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Abstract.
The purpose of the present study was designed to develop a new mathematical
model for comparison of DNA sequences. Instead of the classical distances, a new
distance based on dinucleotide absolute frequency in large DNA sequences is in-
troduced. The proposed distance that requires neither homologous sequences nor
prior sequence alignments is used to search for similar sequences from a database.
This method was tested using a set of 39 DNA sequences and a set of 63 DNA
sequences. The sensitivity and the selectivity are computed to evaluate and com-
pare the performance of the proposed distance measure. Real data analysis shows
that it is a very efficient, high-selective and high-sensitive comparison algorithm
that can determine the relative dissimilarity in a large dataset of DNA sequences
very rapidly.

1 Introduction

Sequence comparison is a fundamental task in Computational Biology that aims to

discover similarity relationships between molecular sequences. Searching database with a

DNA sequence rely heavily on sequence comparison techniques. Because of the importance

of research into similarity measure, a number of efficient algorithms have been developed

for searching genetic databases for biologically significant similarities in DNA sequences.

The traditional algorithms for comparing biological sequences are based mostly on the

technique of sequence alignment [9,28]. Such approaches have been hitherto widely used.

Nevertheless, sequence alignment considers only local mutations of the genome, therefore

it is not suitable to measure events and mutations that involve longer segments of genomic

sequences. For this reason many alignment-free distance measures have been recently
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introduced [4–7, 14, 16, 17, 27, 29, 30]. Up to now, many efficient alignment-free measures

have been proposed.

Methods for alignment-free sequence comparison of biological sequences utilize sev-

eral concepts of distance measures [23], such as the Euclidean distance [2], Euclidean

and Mahalanobis distances [24], Markov chain models and Kullback- Leibler discrepancy

(extended KLD) [25], cosine distance [21], Kolmogorov complexity [18], Lempel-Ziv (LZ)

complexity [19], chaos theory [1] and statistical measures [8, 15, 20]. The statistical mea-

sure SimMM [20] was performed using the Mahalanobis distance and the standardized

Euclidean distance under Markov chain model of base composition, as well as the ex-

tended KLD [25] and SK-LD [26]. In order to evaluate them under Markov chain model

of base composition, all the initial and transition probabilities need to be estimated using

the whole query sequence and the Mahalanobis distance in practice may be too difficult

to compute when the word sizes increase.

In this study, a new distance based on dinucleotide absolute frequency in large DNA

sequences is introduced. We associate a 16-component vector with a DNA sequence.

The components of the vector indicate the absolute frequency of dinucleotide. Then the

comparison of DNA sequences is transformed into a simpler comparison of vectors. Instead

of the classical distances, a weighted squared Euclidean distance is used to measure the

distance between two vectors. The weighted function, called stabilized function, may

help to promote the performance of the distance measure by adjusting parameter m when

desired. The weighted absolute frequency algorithm comparing with several word-based

methods has better performances in sensitivity and selectivity and can help to better

determine the relative dissimilarity of large dataset of genetic sequences.

2 Methods and algorithms

2.1 Absolute frequency

Consider a DNA sequence L read from the 5’- to the 3’-end with n bases. By considering

neighboring two bases, we can obtain sixteen dinucleotide XY: AA, AC, AG, AT, CA,

CC, CG, CT, GA, GC, GG , GT, TA, TC, TG, and TT. The cumulative numbers of

the nucleotide X denoted by the positive integer FX and the cumulative numbers of the

dinucleotide XY denoted by the positive integer FXY . The absolute frequency PL(XY) is

defined as the ratio of the cumulative numbers of the dinucleotide XY to that of the first
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nucleotide X. That is

PL(XY) =
FXY

FX

.

For DNA sequence L, the dinucleotide absolute frequency vector is defined by:

VL = [PL(AA), PL(AC), PL(AG), ..., PL(TT)],

By this way, we get a correspondence between the DNA sequence and a 16-component

vector VL. A DNA sequence can be analyzed by studying the corresponding dinucleotide

absolute frequency vector.

2.2 Dissimilarity measure

Given two strands of DNA sequences Q and L (for the query and a library sequence in

a database), let

VL = [PL(AA), PL(AC), PL(AG), ..., PL(TT)]

be the dinucleotide absolute frequency vector over a segment WL, which is a window of

length l + 1 from the sequence L. And set

VQ = [PQ(AA), PQ(AC), PQ(AG), ..., PQ(TT)],

where WQ be defined similarly for Q. Define

M(L) = ΣXY PL(XY)fm(PL(XY)),

where the sum extends over all dinucleotide XY and the weighted function fm(x) is

a stabilized function that is implemented to promote the performance of the distance

measure by adjusting parameter m .

Define the distance between the two segment WL and WQ by

ΔM(L,Q) = M(L−Q) = ΣXY (PL(XY)− PQ(XY))fm(PL(XY)− PQ(XY)).

Thus, ΔM(L,Q) quantities the difference between the distributions L and Q. In what

follows, WL and WQ are shifted over L and Q, respectively. A distance (say, window
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distance) is taken for each pair W = (WL,WQ). The distance between L and Q is taken

to be the minimum of all window distances. That means the AFd (absolute frequency

distance) is

AFd(L,Q) = min
W

{AFdW (L,Q)},

with

AFdW (L,Q) = ΔM(L,Q)′ΔM(L,Q) = ΣXY [(PL(XY)− PQ(XY))fm(PL(XY)− PQ(XY))]2,

where the sum extends over all dinucleotide XY.

For each library sequence L, we choose the sliding window length lW to be the mini-

mum of the length of L and the length of the query sequence Q. The window is shifted

from left to right over the longer sequence. Let step sliding window is u%, the first window

starts at Position 1, the second at u
100

lW + 1, the third at 2u
100

lW + 1, and so on. Hence,

we have (1− u
100

) overlap on the windows.

A comparison between a pair of DNA sequences to judge their similarities and dissim-

ilarities can be carried out by calculating the distance AFd(L,Q). The analysis of similar-

ity among each library sequence L and the query sequence Q is based on the assumption

that the smaller is the distance AFd(L,Q) the more similar are the two sequences.

The rest of work is how to select the stabilized function for different applications.

The similarity search is to search a database of known function sequences and uses the

structures and functions of the most closely matched known sequences to analyze the

query sequence. For this application, we would use following typical stabilized functions:

f(x) =
1

(1 + x)m
,

where m is a nonnegative integer.

3 Comparing the Performances of Dissimilarity Mea-

sures

3.1 Evaluation methods

Sensitivity and selectivity were computed to evaluate and compare the performance

of the proposed distance measure AFd with other distance measures in previous studies

[20,25].
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All mentioned distance measures were used to perform a search for similarities of the

query sequence HSLIPAS Q (of length 1612) human lipoprotein lipase (LPL) against a

test dataset of s sequences (t HSLIPAS-related sequences and s − t HSLIPAS-unrelated

sequences).

Sensitivity is expressed by the number of HSLIPAS related sequences found among

the first closest t library sequences; whereas selectivity is expressed in terms of the number

of HSLIPAS-related sequences of which distances are closer to HSLIPAS than others and

are not truncated by the first HSLIPAS-unrelated sequence.

3.2 Experiment no.1

In order to compare the performance of several word-based methods used in [24] with

our proposed method, the proposed distance AFd was used to search for similar sequences

of a query sequence from a complex dataset of 39 library sequences, of which 20 sequences

are known to be similar in biological function to the query sequence, and the remaining

19 sequences are known as being not similar in biological function to the query sequence.

This dataset has been studied in [20,25]. These 39 sequences were selected from mammals,

viruses, plants, etc., of which lengths vary between 322 and 14121 bases.

HSLIPAS is also used as the query sequence. The 20 sequences, which are known as

being similar in biological function to HSLIPAS are as follows: OOLPLIP (Oestrus ovis

mRNA for lipoprotein lipase, 1656 bp), SSLPLRNA(pig back fat Sus scrofa cDNAsimilar

to S.scrofa LPL mRNA for lipoprotein lipase, 2963 bp), RATLLIPA (Rattus norvegicus

lipoprotein lipase mRNA, complete cds, 3617 bp), MUSLIPLIP (Mus musculus lipopro-

tein lipase gene, partial cds, 3806 bp), GPILPPL (guinea pig lipoprotein lipase mRNA,

complete cds, 1744 bp), GGLPL (chicken mRNA for adipose lipoprotein lipase, 2328 bp),

HSHTGL (human mRNA for hepatic triglyceride lipase, 1603 bp), HUMLIPH (human

hepatic lipase mRNA, complete cds, 1550 bp), HUMLIPH06 (human hepatic lipase gene,

exon 6, 322 bp), RATHLP (rat hepatic lipase mRNA, 1639 bp), RABTRIL [Oryctola-

gus cuniculus (clone TGL-5K) triglyceride lipase mRNA, complete cds, 1444 bp], ECPL

(Equus caballus mRNA for pancreatic lipase, 1443 bp), DOGPLIP (canine lipase mRNA,

complete cds, 1493 bp), DMYOLK [Drosophila gene for yolk protein I (vitellogenin),

1723 bp], BOVLDLR [bovine low-density lipoprotein (LDL) receptor mRNA, 879 bp],

HSBMHSP (Homo sapiens mRNA for basement membrane heparan sulfate proteoglycan,
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13790 bp), HUMAPOAICI (human apolipoprotein A-I and C-III genes, complete cds,

8966 bp), RABVLDLR (O.cuniculus mRNA for very LDL receptor, complete cds, 3209

bp), HSLDL100 (human mRNA for apolipoprotein B-100, 14121 bp) and HUMAPOBF

(human apolipoprotein B-100 mRNA, complete cds, 10089 bp).

The other 19 sequences known as being not similar in biological function to HSLI-

PAS are as follows: A1MVRNA2 [alfalfa mosaic virus (A1M4) RNA 2, 2593 bp], AA-

HAV33A [Acanthocheilonema viteae pepsin-inhibitorlike-protein (Av33) mRNA sequence,

1048 bp], AA2CG (adeno-associated virus 2, complete genome, 4675 bp), ACVPBD64 (ar-

tificial cloning vector plasmid BD64, 4780 bp), AL3HP (bacteriophage alpha-3 H protein

gene, complete cds, 1786 bp),AAABDA[Aedes aegypti abd-A gene for abdominal-A pro-

tein homolog (partial), 1759 bp], BACBDGALA [Bacillus circulans beta-d-galactosidase

(bgaA) gene, complete cds, 2555 bp], BBCA (Bos taurus mRNA for cyclin A, 1512 bp),

BCP1 (bacteriophage Chp1 genome DNA, complete sequence, 4877 bp) and CHIBATPB

(sweet potato chloroplast F1-ATPase beta and epsilon-subunit genes, 2007 bp), A7NIFH

(Anabaena 7120 nifH gene, complete CDS, 1271 bp), AA16S (Amycolatopsis azurea 16S

rRNA, 1300 bp), ABGACT2 (Absidia glauca actin mRNA, complete cds, 1309 bp), ACTI-

BETLC (Actinomadura R39 DNA for beta-lactamase gene, 1902 bp), AMTUGSNRNA

(Ambystoma mexicanum AmU1 snRNA gene, complete sequence, 1027 bp), ARAST18B

(cloning vector pAST 18b for Caenorhabditis elegans, 3052 bp), GCALIP2 (Geotrichum

candidum mRNA for lipase II precursor, partial cds, 1767 bp), AGGGLINE (Ateles ge-

offroyi gamma-globin gene and L1 LINE element, 7360 bp) and HUMCAN (H.sapiens

CaN19 mRNA sequence, 427 bp).

Before computing the sensitivity and selectivity by using our proposed method, a

series of steps of sliding window 5% − 30% performed for our approach, and the results

listed in Table 1. It shows that this approach that appear to produce the high and steady

sensitivity and sensitivity vales when steps of sliding window among 10%−30%. Whereas

both sensitivity and selectivity obtained from our proposed method were of 18 sequences.

These results agree with those obtained using the KLD of Markov models [20] and better

than those obtained by using the recommended standardized Euclidean distance under

the Markov chain models of base composition, of which sensitivity and selectivity were

of 18 and 17 sequences, respectively, of order one for base composition, and 18 and 16

sequences, respectively, of order two for base composition, when all the distances of nine
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Table 1: Comparison of sensitivity and selectivity for dataset of 39 library sequences

step (u %) 5 % 8 % 10 % 12 % 14 % 16 % 18 % 20 % 22 % 24 % 26 % 28 % 30 %

m

0 Sensitivity 19 18 19 19 19 19 19 19 19 19 19 19 19
Selectivity 18 14 18 18 18 17 18 16 18 18 17 16 17

1 Sensitivity 19 18 19 19 19 19 19 19 19 19 19 19 19
Selectivity 18 16 18 18 18 17 18 18 17 18 18 18 18

2 Sensitivity 19 19 19 19 19 19 19 19 19 19 19 19 19
Selectivity 18 17 18 18 18 18 18 17 17 18 18 18 18

3 Sensitivity 19 19 19 19 18 19 19 19 19 19 19 19 19
Selectivity 18 17 18 18 17 18 18 17 17 18 18 18 18

4 Sensitivity 19 19 19 19 18 19 19 19 19 19 18 19 19
Selectivity 18 17 18 17 17 17 18 17 17 17 18 18 18

5,6 Sensitivity 19 18 19 19 18 19 19 19 19 19 19 19 19
Selectivity 18 18 18 16 17 16 18 18 17 16 18 18 18

7 Sensitivity 19 18 19 19 18 19 19 19 19 19 19 19 19
Selectivity 17 18 18 16 17 16 18 19 17 16 18 18 18

8,9 Sensitivity 19 18 19 19 18 19 19 19 19 19 19 19 19
Selectivity 17 18 18 16 17 16 18 19 17 16 18 19 18

10,11, Sensitivity 19 18 19 19 19 19 19 19 19 19 19 19 19
12 Selectivity 17 18 18 16 18 16 18 19 18 16 18 19 18
13 Sensitivity 19 18 19 19 19 19 19 19 19 19 19 19 19

Selectivity 17 18 18 16 18 16 19 19 18 16 18 19 19
14,16, Sensitivity 19 18 19 19 19 19 19 19 19 19 19 19 19
19 Selectivity 17 18 19 16 18 17 19 19 18 16 18 19 19
26 Sensitivity 19 19 19 19 19 19 19 19 19 19 19 18 19

Selectivity 19 18 19 17 18 17 19 19 19 16 19 18 19
83 Sensitivity 19 19 19 19 19 19 19 19 19 19 19 19 19

Selectivity 18 19 19 17 18 18 19 19 19 19 18 19 19
95 Sensitivity 19 18 19 19 19 19 19 19 19 19 19 19 19

Selectivity 18 19 19 17 17 18 19 19 18 19 18 19 19
99 Sensitivity 19 19 19 19 19 19 19 19 19 19 19 19 19

Selectivity 18 19 19 17 17 18 19 19 18 19 18 19 18
999 Sensitivity 19 19 19 19 19 19 19 19 19 19 19 19 19

Selectivity 19 19 19 16 16 19 19 19 16 17 17 19 18
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different word sizes were combined [25]. The false rejections given by the proposed method

are similar, all are HSBMHSP, whereas the false acceptances are AA2CG.

3.3 Experiment no.2

The proposed distance AFd was further tested with a more complex dataset of 63 DNA

sequences taken from the GenBank sequence database. These 63 sequences were selected

from mammals, invertebrates, viruses, plants, bacteria, etc., of which lengths vary between

322 to 2 462 499 bases. Every member of the test dataset is classified as being related or

not related in biological function to the query sequence. There are 35 sequences classified

as being related, and 28 sequences classified as being not related.

Wu et al. [26] use both SK-LD and BLAST to perform a search for dissimilar-

ities/similarities of the query sequence HSLIPAS (1612 bp) human lipoprotein lipase

against this test dataset. The SK-LD and BLAST scores between HSLIPAS and 63

library sequences are sorted from the highest to lowest similarity, respectively, and the

sensitivity and selectivity are used to quantify their performances.

They obtained that the sensitivity and selectivity for SK-LD are 34 and 30, respec-

tively, and those for BLAST are 29 and 22, respectively, at the default parameter setting

and are no better than 33 and 28, respectively, at other parameter settings (the optimal

result is obtained). Hence, SK-LD performs better than BLAST. Also, SK-LD improves

the combined K-LD [25], whose sensitivity and selectivity are 31 and 24, respectively.

They also computed the sensitivity and selectivity of SimMM of Pham and Zuegg [20]

that are 32 and 26, respectively.

Tables 2 show the results of our approach. Observing Table 2, we find that all the

sensitivity is 33 sequences and all the selectivity is no less than 28 sequences when m > 0

and steps of sliding window is set between 10%− 30% (that means 70%− 90% overlap on

the windows). As it can be easily observed, the best sensitivity and selectivity are of 33 and

33 sequences, respectively. Two similar false rejections are HSBMHSP (13793 bp Human

sapiens mRNA for basement membrane heparan) and PTLPL2 (1018 bp Pan troglodytes

(chimpanzee) lipoprotein lipase gene, exon 6); whereas one similar false acceptances are

AA2CG (4675 bp Adeno-associated virus 2, complete genome), the others are one or two

ANANIFBH (5936 bp Anabaena PCC7120 nitrogenase, ferrodoxin-like protein nifS, nifU,

and nitrogenase reductase genes, complete cds), AL3HP (1786 bp Bacteriophage alpha-3
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Table 2: Comparison of sensitivity and selectivity dataset of 63 library sequences

m step (u %) 5 % 8 % 10 % 12 % 14 % 16 % 18 % 20 % 22 % 24 % 26 % 28 % 30 %

0 Sensitivity 33 32 33 33 33 33 33 33 33 32 33 33 33
Selectivity 29 25 30 29 28 29 27 29 28 27 28 27 27

1 Sensitivity 33 32 33 33 33 33 33 33 33 33 33 33 33
Selectivity 29 28 30 29 30 28 30 29 30 28 30 30 29

2 Sensitivity 33 33 33 33 33 33 33 33 33 33 33 33 33
Selectivity 29 30 30 29 31 29 30 30 29 28 31 31 30

10 Sensitivity 33 33 33 33 33 33 33 33 33 33 33 33 33
Selectivity 31 32 32 29 32 28 32 33 30 28 32 33 31

14 Sensitivity 33 33 33 33 33 33 33 33 33 33 33 33 33
Selectivity 31 32 33 29 32 30 33 33 31 28 32 33 32

83 Sensitivity 33 33 33 33 33 33 33 33 33 33 33 33 33
Selectivity 30 31 30 30 31 28 32 28 29 30 32 33 32

H protein gene, complete cds) or AGGGLINE (7360 bp A.geoffroyi gamma-globin gene

and L1 LINE element).

The prediction accuracy will generally increase in the beginning but will not increase

all the way when the value ofm increases. From Table 2 we can see that the best predicted

accuracies have been gotten when the value of m is 14.

4 Conclusions

we advocate the use of dinucleotide absolute frequency within a DNA sequence and sta-

bilized function as a basis for structuring the distance measure AFd. The adoption of

appropriate stabilized function can greatly improve the prediction accuracy. Here we use

1
(1+x)m

as stabilized function. In fact, we can also use other function as stabilized function,

for example, when we replace 1
(1+x)m

with (1− x)m in this application, the result is near

consistent. It is also noteworthy that the use of dinucleotide absolute frequency is less

sensitive to length than that of dinucleotide frequency of DNA sequence.

we have demonstrated experimentally the ability of AFd to detect biologically sig-

nificant matches between a query and large datasets of DNA sequences while varying

stabilized function. The comparison demonstrates that AFd is a simple, high-sensitive,

and high-selective method of rapid sequence comparison that can detect novel sequence

relationships. This can significantly enhance the current technology in comparing large

datasets of DNA sequences.
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