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Abstract

For a simple graph G, the energy E(G) is defined as the sum of the absolute values

of all eigenvalues of its adjacency matrix. A conjugated tree is a tree that has a

perfect matching. The conjugated trees Fn and Bn with the minimal and second-

minimal energies were determined by Zhang and Li. They also figured out that

the conjugated trees with the third- and fourth-minimal energies are Ln or Mn.

However, they could not determine which is the third, and the other is the fourth.

Recently, S. Li and N. Li further investigated the conjugated trees with the third-,

through the sixth-minimal energies. As a result, they figured out that these trees

must be among the trees Ln, Mn, In and W ∗
n
2
. They then showed that the energy of

Mn is smaller than that of In, and the energy of Ln is smaller than that of W ∗
n
2
, but

they could not give a total ordering of the 4 trees. For comparing of the energies, a

common used method is to compare the number of k-matchings in each concerned

tree, but it is often invalid for further comparing. This paper is aimed at solving the

above unsolved problems by giving the energies of the 4 trees a total ordering, that

is, completely determining the conjugated trees with the third-, forth-, fifth- and

sixth-minimal energies. Our method uses the well-known Coulson integral formula.
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1 Introduction

For a given simple graph G of order n, denote by A(G) the adjacency matrix of G.

The characteristic polynomial of A(G)

φ(G; x) = det(xI − A(G)) = xn + a1x
n−1 + · · ·+ an,

is usually called the characteristic polynomial of G. It is well-known [4] that the charac-

teristic polynomial of a bipartite graph G takes the form

φ(G; x) =

�n
2
�∑

k=0

a2kx
n−2k =

�n
2
�∑

k=0

(−1)kb2kx
n−2k,

where b2k = (−1)ka2k and b2k ≥ 0 for all k = 1, . . . , �n
2
�, especially b0 = a0 = 1. Further-

more, the characteristic polynomial of a tree T can be expressed as

φ(T ; x) =

�n
2
�∑

k=0

(−1)km(T, k)xn−2k,

where m(T, k) denotes the number of k-matchings of T .

The energy is a graph parameter stemming from the Hückel moleculear orbital (HMO)

approximation for the total π-electron energy, see [7] for details. If λ1, λ2, . . . , λn denote

the eigenvalues of the adjacency matrix A(G), the energy of a graph G is then defined as

E(G) =
n∑

i=1

|λi|.

For calculating the energy, Coulson [3] deduced the following formula

E(G) =
1

π

∫ +∞

−∞

[
n− ixφ′(G, ix)

φ(G, ix)

]
dx. (1)

It was then derived into a handy formula [7, 9]

E(G) =
1

π

∫ +∞

−∞

1

x2
log |xnφ(G; i/x)|dx.

Moreover, Gutman and Polansky [9] converted Eq.(1) into an explicit formula as follows:

E(G) =
1

2π

∫ +∞

−∞

1

x2
log

⎡
⎣
⎛
⎝ �n

2
�∑

k=0

(−1)ka2kx
2k

⎞
⎠

2

+

⎛
⎝ �n

2
�∑

k=0

(−1)ka2k+1x
2k+1

⎞
⎠

2⎤
⎦ dx,

where a1, a2, . . . , an are the coefficients of the characteristic polynomial ofG. In particular,

the energy of a bipartite graph G takes the form

E(G) =
1

π

∫ +∞

−∞

1

x2
log

⎡
⎣1 + �n

2
�∑

k=1

(−1)ka2kx
2k

⎤
⎦ dx,
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and the energy of a tree T [9] can be expressed as

E(T ) =
2

π

∫ +∞

0

x−2 log

⎡
⎣1 + �n

2
�∑

k=1

m(T, k)x2k

⎤
⎦ dx,

where m(G, k) is the number of k-matchings of T .

From the above one can see that if T1 and T2 are two trees with the same number

of vertices, it is clear that E(T1) ≤ E(T2) if m(T1, k) ≤ m(T2, k) for all k = 1, . . . , �n
2
�.

So there exists a partial ordering � in the set of trees by comparing the number of k-

matchings in each concerned tree, that is, for two trees T1 and T2 with n vertices, if

m(T1, k) ≤ m(T2, k) holds for all k ≥ 0, then we define T1 � T2. Thus T1 � T2 implies

E(T1) ≤ E(T2) [5, 10, 21]. Similarly, a partial ordering can be defined for bipartite graphs

[18] and unicyclic graphs [11]. These relations have been established for numerous pairs of

graphs [2, 5, 6, 11–16, 18, 19, 21–23]. For two bipartite graphs G1 and G2, we call G1 � G2

if |ak(G1)| ≤ |ak(G2)| for all k ≥ 0, and G1 � G2 implies E(G1) ≤ E(G2). The above

mentioned method is commonly used to compare the energies of two trees or bipartite

graphs. However, for general graphs, it is hard to define such a partial ordering, since in

this case, Coulson integral formula can not be used to determine whether G1 � G2 implies

E(G1) ≤ E(G2). If, for two trees or bipartite graphs, the above quantities m(T, k) or

|ak(G)| can not be compared uniformly, then the common comparing method is invalid,

and this happened very often. For examples, paper [13] could not determine the unicyclic

bipartite graph with maximal energy; papers [15, 20] could not determine the tree with the

fourth maximal energy; paper [17] could not determine the bicyclic graph with maximal

energy; paper [16] could not determine the tree with two maximum degree vertices that

has maximal energy; paper [22] could not determine the conjugated trees with the third-

and fourth-minimal energies; paper [14] could not determine the conjugated trees with

the third- through the sixth-minimal energies, etc. In this paper, we will employ Coulson

integral formula to solve the last two undetermined cases, i.e., to determine the conjugated

trees with the third- , forth-, fifth- and sixth-minimal energies. For more results on graph

energy, we refer to [7, 8], and for terminology and notation not defined here, we refer to

Bondy and Murty [1].

The following lemma is a well-known result due to Gutman [7], which will be used in

the sequel.

Lemma 1.1. If G1 and G2 are two graphs with the same number of vertices, then

E(G1)− E(G2) =
1

π

∫ +∞

−∞
log

φ(G1; ix)

φ(G2; ix)
dx.
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2 Main results

Denote by Xn the star K1,n−1, Yn the tree obtained by attaching a pendant edge to a

pendant vertex of the star K1,n−2, Zn by attaching two pendant edges to a pendant vertex

of K1,n−3 and Wn by attaching a P3 to a pendant vertex of K1,n−3. In [5], Gutman gave

the following result.

Lemma 2.1. For any tree T of order n, if T �= Xn, Yn, Zn,Wn, then Xn ≺ Yn ≺ Zn ≺
Wn ≺ T .

Denoted by Φn the class of trees of order n that have perfect matchings. For the

minimal energy tree in Φn, Gutman proposed two conjectures in [6]. Later, Zhang and Li

[22] confirmed that both conjectures are true by using the partial ordering relation �.

Lemma 2.2. [22] In the class Φn, E(T ) is minimal for the tree Fn, and E(T ) = E(Fn)

if and only if T = Fn, where Fn is obtained by attaching a pendant edge to each vertex of

the star K1,n
2
−1, see Figure 1.

11

22

Fn B
n

n

2
− 2

n

2
− 1

Figure 1: The trees Fn and Bn.

For the trees with the second-, third-, and forth-minimal energies in Φn, they obtained

the following results.

Lemma 2.3. [22] In the class Φn, the tree attained the second-minimal energy is Bn,

where Bn is the tree obtained from Fn−2 by attaching a P3 to the 2-degree vertex of a

pendant edge (see Figure 1), and E(T ) = E(Bn) if and only if T = Bn.

Lemma 2.4. [22] In the class Φn, the trees attained the third- and forth-minimal energies

are among the trees Ln and Mn, where Ln is the tree obtained from Fn−4 by attaching two

P3’s to the 2-degree vertex of a pendant edge, and Mn is obtained from Fn−2 by attaching

a P3 to a 1-degree vertex to form a path of length 6, see Figure 2. Furthermore, Ln and

Mn are not comparable by the partial ordering relation �.
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Denote by In the tree obtained by attaching a P3 to a 1-degree vertex of Xn
2
−1 and

attaching a pendant edge to each other 1-degree vertex ofXn
2
−1, andW ∗

n
2
the tree obtained

by attaching a pendant edge to each vertex of Wn
2
, see Figure 2. Recently, S. Li and N.

Li [14] proved the following result.

Lemma 2.5. In the class Φn, the trees with the third-, forth-, fifth- and sixth-minimal

energies are among the trees Ln, Mn, In and W ∗
n
2
. Furthermore, Mn ≺ In and Ln ≺ W ∗

n
2
,

but In and Ln are not comparable.

11

11

22

22

L
n

M
n

I
n

W
∗
n

2

n

2
− 3 n

2
− 2

n

2
− 1

n−6

2

Figure 2: The trees Ln, Mn, In and W ∗
n
2
.

Notice that the four trees have the small diameter. Their characteristic polynomials

can be easily obtained by using the recursion formula in [4] on trees:

φ(Mn; x) = (x2 − 1)
n
2
−4(x8 − (n

2
+ 3)x6 + (3

2
n+ 2)x4 − (n

2
+ 4)x2 + 1);

φ(In; x) = (x2 − 1)
n
2
−4(x8 − (n

2
+ 3)x6 + (3

2
n+ 2)x4 − (n+ 1)x2 + 1);

φ(Ln; x) = (x2 − 1)
n
2
−4(x8 − (n

2
+ 3)x6 + (2n− 4)x4 − (n

2
+ 3)x2 + 1);

φ(W ∗
n
2
; x) = (x2 − 1)

n
2
−4(x8 − (n

2
+ 3)x6 + (2n− 3)x4 − (n

2
+ 3)x2 + 1).

Before giving our main result, we recall some knowledge on real analysis, for which we

refer to [24].

Lemma 2.6. For any real number X > −1, we have

X

1 +X
≤ log(1 +X) ≤ X. (2)
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Lemma 2.7. Let f(x, n) be a real function sequence on real variable x and parameter

n ∈ N. If

(1) for any real number A > a, f(x, n) is integrable in interval a ≤ x ≤ A, where a is

fixed;

(2) for any interval [a,A] as above, f(x, n) is uniformly convergent to ϕ(x) as n → ∞;

and

(3) the integration g(n) =
∫ +∞
a

f(x, n)dx is uniformly convergent for n ∈ N,

then the limit function ϕ(x) of the sequence g(n) is integrable in [a,+∞], and

lim
n→∞

∫ +∞
a

f(x, n)dx =
∫ +∞
a

ϕ(x)dx.

The following lemma is useful in the sequel.

Lemma 2.8. Let A be a positive real number, B and C are non-negative. Then X =

B−C
A+C

> −1.

Proof. From the conditions, we get X = B
A+C

− C
A+C

≥ − C
A+C

> −1.

Now we give our main result of this paper.

Theorem 2.9. There exists a fixed positive integer N0, such that for all n > N0, the

energy of In is smaller than that of Ln.

Proof. Clearly, the common comparing method is invalid for In and Ln, that is, neither

In � Ln nor Ln � In. We have to use Coulson integral formula to compare the energies of

In and Ln. By Lemma 1.1 and the characteristic polynomials φ(In; x) and φ(Ln; x) given

above, it is easy to get

E(In)− E(Ln) =
2

π

∫ +∞

0

log
x8 + (n

2
+ 3)x6 + (3

2
n+ 2)x4 + (n+ 1)x2 + 1

x8 + (n
2
+ 3)x6 + (2n− 4)x4 + (n

2
+ 3)x2 + 1

dx. (3)

We want to use Lemma 2.7 to finish the proof. The following two steps are distinguished:

Step 1. Prove the uniform convergence of the sequence g(n) = E(In)− E(Ln).

Denote by f(x, n) the integrand in Eq.(3). By letting A = x8 + (n
2
+ 3)x6 + (3

2
n +

2)x4 + (n
2
+ 3)x2 + 1, B = (n

2
− 2)x2 and C = (n

2
− 6)x4, we can express f(x, n) as

f(x, n) = log
A+ B

A+ C
= log

(
1 +

B − C

A+ C

)
,
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i.e.,

f(x, n) = log

(
1 +

(−n
2
+ 6)x4 + (n

2
− 2)x2

x8 + (n
2
+ 3)x6 + (2n− 4)x4 + (n

2
+ 3)x2 + 1

)
.

Obviously, for n ≥ 12 we have A > 0, B ≥ 0 and C ≥ 0. Now let X = B−C
A+C

. Then from

Lemmas 2.8 and 2.6, we get that for all x ∈ R and any integer n ≥ 13,

f(x, n) ≤ (−n
2
+ 6)x4 + (n

2
− 2)x2

x8 + (n
2
+ 3)x6 + (2n− 4)x4 + (n

2
+ 3)x2 + 1

and

f(x, n) ≥ (−n
2
+ 6)x4 + (n

2
− 2)x2

(x8 + (n
2
+ 3)x6 + (3

2
n+ 2)x4 + (n+ 1)x2 + 1

.

It follows that

|f(n, x)| ≤ (−n
2
+ 6)x4 + (n

2
− 2)x2

x8 + (n
2
+ 3)x6 + (2n− 4)x4 + (n

2
+ 3)x2 + 1

, if |x| ≤
√

n− 4

n− 12

and

|f(n, x)| ≤ (n
2
− 6)x4 − (n

2
− 2)x2

x8 + (n
2
+ 3)x6 + (3

2
n+ 2)x4 + (n+ 1)x2 + 1

, if |x| ≥
√

n− 4

n− 12
.

Since for n ≥ 3 and all x, there always have

((
−n

2
+ 6

)
x4 +

(n
2
− 2

)
x2
)
(x2+1) ≤ 2

(
x8 +

(n
2
+ 3

)
x6 + (2n− 4)x4 +

(n
2
+ 3

)
x2 + 1

)

and

((n
2
− 6

)
x4 −

(n
2
− 2

)
x2
)
(x2+1) ≤ 2

(
x8 +

(n
2
+ 3

)
x6 +

(
3

2
n+ 2

)
x4 + (n+ 1)x2 + 1

)
,

So it is easy to see that for n ≥ 13 and all x,

|f(x, n)| ≤ 2

x2 + 1
,

while
∫ +∞
0

2
x2+1

dx = π is convergent. From the well-known Weierstrass’s criterion (for

example, see [24]), we can get that g(n) = E(In)− E(Ln) =
2
π

∫∞
0

f(x, n)dx is uniformly

convergent.

Notice that f(x, n) is a pointwise convergent sequence, i.e., lim
n→+∞

f(x, n) exists, and

it is a piecewise continuous function:

ϕ(x) =

⎧⎪⎨
⎪⎩
log x4+3x2+2

x4+4x2+1
x �= 0

0 x = 0.
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Step 2: Prove that f(n, x) uniformly converges to ϕ(x) in an interval I ⊂ (0,+∞).

For x �= 0, we have

f(n, x)− ϕ(x)

= log

[
x8 + (n

2
+ 3)x6 + (3

2
n+ 2)x4 + (n+ 1)x2 + 1

x8 + (n
2
+ 3)x6 + (2n− 4)x4 + (n

2
+ 3)x2 + 1

· x
4 + 4x2 + 1

x4 + 3x2 + 2

]

= log

[
x12 + (n

2
+ 7)x10 + (7

2
n+ 15)x8 + (15

2
n+ 12)x6 + (11

2
n+ 7)x4 + (n+ 5)x2 + 1

x12 + (n
2
+ 6)x10 + (7

2
n+ 7)x8 + (15

2
n− 3)x6 + (11

2
n+ 2)x4 + (n+ 9)x2 + 2

]
.

Similar to the above, by letting A = x12 + (n
2
+6)x10 + (7

2
n+7)x8 + (15

2
n− 3)x6 + (11

2
n+

2)x4 + (n + 5)x2 + 1, B = x10 + 8x8 + 15x6 + 5x4 and C = 4x2 + 1, we can express the

above f(n, x)− ϕ(x) as

f(n, x)− ϕ(x) = log
A+ B

A+ C
= log

(
1 +

B − C

A+ C

)
,

i.e.,

f(n, x)− ϕ(x)

= log

[
1 +

x10 + 8x8 + 15x6 + 5x4 − 4x2 − 1

x12 + (n
2
+ 6)x10 + (7

2
n+ 7)x8 + (15

2
n− 3)x6 + (11

2
n+ 2)x4 + (n+ 9)x2 + 2

]
.

It is easy to see that A > 0, B ≥ 0 and C ≥ 0. From Lemmas 2.8 and 2.6, we get that

for any x �= 0, x ∈ R and any positive integer n, we have

f(n, x)−ϕ(x) ≤ x10 + 8x8 + 15x6 + 5x4 − 4x2 − 1

x12 + (n
2
+ 6)x10 + (7

2
n+ 7)x8 + (15

2
n− 3)x6 + (11

2
n+ 2)x4 + (n+ 9)x2 + 2

and

f(n, x)−ϕ(x) ≥ x10 + 8x8 + 15x6 + 5x4 − 4x2 − 1

x12 + (n
2
+ 7)x10 + (7

2
n+ 15)x8 + (15

2
n+ 12)x6 + (11

2
n+ 7)x4 + (n+ 5)x2 + 1

.

If x10 + 8x8 + 15x6 + 5x4 − 4x2 − 1 ≥ 0,

|f(n, x)−ϕ(x)| ≤ x10 + 8x8 + 15x6 + 5x4 − 4x2 − 1

x12 + (n
2
+ 6)x10 + (7

2
n+ 7)x8 + (15

2
n− 3)x6 + (11

2
n+ 2)x4 + (n+ 9)x2 + 2

;

and if x10 + 8x8 + 15x6 + 5x4 − 4x2 − 1 ≤ 0,

|f(n, x)−ϕ(x)| ≤ −(x10 + 8x8 + 15x6 + 5x4 − 4x2 − 1)

x12 + (n
2
+ 7)x10 + (7

2
n+ 15)x8 + (15

2
n+ 12)x6 + (11

2
n+ 7)x4 + (n+ 5)x2 + 1

.

It is not hard to verify that for n ≥ 3 and any x ∈ [δ,+∞), x10+8x8+15x6+5x4−4x2−1 ≥
0, and

|f(n, x)− ϕ(x)| ≤ 4√
n
,
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where δ is the only positive root of the polynomial x10 + 8x8 + 15x6 + 5x4 − 4x2 − 1 and

δ ∈ (0.6750, 0.6751), which proves that f(x, n) uniformly converges to φ(x) in the interval

I = [δ,+∞).

Finally, we turn to showing the conclusion of the theorem.

Notice that from the above we know that for x ∈ [0, δ], we have

f(n, x)− ϕ(x) ≤ 0.

On the other hand, from Lemma 2.7 and the above two steps, we get that in the interval

[δ,+∞),

lim
n→+∞

∫ +∞

δ

f(x, n)dx =

∫ +∞

δ

lim
n→+∞

f(x, n)dx =

∫ +∞

δ

ϕ(x)dx.

That is, for an arbitrarily small ε > 0, there exists a positive integer N , such that for any

n > N , ∫ +∞

δ

ϕ(x)dx− ε <

∫ +∞

δ

f(x, n)dx <

∫ +∞

δ

ϕ(x)dx+ ε.

Consequently,∫ +∞

0

f(x, n)dx =

∫ δ

0

f(x, n)dx+

∫ +∞

δ

f(x, n)dx

<

∫ δ

0

ϕ(x)dx+

∫ +∞

δ

ϕ(x)dx+ ε =

∫ +∞

0

ϕ(x)dx+ ε.

It is not difficult to get that
∫ +∞
0

ϕ(x)dx = α ≈ −0.110823. If we take ε = |α|, there
exists a positive integer N0, such that for any n > N0∫ +∞

0

f(x, n)dx <

∫ +∞

0

ϕ(x)dx+ ε = 0.

Thus E(In) < E(Ln) for any n > N0, which completes the proof.

The following is an easy consequence, which determines the conjugated trees with the

third- through the sixth-minimal energies.

Theorem 2.10. There exists a fixed positive integer N0, such that for all n > N0,

E(Mn) < E(In) < E(Ln) < E(W ∗
n
2
).

Proof. It is known from [14] that Mn ≺ In and Ln ≺ W ∗
n
2
, implying that E(Mn) < E(In)

and E(Ln) < E(W ∗
n
2
). The conclusion then follows immediately from Theorem 2.9.

By running a computer with Maple programm, we get the following table:
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Table. The difference between E(I
n
) and E(L

n
).

n ε(In) − ε(Ln) n ε(In) − ε(Ln)

n = 100 −0.006158 n = 102 −0.006824

n = 96 −0.004765 n = 98 −0.005473

n = 92 −0.003282 n = 94 −0.004036

n = 88 −0.001697 n = 90 −0.002503

n = 84 −0.6 × 10
−8

n = 86 −0.000864

n = 80 0.001824 n = 82 0.000895

n = 76 0.003791 n = 78 0.002788

n = 72 0.005920 n = 74 0.004834

n = 68 0.008235 n = 70 0.007052

n = 64 0.010763 n = 66 0.009470

n = 60 0.013541 n = 62 0.012118

n = 56 0.016609 n = 58 0.015035

n = 52 0.020023 n = 54 0.018269

n = 48 0.023852 n = 50 0.021881

n = 44 0.028185 n = 46 0.025949

n = 40 0.033143 n = 42 0.030577

n = 36 0.038887 n = 38 0.035904

n = 32 0.045649 n = 34 0.042123

n = 28 0.053762 n = 30 0.049510

n = 24 0.063737 n = 26 0.058475

n = 20 0.076404 n = 22 0.069664

n = 16 0.093213 n = 18 0.084161

n = 12 0.117005 n = 14 0.103962

n = 8 0.154368 n = 10 0.133281

From the table one can see that for n even, E(In) > E(Ln) for n = 8 up to 82, while

E(In) < E(Ln) for n = 84 up to 102. The table can be continued with E(In) < E(Ln).

Thus, we guess that E(In) < E(Ln) holds for n ≥ 84, i.e., the moment N0 could be taken

as 82. Yet, we have not found a proper way to show this.

Remark. The method employed in this paper might be extended to comparing the

energies of the two graphs P 6
n and Cn (n even) candidated as the unicyclic bipartite graph

with maximal energy in [13], of the two trees candidated as the tree with the fourth-

maximal energy in [20], and of those candidated graphs mentioned in the end of the

introduction.
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