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Abstract

In this paper, a general approach is presented to compute the Jones polynomial of poly-

hedral links introduced in [18]. We show that Jones polynomials of the whole family of

polyhedral links based on a fixed polyhedron can be obtained in a unified way from the

Tutte polynomial of the 1-skeleton of the polyhedron via special parametrizations. As

applications, by using computer algebra (Maple) techniques, Jones polynomials of Pla-

tonic polyhedral links are obtained and used to detect the chirality of Platonic polyhedral

links.

1 Introduction

The Jones polynomial [1,2] was discovered in 1985. It is an invariant of oriented links

up to ambient isotopy. The discovery of the Jones polynomial is a very exciting event

in the study of invariants of links which provokes the discovery of the Homfly [3, 4] as

well as many types of polynomials. The Jones polynomial has connections with statistical

mechanics [5] and quantum field theory [6] and has been widely studied by mathematicians

and physicists.

It’s well known that Jones polynomial of links is, in general, hard to compute [7].

There exist several available software packages to compute the Jones polynomial and the

Homfly polynomial. For example, Knotscape [8] computes various link invariants. But

these software packages usually only handle knots and links with smaller crossing numbers.

In recent years, the computer algebra (Maple) techniques were used to calculate Jones

polynomials for various special link families with larger crossing numbers, see [9–12].
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Knots and links occurs in real world. Chemists and molecular biologists have also

synthesized many knotted and linked molecules, see [13] and references therein. As the

potential structure for synthesizing new types of topologically complex molecules, in a

series of papers [14–18], Qiu et al introduced several types of polyhedral links with highly

symmetry. Some topological properties such as component number of polyhedral links

are studied in the above references.

In this paper, we focus on one type of such polyhedral links introduced in [18], formed

from a polyhedron by ‘n-branched curve and k-twisted double-line covering’. To be pre-

cise, given a polyhedron P , to construct a polyhedral link, we need two types of basic

building blocks. One is an n-branched curve designed to replace the vertex with degree n

of the polyhedron. The other is an k-twisted double-line (k = 1, 2, · · ·), which is proposed

to replace the edge of the polyhedron. Finally by connecting these two building blocks

we obtain an alternating link and we shall call it a polyhedral link.

Note that actually we will obtain an infinite family of polyhedral links based on P as

k increases. A polyhedral link having k-twisted double-line is called a Tk-polyhedral link.

When k = 2m, we call a Tk-polyhedral link an even polyhedral link. When k = 2m + 1,

we call a Tk-polyhedral link an odd polyhedral link. See Fig. 1 for an example.

Fig. 1: T2-tetrahedral link A2. Note that it has 4 components which surround boundaries of 4 faces of

the tetrahedron and are all given a clockwise orientation.

In [19], the present authors presented a general approach to compute the Homfly

polynomial for even polyhedral links. However, this approach can not be used to deal with

odd polyhedral links. In this paper, we shall give a general method to compute the Jones

polynomial of a family of (even or odd) polyhedral links via the Tutte polynomial [20]

of the 1-skeleton of the polyhedron. Note that the component number of a link can be

deduced from its Jones polynomial [21].
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In addition, the analysis of chirality problems is very important in stereochemistry [22].

In [18], linking number was used to determine the chirality of oriented polyhedral links. In

general, this link invariant is relatively weak, since it can not be used to deal with oriented

knots. Even for the multi-component links it does not always work. For example, the odd

tetrahedral links all have linking number zero, the chirality of such links is still uncertain

in [18]. It is well known that Jones polynomial can be used to detect the chirality of knots

and links. For example, the trefoil knot is chiral, a fact difficult to prove before 1980s [23],

can be easily proved by using the Jones polynomial [24]. As an application, we can use

the Jones polynomial obtained to judge the chirality of Platonic polyhedral links.

2 Generalization and some notations

In this section we first generalize polyhedral links to plane graphs, then give some

notations.

Note that the surface of a 3-polyhedron is topologically homeomorphic to the sphere

S2. Via the well-known stereographic projection, the graph consisting of vertices and

edges of the polyhedron, i.e. the 1-skeleton, can be drawn on a plane with no edges

intersected. Hence, the 1-skeleton of a polyhedron is a planar graph. However, a planar

graph is not necessarily the 1-skeleton of some polyhedron. It is worth pointing out that

the graphs in this paper allow loops and multiple edges in general.

Now we generalize polyhedral links to plane graphs. Let G be a plane graph with edge

set {e1, e2, · · · , eq}. We use n-branched curve to cover the vertex of degree n of G and

mi-twisted double-line to cover the edge ei for each i = 1, 2, · · · , q. See Fig. 2. We shall

denote by L(G) the link thus constructed from G. Let k be a fixed nonnegative integer.

If mi = k for each i = 1, 2, · · · , q, we denote L(G) by Lk(G).

i
m

Fig. 2: Covering the edge ei with mi-twisted double-line.
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Example 2.1 Let Bn be a ’bouquet of n circles’, i.e. a graph with one vertex and n loops.

Then L2(B1) is the Hopf link, L3(B1) is the trefoil knot, L4(B1) is the two-component

(4, 2)-torus link, and L3(B2) is the connected sum of two trefoil knots. Molecules in

the form of these knots and links were actually all synthesized in the past four decades,

see [13,25].

Example 2.2 Let Θ be the the theta graph, i.e. the graph with two distinct vertices joined

by three parallel edges. Then Lk(Θ) is the well-known pretzel link P (k, k, k) in knot theory.

We shall compute the Jones polynomial of Lk(G) in the next sections, which clearly

include the polyhedral link as special case. Now we give some terminologies and notations

in graph theory. An edge e in a graph G is called a loop if it connects a vertex to itself.

An edge e in a graph G is called an isthmus or bridge if its removal disconnects the graph.

The graph G−e is obtained from G by deleting the edge e, and the graph G/e is obtained

from G by contracting e, that is, by deleting e and identifying its two adjacent vertices.

Throughout the paper, we shall use p, q and c to denote numbers of vertices, edges and

connected components of G, respectively.

3 The Jones, chain and Tutte polynomials

Let L be an oriented link, we shall denote by VL(t) the Jones polynomial of L. It is a

Laurent polynomial in the variable
√
t, determined by the following three axioms:

(i) Jones polynomial is an ambient isotopic invariant of oriented links.

(ii)

VO(t) = 1 , (1)

where O is an unknot.

(iii) (Skein relation)

t−1VL+(t)− tVL−(t) =

(√
t− 1√

t

)
VL0(t) , (2)

where L+, L− and L0 are link diagrams which are identical except near one crossing

where they are as in Fig. 3 and are called a skein triple.
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Fig. 3: L+ (positive), L− (negative) and L0 in Eq. (2).

In principle, we can obtain the Jones polynomial of any oriented link by using the

above definition. But this calculation is not convenient since it involves the isotopic

deformations of links and it is also infeasible for links with large numbers of crossings. In

the following we give two graph polynomial: the chain and Tutte polynomials, which will

be used for us to simplify the computation of the Jones polynomial.

To study the chromatic polynomial [26] for homeomorphism class of graphs, Read and

Whitehead introduced a multilinear polynomial of a graph in 1999, the chain polynomial

[27] , which is associated with a graph whose edges have been labeled with elements of a

commutative ring with unity 1. Let G be a labeled graph, we shall use Ch[G] to denote

the chain polynomial of G. We usually identify the edges with the labels assigned to

them.

The chain polynomial of a labeled graph can be defined by the following recursive

rules [28]:

(i) If G is edgeless, then

Ch[G] = 1 . (3)

(ii) Otherwise, let a be an edge of G.

(a) If the edge a is a loop of G, then

Ch[G] = (a− w)Ch[G− a] , (4)

(b) If the edge a is not a loop, then

Ch[G] = (a− 1)Ch[G− a] + Ch[G/a] . (5)

The following lemma [27] will be used in the next section.

Lemma 3.1 If M consists of two graphs, A and B, having at most one vertex in common,

then Ch(M) = Ch(A)Ch(B) .
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The Tutte polynomial for graphs was constructed by Tutte in 1954 [20], building on

his work seven years earlier [29]. The Tutte polynomial is a considerable generalization of

the chromatic polynomial. Originally Tutte called his polynomial the dichromate of the

graph, but now one usually call it the Tutte polynomial.

Let G be a graph, we shall denote by TG(x, y) the Tutte polynomial of G. There

are several equivalent definitions of the Tutte polynomial [24]. We choose the following

definition [24] for our own purpose.

(i) If G is edgeless, then

TG(x, y) = 1 . (6)

(ii) Otherwise, let e be an edge of G.

(a) If e is a bridge of G, then

TG(x, y) = xTG/e(x, y) ; (7)

(b) If e is a loop, then

TG(x, y) = yTG−e(x, y) ; (8)

(c) If e is neither a bridge nor a loop, then

TG(x, y) = TG/e(x, y) + TG−e(x, y) . (9)

4 Computing the Jones polynomial by the

Tutte polynomial

Let L be an oriented link (diagram). The writhe w(L) of L is defined to be the sum

of signs of the crossings of L. Let [L] be the one-variable Kauffman bracket polynomial

in A of L (with the orientations assigned to L ignored). For the detail of the Kauffman

bracket polynomial, see [30] or [31]. In [30], Kauffman constructed a state model for the

Jones polynomial using his bracket polynomial, i.e.

Lemma 4.1 Let

fL(A) =
(−A3

)−w(L)
[L] .
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The polynomial fL in A is an invariant of ambient isotopy, which gives a model for the

original Jones polynomial by the substitution

VL(t) = fL(t
−1/4) .

By Lemma 4.1, to obtain the Jones polynomial of an oriented link, one need to compute

both the writhe and the Kauffman bracket polynomial of any diagram of the link. It is

clear that the writhe is easily calculated. But the Kauffman bracket polynomial [L] is the

sum of 2n terms if L has n crossings. Hence the main difficulty in computing the Jones

polynomial is in the computation of the Kauffman bracket polynomial.

Now we consider the computation of the Kauffman bracket polynomial of polyhedral

links. In general, let Lk(G) be the link obtained from G by covering each edge by k-twisted

double-line. In the remaining part of the section, we shall build a relation between the

Kauffman bracket polynomial of Lk(G) and the Tutte polynomial of the graph G.

Let L(G) be the link obtained from G by covering the edge ei by themi-twisted double-

line for i = 1, 2, · · · , q. Let Gl be the labeled graph obtained from G by labeling the edge

ei by ai for i = 1, 2, · · · , q. In [32], the present authors obtained a relation between [L(G)]

and the chain polynomial Ch[Gl] of the labeled graph Gl.

Lemma 4.2 If we replace w by −A4 − 1 − A−4, and replace ai by (−A−4)mi for each

i = 1, 2, · · · , q in Ch[Gl], then

[L(G)] =
A

∑q
i=1 mi

(−A2 − A−2)q−p+1Ch
[
Gl
]
.

Lemma 4.3 Let Ga be a uniform labeled graph, i.e. all edges of G are labeled with the

same label a. Then the chain polynomial of Ga is related to the Tutte polynomial of G by

Ch[Ga] = (a− 1)q−p+c TG

(
a,

a− w

a− 1

)
. (10)

Proof. We shall prove Lemma 4.3 by induction on the number of edges of G. If G is an

edgeless graph, then the chain polynomial of G is 1. The right hand of (10) equals to

(a− 1)q−p+c TG

(
a,

a− w

a− 1

)
= 1 .

Lemma 4.3 holds. If E(G) �= ∅, suppose that e is an edge of G. There are three cases.
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(1) If e is a bridge, by Eq. (5), Lemma 3.1, induction hypothesis and Eq. (7), we have

Ch[Ga] = (a− 1)Ch[Ga − a] + Ch[Ga/a]

= a Ch[Ga/a]

= a(a− 1)(q−1)−(p−1)+c TG/a

(
a,

a− w

a− 1

)

= (a− 1)q−p+c TG

(
a,

a− w

a− 1

)
.

(2) If e is a loop, by Eq. (4), induction hypothesis and Eq. (8), we have

Ch[Ga] = (a− w)Ch[Ga − a]

= (a− w)(a− 1)(q−1)−p+c TG−a

(
a,

a− w

a− 1

)

= (a− w)(a− 1)(q−1)−p+c

(
a− 1

a− w

)
TG

(
a,

a− w

a− 1

)

= (a− 1)q−p+c TG

(
a,

a− w

a− 1

)
.

(3) If e is a neither a bridge nor a loop, by Eq. (5), induction hypothesis and Eq. (9),

we have

Ch[Ga] = (a− 1)Ch[Ga − a] + Ch[Ga/a]

= (a− 1)(a− 1)(q−1)−p+c TG−a

(
a,

a− w

a− 1

)
+

(a− 1)(q−1)−(p−1)+c TG/a

(
a,

a− w

a− 1

)

= (a− 1)q−p+c

[
TG−a

(
a,

a− w

a− 1

)
+ TG/a

(
a,

a− w

a− 1

)]

= (a− 1)q−p+c TG

(
a,

a− w

a− 1

)
.

Hence, Lemma 4.3 also holds. This complete the proof of Lemma 4.3.

�
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Theorem 4.4 Let G be a connected plane graph, having p vertices and q edges, which

includes the 1-skeleton P of a polyhedron. Then

[Lk(G)] = Aqk

[
(−A−4)k − 1

−A2 − A−2

]q−p+1

TG

((−A−4
)k

,
(−A−4)k + A4 + 1 + A−4

(−A−4)k − 1

)
,

and therefore,

VLk(G)(t) =
(−A3

)−w(Lk(G))
[Lk(G)]|A=t−1/4 .

Proof. It follows directly from Lemmas 4.1- 4.3.�

5 Jones polynomials of Platonic polyhedral links

As applications, we use computer algebra (Maple) techniques to compute Jones poly-

nomials of Platonic polyhedral links. For convenience, we shall denote by Ak, Bk, Ck,

Dk and Ek the Tk-tetrahedral link, Tk-hexahedral link, the Tk-octahedral link, the Tk-

dodecahedral link and the Tk-icosahedral link, respectively.

We first consider orientations of Platonic polyhedral links. In [18], by assigning the

same direction to each component of polyhedral links, the authors calculated the writhe

and linking number (It is actually half of the writhe.). For the even Platonic polyhedral

link, its each component corresponds to a face of the polyhedron. Thus, for a planar

embedding of the polyhedron, we can assign the same orientation (clockwise or anticlock-

wise) to each component of the corresponding even polyhedral link. See Fig. 1 for an

example. Let L2m(P ) be the even polyhedral link based on the polyhedron P with q(P )

edges. Then w(L2m(P )) = −2mq(P ). We list writhes of five even Platonic polyhedral

links in Table 1 as well as numbers of vertices and edges of polyhedra.

Table 1 Numbers of vertices p and edges q of Platonic polyhedra and writhes of even Platonic polyhedral
links. (From [18].) Plane graphs of Platonic polyhedra (1-skeletons) are drawn in dashed lines in Fig. 4.

Platonic polyhedra p q Even Platonic polyhedral links The writhe w

Tetrahedron 4 6 A2m −12m

Hexahedron 8 12 B2m −24m

Octahedron 6 12 C2m −24m

Dodecahedron 20 30 D2m −60m

Icosahedron 12 30 E2m −60m

However, we can not define what is the same orientation to each component of the

odd Platonic polyhedral link. In [33], Doll and Hoste introduced a nomenclature for the
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orientations of multi-component links by choosing a reference ordering of the components

and a reference orientations of components. For example, for a 2-component link L, the

corresponding reference oriented link will be denoted by L++. If we reverse the orientation

of the first component, we obtain the oriented link L−+, and so on. For five odd Platonic

polyhedral links, the corresponding reference oriented links are given in Fig. 4. If L has

n components, then L has 2n different orientations in general. Note that if we reverse

orientations of all components, the writhe will keep unchanged. Thus, in order to compute

writhes, we need to consider at most 2n−1 different orientations for a n-component link.

Actually, by symmetry of link diagrams, the number usually can be further reduced, as

you shall see in Table 2. For example, C2m+1 has (at most) 4 different orientations for us to

consider, i.e. ++++,+++− = ++−+ = +−++,++−− = +−−+ = +−+−,+−−−.

Let L2m+1(P ) be the odd polyhedral link based on the polyhedron P . Then it is not

difficult to see that w(L2m+1(P )) = (2m + 1)w(L1). We list writhes of five odd Platonic

polyhedral links under all different orientations we need to consider in Table 2.

Then we consider the Tutte polynomials of polyhedra. Computing the Tutte polyno-

mials is, in general, very difficult. Fortunately, the Maple software has a function called

TuttePolynomial in the GraphTheory package, which can be used for us to calculate the

Tutte polynomial of small graphs, including the 1-skeletons of the five Platonic polyhe-

dra. We refer the reader to [19] for Tutte polynomials of skeletons of the five Platonic

polyhedra. Then according to Theorem 4.4 and by using Maple, we obtain the Kauffman

bracket polynomial of the five Platonic polyhedra listed as follows.

1.
[Ak] = − A6k

A6(A4 + 1)3
(A12(−A−4)6k

+(4A8 + 4A12 + 4A16)(−A−4)3k

+(3A8 + 3A12 + 3A16)(−A−4)2k

+(6A4 + 6A8 + 12A12 + 6A16 + 6A20)(−A−4)k

+1 + 2A8 + 2A16 + A24)

2.

[Bk] = − A6k

A14(A4 + 1)3((−A−4)k − 1)2
(A20(−A−4)12k

+(−A−4)8k(6A16 + 6A20 + 6A24)
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Fig. 4: Reference ordering and orientations of components of odd Platonic polyhedral links. The dashed

lines represent the 1-skeleton of the polyhedron. Note that w(A1) = 0,w(B1) = 4,w(C1) = 12,w(D1) = 10

and w(E1) = 6.
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Table 2 Writhes of odd Platonic polyhedral links. In the last column, ‘c’ denotes ‘chiral’.

Odd Platonic polyhedral links w(L1) w(L2m+1) Chirality

A2m+1 +++ 0 0 c (m ≥ 1)

A2m+1 ++− 0 0 c (m ≥ 1)

B2m+1 ++++ 4 4(2m+ 1) c

B2m+1 +++− 0 0 c

B2m+1 ++−− 4 4(2m+ 1) c

B2m+1 +−+− -12 −12(2m+ 1) c

C2m+1 ++++ 12 12(2m+ 1) c

C2m+1 +++− 0 0 c

C2m+1 ++−− -4 −4(2m+ 1) c

C2m+1 +−−− 0 0 c

D2m+1 ++++++ 10 10(2m+ 1) c

D2m+1 +++++− 6 6(2m+ 1) c

D2m+1 ++++−− 10 10(2m+ 1) c

D2m+1 +++−+− -6 −6(2m+ 1) c

D2m+1 +++−−− 6 6(2m+ 1) c

D2m+1 ++−+−− -10 −10(2m+ 1) c

D2m+1 ++−−−− -6 −6(2m+ 1) c

D2m+1 +−−−−− -10 −10(2m+ 1) c

E2m+1 ++++++ 6 6(2m+ 1) c

E2m+1 +++++− -6 −6(2m+ 1) c

E2m+1 ++++−− -10 −10(2m+ 1) c

E2m+1 +++−−− -6 −6(2m+ 1) c

E2m+1 ++−+++ 10 10(2m+ 1) c

E2m+1 ++−++− -10 −10(2m+ 1) c

E2m+1 ++−+−+ 6 6(2m+ 1) c

E2m+1 ++−+−− -6 −6(2m+ 1) c

E2m+1 ++−−−+ 10 10(2m+ 1) c

E2m+1 ++−−−− 6 6(2m+ 1) c

E2m+1 +−−+++ 6 6(2m+ 1) c

E2m+1 +−−++− -6 −6(2m+ 1) c

E2m+1 +−−−++ 10 10(2m+ 1) c

E2m+1 +−−+−− -10 −10(2m+ 1) c

E2m+1 +−−−+− 6 6(2m+ 1) c

E2m+1 +−−−−− 10 10(2m+ 1) c
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+(−A−4)6k(16A16 + 16A20 + 16A24)

+(−A−4)5k(12A12 + 12A16 + 24A20 + 12A24 + 12A28)

+(−A−4)4k(27A12 + 36A16 + 63A20 + 36A24 + 27A28)

+(−A−4)3k(8A8 + 32A12 + 48A16 + 64A20 + 48A24

+32A28 + 8A32)

+(−A−4)2k(42A8 + 18A12 + 102A16 + 36A20 + 102A24

+18A28 + 42A32)

+(−A−4)k(12A4 − 12A8 + 36A12 − 24A16 + 48A20

−24A24 + 36A28 − 12A32 + 12A36)

+1− 2A4 + 7A8 − 5A12 + 14A16 − 6A20 + 14A24

−5A28 + 7A32 − 2A36 + A40).

3.

[Ck] = − A6k

A22(A4 + 1)3((−A−4)k − 1)4
(A28(−A−4)12k

+(−A−4)9k(8A24 + 8A28 + 8A32)

+(−A−4)8k(15A24 + 15A28 + 15A32)

+(−A−4)7k(12A20 + 36A24 + 48A28 + 36A32 + 12A36)

+(−A−4)6k(100A20 + 132A24 + 232A28 + 132A32 + 100A36)

+(−A−4)5k(48A16 + 180A20 + 300A24 + 384A28 + 300A32

+180A36 + 48A40)

+(−A−4)4k(6A12 + 297A16 + 282A20 + 873A24 + 567A28

+873A32 + 282A36 + 297A40 + 6A44)

+(−A−4)3k(196A12 + 92A16 + 812A20 + 416A24 + 1240A28

+416A32 + 812A36 + 92A40 + 196A44)

+(−A−4)2k(66A8 + 36A12 + 432A16 + 240A20 + 930A24

+408A28 + 930A32 + 240A36 + 432A40 + 36A44

+66A48)

+(−A−4)k(12A4 + 12A8 + 108A12 + 72A16 + 312A20

+168A24 + 432A28 + 168A32 + 312A36
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+72A40 + 108A44 + 12A48 + 12A52)

+1 + 2A4 + 13A8 + 18A12 + 60A16 + 64A20 + 125A24

+97A28 + 125A32 + 64A36 + 60A40 + 18A44 + 13A48

+2A52 + A56).

4. The expressions of formulae for [Dk] and [Ek] are too long. We only write the first

and last several terms down here.

[D(k)] = − A6k

A38(A4 + 1)3((−A−4)k − 1)8
(A44(−A−4)30k

+(−A−4)25k(12A40 + 12A44 + 12A48)

+(−A−4)22k(30A40 + 30A44 + 30A48)

+(−A−4)21k(30A36 + 50A40 + 80A44 + 50A48 + 30A52)

+(−A−4)20k(36A36 + 108A40 + 144A44 + 108A48 + 36A52)

+(−A−4)19k(60A36 + 180A40 + 240A44 + 180A48 + 60A52)

+ · · ·
+(−A−4)2k(375A8 − 2250A12 + 10755A16 − 33600A20

+82890A24 − 157665A28 + 254865A32

−345345A36 + 416835A40 − 438060A44

+416835A48 − 345345A52 + 254865A56

−157665A60 + 82890A64 − 33600A68

+10755A72 − 2250A76 + 375A80)

+(−A−4)1k(30A4 − 210A8 + 1110A12 − 4080A16 + 11880A20

−26820A24 + 50040A28 − 78090A32 + 105900A36

−125700A40 + 133320A44 − 125700A48

+105900A52 − 78090A56 + 50040A60 − 26820A64

+11880A68 − 4080A72 + 1110A76 − 210A80

+30A84)

+1− 8A4 + 46A8 − 190A12 + 633A16 − 1676A20 + 3627A24

−6526A28 + 10044A32 − 13436A36 + 15919A40 − 16808A44

+15919A48 − 13436A52 + 10044A56 − 6526A60 + 3627A64
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−1676A68 + 633A72 − 190A76 + 46A80 − 8A84 + A88).

5.

[E(k)] = − A6k

A70(A4 + 1)3((−A−4)k − 1)16
(A76(−A−4)30k

+(−A−4)27k(20A72 + 20A76 + 20A80)

+ · · ·
+(−A−4)1k(30A4 + · · ·+ 30A148)

+1 + 8A4 + · · ·+ 8A148 + A152.

Using the information in Tables 1 and 2, we can obtain the formula of the Jones

polynomial of the five Platonic polyhedral links. However, the form of the formula is not

a polynomial. By applying computer algebra (MAPLE) techniques, we can transform it

into a polynomial. For example, it is easy for us to write a Maple program to calculate

VAk
(t) for each k. We list some numerical results in Table 3. Note that in Table 3, the

number in the curly bracket is the minimum degree of the Jones polynomial and the next

sequence of numbers gives the coefficients of the polynomial, beginning with the coefficient

of the minimum degree term. For example, {−3}(−1, 3,−8, 16,−8, 5,−4, 1) denotes the

polynomial −t−3 + 3t−2 − 8t−1 + 16− 8t+ 5t2 − 4t3 + t4.

Table 3 The Jones polynomial of Ak for k from 1 to 5.

Tetrahedral links The Jones polynomials

A1 {−3} (−1, 3,−2, 4,−2, 3,−1)

A2 {−27/2} (−1, 3,−8, 10,−17, 17,−20, 17,−15, 10,−6, 3,−1)

A3 {−6} (−1, 3,−8, 16,−23, 35,−41, 47,−50, 47,−41, 36,−28,

21,−15, 10,−6, 3,−1)

A4 {−51/2} (−1, 3,−8, 16,−29, 41,−59, 71,−83, 89,−92, 89,−83,

74,−66, 55,−45, 36,−28, 21,−15, 10,−6, 3,−1)

A5 {−9} (−1, 3,−8, 16,−29, 47,−65, 89,−107, 125,−137, 143,

−146, 143,−137, 128,−116, 105,−91, 78,−66, 55,

−45, 36,−28, 21,−15, 10,−6, 3,−1)
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6 Chirality analysis of Platonic polyhedral links

It is well known that the writhe of a connected reduced alternating oriented diagram

is an invariant of the oriented link it represents [25, 34, 35]. Thus, if the writhe of a

connected reduced alternating oriented diagram is not zero, then the oriented link it

represents is chiral. It is clear that the Platonic polyhedral link diagrams we construct

are all connected reduced alternating. Hence, there are only five oriented links in Table

2, i.e. A2m+1 + ++,A2m+1 + +−,B2m+1 + + + −,C2m+1 + + + −,C2m+1 + − − − whose

chirality can not be detected by using writhes.

It is also well known that the Jones polynomial of an achiral oriented link is symmetric

[21, 24, 36], that is, if the Jones polynomial of an oriented link is not symmetric then

it is topologically chiral. Note that if the writhe of an oriented link is zero, to prove

that its Jones polynomial is not symmetric, it suffices to show that its Kauffman bracket

polynomial is not symmetric. Now we compute the highest and lowest degrees of Kauffman

bracket polynomials of Platonic polyhedral links. According to the expression of [Ak], we

know that the highest degree and the lowest degree of [Ak] are 6k + 6 and −18k + 6,

respectively. Similarly, the highest degree and the lowest degree of [Bk] are 6k + 14 and

−34k + 6, respectively. And the highest degree and the lowest degree of [Ck] are 6k + 22

and −26k+6, respectively. Finally, we consider [Dk] and [Ek]. It is not difficult to obtain

that he highest degree and the lowest degree of [Dk] are 6k+38 and −82k+6, respectively.

And the highest degree and the lowest degree of [Ek] are 6k+70 and −50k+6, respectively.

Simple calculations show that the sum of the highest and the lowest degree of the

Kauffman polynomial of a Tk-Platonic polyhedral link is equal to zero if and only if

the Tk-Platonic polyhedral link is T1-tetrahedral link A1. Thus, the Kauffman bracket

polynomial of any Platonic polyhedral link is not symmetric except (possibly) the T1-

tetrahedral link. Note that VT1(t) (see Table 3) is symmetric. Thus, [A2m+1] + ++

(m ≥ 1), [A2m+1] ++− (m ≥ 1), B2m+1 +++−, C2m+1 +++− and C2m+1 +−−− are

all topologically chiral.

Furthermore, note that the self-writhe [24] of all oriented Platonic polyhedral links

are all zero (this means that the linking number is equal to half of the writhe). Thus, the

asymmetry of their Kauffman bracket polynomials also imply that as the unoriented link,

they are also chiral. We point out that the unoriented link A1 (the 632 in Dale Rolfsen’s

Tabulation [37]) is achiral, see [38] and [39]. In addition, [A1] + ++ and [A1] + +− (they
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are equivalent [40]) are achiral, see [39].

7 Concluding remarks

In this paper, we present a general approach to compute the Jones polynomial of

polyhedral links. The key step of the approach is to convert the chain polynomial of a

uniformly labeled graph to the Tutte polynomial of the unlabeled graph. The mathe-

matics in this paper is not difficult. However, it converted the computation of the Jones

polynomial of all polyhedral links to that of the Tutte polynomial of the polyhedron in

a unified way, which can be obtained by the Maple program. Except the Platonic poly-

hedral links this approach can be applied to any polyhedral links or more generally, links

constructed from any plane graphs. All different orientations of odd Platonic polyhedral

links are considered and their writhes are computed, which provides infinite families of

oriented links with writhes zero. We succeed in detecting the chirality of Platonic polyhe-

dral links by using the Jones polynomial, which can not be determined by using writhes

and linking numbers.
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