denote

by d(u) the degree of a vertex u . The first and second Zagreb indices are defined

as M1(G) =
∑

u∈V d2
u and M2(G) =

∑
uv∈E dudv . I. Gutman and N. Trinajstić [1] first

introduced what are now called the Zagreb indices. Two surveys of properties of M1 and

M2 are found in [2, 3]. The two definitions have been generalized to a variable version.
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The variable Zagreb indices are defined as λM1(G) =
∑

u∈V d2λ
i and λM2 =

∑
uv∈E dλi dλj ,

where λ is an arbitrary real number.

For general graphs of order n , note that the order of magnitude of M1 is O(n3) ,

while the order of magnitude of M2 is O(n4) , implying that M1/n and M2/m have the

same orders of magnitude O(n2) . This suggests that it is purposeful to compare M1/n

with M2/m instead of M1 with M2 .

Recently the AutoGraphiX system [4–6] proposed the following conjecture:

Conjecture 1.1. [4–6] For all simple connected graphs G

M1/n ≤M2/m (1)

and the bound is tight for complete graphs.

In 2007, D. Vukičević [7] obtained some results on variable Zagreb indices, in con-

nection with the inequality
λM1(G)/n ≤ λM2(G)/m . (2)

In this paper, we report known results on comparing Zagreb and variable Zagreb

indices.

This work is in three sections, followed by detailed references on comparing (vari-

able) Zagreb indices. In the second and third sections, results are given on comparing

Zagreb indices and variable Zagreb indices, respectively.

2. Comparing Zagreb indices

In 2007, P. Hansen and D. Vukičević [8] showed that Conjecture 1.1 does not hold

for general graphs but is true for chemical graphs.

Theorem 2.1. [8] For all chemical graphs G with order n , size m , and first and second Zagreb

indices M1 and M2, Inequality (1) holds.

Moreover, the bound is tight if and only if all edges uv have the same pair (du, dj) of degrees

or if the graph is composed of disjoint stars S5 and cycles Cp , Cq , . . . of any length.
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In [8] P. Hansen and D. Vukičević presented a non-connected counter-example (a

star S6 together with a cycle C3) and a connected counter-example to Conjecture 1.1

with 46 vertices and 110 edges.

Although this conjecture is disproved for general connected as well as for discon-

nected graphs, D. Vukičević and A. Graovac [9] showed that it is true for trees.

Theorem 2.2. [9] Let T be a tree with at least two vertices. Then Inequality (1) is true. The

equality holds if and only if T is star.

Recall that the cyclomatic number of a connected graph is equal to ν = m − n + 1 ,

i. e., its number of independent cycles. If a graph G has ν = 1 (respectively, ν = 2), i. e.,

m = n (respectively, m = n + 1), then G is said to be unicyclic (respectively, bicyclic).

One of the present authors [10] proved that this claim holds for unicyclic graphs.

Theorem 2.3. [10] Let G = (V,E) be a connected unicyclic graph with |V| = n , |E = m| . Then

Inequality (1) is attained. The equality holds if and only if G is a cycle.

In [11] L. Sun et. al. showed that Inequality (1) holds for bicyclic graphs except

one class graphs and characterized the extremal graph. Moreover, counter-examples

of connected bicyclic graphs are constructed from the excluded class.

A pendent vertex is a vertex with degree one. A hook is the unique neighbor of

a pendent vertex. Denote the set of hooks of G by H(G) . For any vertex u ∈ H(G) ,

NG(u) = {v1, . . . , vk} (k ≥ 2) . LetA = {G : dG(v1) = 2, dG(vi) = 1, i = 2, 3, . . . , k} .

Theorem 2.4. [11] If G � A is a connected bicyclic graph with n vertices and m edges, then

Inequality (1) is obtained with equality holding if and only if G = K2,3 .

Figure 1 shows a bicyclic graph that is counter-example [11] for M1/n ≤M2/m .
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Figure 2: Counter-example with 17 vertices and 2 independent cycles.
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Figure 3: Counter-example with 17 vertices and 3 independent cycles.
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Figure 4: Infinite family of counter-examples.

Using AutoGraphiX [4-6], G. Caporossi, P. Hansen, and D. Vukičević [12] obtained

counter-examples to Conjecture 1.1, where the classes of graphs belong to bicyclic and

tricyclic graphs (see Figures 2 and 3, respectively). They also found an infinite family

of counter-examples for all ν ≥ 2 , where the graphs are obtained by joining complete

bipartite graph K2,ν+1 and a star Sp+1 by and an edge from a pendent vertex of Sp+1 to a

vertex of the smallest side of the K2,ν+1 , see Figure 4.

Recently, the authors of [12] presented results which are a direct comparison of

Zagreb indices on cyclic graphs.

Theorem 2.5. [12] Let G be a simple connected graph with ν independent cycles, n ≥ 5(ν − 1)

vertices, m = n + ν − 1 edges, Zagreb indices M1 and M2 . Then,

M2 −M1 ≥ 6(ν − 1) = 6(m − n) .

Moreover, the bound is tight and is attained if and only if G is a graph with vertices of degree 2

and 3 only and the vertices of degree 3 form an independent set.

Remark 2.6. By Theorem 2.5, G. Caporossi, P. Hansen, and D. Vukičević [12] also

obtained the result of Theorem 2.3.
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Theorem 2.7. [12] Let G be a simple and connected graph with n vertices, m(≥ n) edges and

Zagreb indices M1 and M2 . Then,

M2 −M1 ≥ 11(ν − 1) − n = 11m − 12n .

Moreover, the bound is tight and is attained if G is a graph with vertices of degree 2 and 3 only

and, when n ≤ 5(ν − 1) , no pair of vertices of degree 2 are adjacent.

The following are results showing that Conjecture 1.1 holds for some special graphs.

Theorem 2.8. [13] If G is a graph with n vertices, m edges and Δ − δ ≤ 2 , then Inequality (1)

holds, with the equality holding if and only if all edges i j have the same pair (di, dj) of degrees.

Let G∗ denote the graphs with each edge connecting a 3-degree vertex and a 6-degree

vertex. The star graph Sn is a tree on n vertices with one vertex having degree n− 1 and

the other vertices having degree 1.

Theorem 2.9. [13] If G is a graph with n vertices and m edges, such that Δ(G) − δ(G) ≤ 3

and δ � 2 , then Inequality (1) holds, with the equality holding if and only if all edges i j have

the same pair (di, dj) of degrees or if the graph is composed of disjoint stars S5 and cycles of any

length or if the graph is composed of disjoint G∗-graphs and 4-regular graphs.

For the case δ(G) = 2 , a counter-example is present in [13] (see Figure 5) .
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Figure 5.

Remark 2.10. From the proof of Theorem 2.8, L. Sun et al. [13] obtained a corollary,

which embodies the result of Theorem 2.1 .

Let G1 = (V1,E1) and G2 = (V2,E2) be two simple graphs on disjoint sets of vertices.

The union of G1 and G2 is G1 + G2 = (V1 ∪ V2,E1 ∪ E2) . K. C. Das [14] has obtained the

result that the example in Figure 5 holds for G1 and G2 , but it need not hold for their

union, G1 + G2 .
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Denote by G1 ∨ G2 the graph obtained from G1 + G2 by joining each vertex of G1

to each vertex of G2 . Then G1 ∨ G2 is a graph with |V(G1)| + |V(G2)| vertices and

|E(G1)| + |E(G2)| + |V(G1)||V(G2)| edges. Let G be the complement of G . K. C. Das [14]

obtained some properties on Conjecture 1.1.

Theorem 2.11. [14] Let G be a simple graph on n vertices, with m edges. If Inequality (1)

holds for G , then it also holds for G ∨ G .

Theorem 2.12. [14] Let G be a simple graph on n vertices, with m edges. If Inequality (1) does

not hold for G , then it holds for G .

Let G be a graph with n vertices and m edges. In [14], K. C. Das constructed the

graph Ĝ by placing two isomorphic graphs G side by side, and connecting any vertex

of the first graph G with the corresponding vertex of the second graph G . The resultant

graph is Ĝ. Then |V(Ĝ)| = |V(G)|+ |V(G)| = 2n , |E(Ĝ)| = |E(G)|+ |E(G)|+ |E(G,G)| = 2m+n .

Furthermore, the graph G̃ [14] is obtained by taking two copies of G , and any

vertex of the first copy is connected by edges to the vertices that are adjacent to the

corresponding vertex of the second copy. Then |V(G̃)| = |V(G)| + |V(G)| = 2n , |E(G̃)| =
|E(G)| + |E(G)| +∑n

i=1 di = 4m .

Theorem 2.13. [14] If Inequality (1) holds for G , then it also holds for Ĝ.

Theorem 2.14. [14] If Inequality (1) holds for G , then it also holds for G̃.

The subdivision graph S(G) of a graph G is obtained by inserting a new vertex of

degree two on each edge of G . If G is an (n,m)-graph, then S(G) has n +m vertices and

2m edges.

Theorem 2.15. [15] Let S(G) be the subdivision graph of G . Then,

M1(S(G))
n +m

≤ M2(S(G))
2m

with equality if and only if G is a regular graph.
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Moreover, A. Ilić and D. Stevanović [15] gave sharp lower bounds for M1 and M2 ,

and showed that the expressions from Conjecture 1.1 have a common sharp lower

bound.

Theorem 2.16. [15] The inequality M1 ≥ 4m2/n holds. Equality is attained if and only if the

graph is regular.

Theorem 2.17. [15] It is true that M2 ≥ 4m3/n2 . Equality is attained if and only if the graph

is regular.

From two previous theorems, the authors in reference [15] reported that the expres-

sions from Conjecture 1.1 have a common sharp lower bound:

4m2

n2 ≤
M1

n
and

4m2

n2 ≤
M2

m
.

In addition, a sharp upper bound for these expressions was obtained:

Theorem 2.18. [15] Let Δ be the maximum vertex degree in G . Then

M1

n
≤ ΔM1

2m
and

M2

m
≤ ΔM1

2m
.

Equality is attained simultaneously in both inequalities if and only if G is regular.

A. Ilić and D. Stevanović [15] gave counter-examples to Conjecture 1.1. Let C(a, b)

be a graph that is composed of an (a+ 1)-vertex star with exactly b triangles attached in

line at an arbitrary leaf (see Figure 6). Each value of a satisfying a > −(7b−5+
√

D)
2(1−b) , where

D = 8b3 + 97b2 − 158b + 57 , yields a counter-example to Conjecture 1.1 with b cycles.
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Figure 6: The bicyclic counter-example C(12, 2) with 19 vertices.
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3. Comparing variable Zagreb indices

Theorem 3.1. [7] For all graphs G and λ ∈ [0, 1
2 ] , Inequality (2) holds.

For chemical graphs, D. Vukičević [7] obtained:

Theorem 3.2. [7] For all chemical graphs G and all λ ∈ [0, 1] , Inequality (2) is true.

D. Vukičević [7] proved the following theorems which imply that Theorem 3.2

cannot be extended.

Theorem 3.3. [7] Let λ ∈ R\[0, 1] and G be any complete unbalanced bipartite graph. Then,

λM1(G)/n > λM2(G)/m .

Theorem 3.4. [7] Let λ ∈ (
√

2/2, 1) . Then, there is a graph G such that

λM1(G)/n > λM2(G)/m .

Then, the following problem is still open:

Open problem 3.5. [7] Identify λ ∈ [1
2 ,
√

2
2 ] such that λM1/n > λM2/m for all graphs G .

For trees, D. Vukičević and A. Graovac [20] showed:

Theorem 3.6. [20] Inequality (2) holds for all trees and for all λ ∈ ( 1
2 , 1) .

Combining Theorems 2.2, 3.1 and 3.6, D. Vukičević and A. Graovac [20] arrived at:

Theorem 3.7. [20] Inequality (2) holds for all trees if and only if λ ∈ [0, 1] .

For unicyclic graphs, the following results provide a complete solution for the

comparing of variable Zagreb indices.

Theorem 3.8. [16] Let G be a unicyclic graph of order n . Then Inequality (2) holds for all

λ ∈ [0, 1] . Moreover, if λ ∈ (0, 1] , then the equality holds if and only G is isomorphic to Cn ,

where Cn is a cycle with n vertices.
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Theorem 3.9. [17] Let G be a connected unicyclic graph with n vertices and m edges.

Then λM1(G)/n ≥ λM2(G)/m holds for λ ∈ (−∞, 0] . Moreover, if λ ∈ (−∞, 0) , then
λM1(G)/n = λM2(G)/m holds if and only if G is a cycle.

Note that for unicyclic graphs n = m . For λ > 1 , in [17] two examples are given,

such that the first has the property λM1(G) < λM2(G) (see Figure 7) and the other
λM1(G) > λM2(G) (see Figure 8).
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Figure 8.

Combining Theorems 3.8 and 3.9, the authors of reference [17] arrived at:

Conclusion 3.10. [17] For unicyclic graphs λM1(G)/n and λM2(G)/m are related as follows:

(1) λM1(G) ≥ λM2(G) holds if λ ∈ (−∞, 0) .

(2) λM1(G) ≤ λM2(G) holds if λ ∈ [0, 1] ([16]).

(3) If λ ∈ (1,+∞) , then neither of the above two relations holds for all unicyclic graphs.

Similarly to Theorems 2.8 and 2.9, B. Liu et. al [18] obtained:

Theorem 3.11. [18] Let G be a graph with n vertices, m edges and Δ(G) − δ(G) ≤ 2 .

If λ ∈ [0, 1] , then Inequality (2) holds . (3)

If λ ∈ (−∞, 0) , then λM1(G)/n ≥ λM2(G)/m . (4)

Moreover, if λ = 0 , then the equality in (3) holds if and only if all edges i j have the same

pair (di, dj) of degrees.

If λ ∈ (0, 1) (respectively, λ ∈ (−∞, 0)), then the equality in (3) (respectively, in (4) ) holds

if and only if G is a regular graph.

From Theorem 3.11, we obtain the main result of [13], i. e., Theorem 2.8.

Let G∗ denote the graphs specified in connection with Theorem 2.9.

Theorem 3.12. [18] Let G be a graph with n vertices, m edges and Δ(G) − δ(G) ≤ 3 and
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δ(G) � 2 .

If λ ∈ [0, 1] , then Inequality (2) is true. (5)

If λ ∈ (−∞, 0) , then λM1(G)/n ≥ λM2(G)/m . (6)

Moreover, if λ = 0 , the equality in (3) always holds.

If λ = 1 , the equality of (5) holds if and only if all edges i j have the same pair (di, dj) of

degrees or if the graph is composed of disjoint stars S5 and cycles of any length or if the graph

is composed of disjoint G∗ and 4-regular graphs ([13]).

If λ ∈ (0, 1) (respectively, λ ∈ (−∞, 0)) , the equality of (5) (respectively, (6)) holds if and

only if G is a regular graph.

For the general cases one of the present authors obtained:

Theorem 3.13. [19] Let G be a graph with n vertices and m edges. Then λM1(G)/n ≥
λM2(G)/m holds for λ ∈ (−∞, 0) . Moreover, equality holds if and only if G is a regular graph.

By Theorem 3.13, the authors [19] reported the following:

Remark 3.14. [19] If λ ∈ (−∞, 0) , then for all chemical graphs ([18]), unbalanced

bipartite graphs ([7]), trees, unicyclic graphs ([17]), and bicyclic graphs, the inequality
λM1(G)/n ≥ λM2(G)/m holds. If λ ∈ (−∞, 0) , then Theorem 3.13 also encompasses

Theorems 3.11 and 3.12.

With the results in [7] and [20], the authors of [19] presented the relationship between
λM1(G)/n and λM2(G)/m in trees (resp. chemical graphs, unicyclic graphs ([17])):

Conclusion 3.15. [19]

(1) λM1(G) ≥ λM2(G) holds for λ ∈ (−∞, 0) .

(2) λM1(G) ≤ λM2(G) holds for λ ∈ [0, 1] [7,20].

(3) If λ ∈ (1,+∞) , then neither of the above two relations holds for all unicyclic graphs.

Remark 3.16. [19] Conclusions 3.15(1) and (3) are also true for the relationship between
λM1(G)/n and λM2(G)/m of bicyclic graphs. Moreover, it is known that when λ ∈
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[0, 1
2 ] , then Inequality (2) holds for all graphs (including bicyclic graphs) ([7]). When

λ = 1 , then Inequality (1) holds for connected bicyclic graphs, except one class [11].

Consequently, the relationship between λM1(G)/n and λM2(G)/m in bicyclic graphs

remains to be determined for λ ∈ (1
2 , 1) .

Similarly to Theorem 2.18, A. Ilić et al. [15] showed that these variable expressions

also have a common sharp upper bound:

Theorem 3.17. [15] Let Δ be the maximum vertex degree in G . Then

λM1

n
≤ Δ ·

λM1

2m
and

λM2

m
≤ Δ ·

λM1

2m
.
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