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Abstract

This paper presents new results about the optimization based generation of chem-
ical reaction networks (CRNs) of higher deficiency. Firstly, it is shown that the graph
structure of the realization containing the maximal number of reactions is unique
if the set of possible complexes is fixed. Secondly, a mixed integer programming
based numerical procedure is given for computing a realization containing the mini-
mal/maximal number of complexes. Moreover, the linear inequalities corresponding
to full reversibility of the CRN realization are also described. The theoretical results

are illustrated on meaningful examples.

1 Introduction

Positive (nonnegative) systems are characterized by the property that all state variables
remain positive (nonnegative) if the trajectories start in the positive (nonnegative) or-
thant. Thus, positive systems play an important role in fields such as chemistry, economy,

population dynamics or even in transportation modeling where the state variables of the
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models are often physically constrained to be nonnegative [9]. It is remarked that many
non-positive systems can be transformed into the positive class either through invertible
coordinates transformations or by using other approaches, where the distortion of the
phase-space can be kept minimal in the region of interest [27].

Chemical Reaction Networks (CRNs) form a wide class of positive (or nonnegative)
systems attracting significant attention not only among chemists but in numerous other
fields such as physics, or even pure and applied mathematics where nonlinear dynamical
systems are considered [31]. Beside pure chemical reactions, CRNs are often used to model
the dynamics of enzymatic systems [5], intracellular processes, metabolic or cell signalling
pathways [16]. The increasing interest towards reaction networks among mathematicians
and engineers is clearly shown by recent tutorial and survey papers |1,6,28|.

It is known from the so-called "fundamental dogma of chemical kinetics" that reac-
tion networks with different graph structures and even with different sets of complexes
might generate identical dynamical system models (i.e. sets of differential equations).
This means that CRNs with structurally very different reaction mechanisms can show
exactly the same behaviour in the state space that is usually the space of chemical specie
concentrations. However, many strong analysis results of chemical reaction network the-
ory (CRNT) depend on the graph structure of the studied CRN. There is a clear need
therefore to define and search for distinguished structures among the possible alternatives.
The integration of logical expressions into mixed integer programming problems [4,25] has
opened the possibility to formulate the computation of certain reaction structures with
advantageous properties as an optimization problem [29].

Mixed Tnteger Nonlinear Programs (MINLPs) are the most general constrained opti-
mization problems with a single objective. These problems can contain continuous and
integer decision variables without any limitations to the form and complexity of the ob-
jective function or the constraints. As it is expected, the solution of these problems is
rather challenging [12]. A special subset of optimization problems is the class of Mixed
Integer Linear Programs (MILPs) where the objective function and the constraints are lin-
ear functions of the decision variables. Effective solvers have been developed for MILPs,
although it is known that their solution is NP-hard. In the chemical and biochemical
fields, efficient combinatorial optimization algorithms are widely applied e.g. in perma-

nental polynomial computation [20], metabolic pathway construction, control analysis or
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metabolic network reconstruction [3]. Tt is noted that the evolutionary approach can also
be very successful in solving complex chemically originated optimization problems [19].
In [29], the notion of realization was introduced for the unique definition of a reaction
network, and a mixed integer linear programming (MILP)-based numerical procedure
was proposed to compute sparse and dense realizations of mass-action reaction networks
corresponding to the same mathematical model, solving important part of a problem that
was raised almost 30 years ago in [17|. The purpose of this paper is to present new results

in the field of optimization based generation of reaction network structures.

2 Basic notions and tools

2.1 Structural and dynamic description of CRNs obeying the

mass action law

The overview in this subsection is largely based on [29]. A CRN obeying the mass action
law is a closed system under isothermal and isobaric conditions, where chemical species
X;, © = 1,...,n take part in r chemical reactions. The concentrations of the species
denoted by @;, (i = 1,...,n) form the state vector, i.e. ; = [X;]. The elementary reaction

steps have the following form:

n n
Z%;‘Xi - Zﬂuxu j=1..,r (1)
i=1 i=1

where «;; is the so-called stoichiometric coefficient of component X; in the jth reaction,
and [ is the stoichiometric coefficient of the product X,. The linear combinations of
the species in eq. (1), namely Y , a;X; and >0 8;X; for j = 1,...,r are called the
complezes and are denoted by Cy,Csy, ..., Cp. Note that the stoichiometric coefficients
are always nonnegative integers in classical reaction kinetic systems. The reaction rates

of the individual reactions can be described as

=k X =k [T L d=1r (2)
i=1 i=1

where k; > 0 is the reaction rate constant of the jth reaction.
If the reactions C; — C; and C; — C; take place at the same time in a reaction
network for some 4, j then this pair of reactions is called a reversible reaction (but it will

be treated as two separate elementary reactions).
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Similarly to [10], we can assign the following directed graph (see, e.g. |2]|) to the
reaction network (1) in a straightforward way. The directed graph D = (V, E4) of a
reaction network consists of a finite nonempty set V; of vertices and a finite set E; of
ordered pairs of distinct vertices called directed edges. The vertices correspond to the
complexes, i.e. Vg = {C4,Cs,...C,,}, while the directed edges represent the reactions,
ie. (C;,C)) € Ey if complex Cj is transformed to C; in the reaction network. The
reaction rate coefficients k; for j = 1,... 7 in (2) are assigned as positive weights to the
corresponding directed edges in the graph. Where it is more convenient, the notation
k! will be used for denoting the reaction rate coefficient corresponding to the reaction

i
C; — Cj.

A set of complexes {C1,Cy,...,Cy} is a linkage class of a reaction network if the
complexes of the set are linked to each other in the reaction graph but not to any other
complex [11]. There are several possibilities to represent the dynamic equations of mass

action systems (see, e.g. [10], [15], or [§]). The most advantageous form for our purposes

is the one that is used e.g. in Lecture 4 of [10], i.e.
T=Y Ay -1(v) (3)

where = € R" is the concentration vector of the species, Y € R"*™ stores the stoichiomet-
ric composition of the complexes, Ay € R™*™ contains the information corresponding to
the weighted directed graph of the reaction network, and v : R® — R™ is a monomial-type

vector mapping defined by
i) =[], j=1.....m (4)

where y;; = [Y];;. It is remarked that the numerical solution of kinetic differential equa-
tions can be a challenging task requiring advanced integration approaches [30]. The exact
structure of Y and Ay is the following. The ith column of Y contains the composition of
complex C}, i.e. Yj; is the stoichiometric coefficient of C; corresponding to the specie X;.

Ay, is a column conservation matrix (i.e. the sum of the elements in each column is zero)

defined as
T A _
R e %)
K, if 147
In other words, the diagonal elements [Ag]; contain the negative sum of the weights of

the edges starting from the node C;, while the off-diagonal elements [Ay];;, ¢ # j contain



-313-

the weights of the directed edges (C}, C;) coming into C;. Based on the above properties,
it is appropriate to call Ay the Kirchhoff matriz of a reaction network.

To handle the exchange of materials between the environment and the reaction net-
work, the so-called "zero-complex" can be introduced and used which is a special complex
where all stoichiometric coefficients are zero i.e., it is represented by a zero vector in the
Y matrix (for the details, see, e.g. [10] or |7]).

We can associate an n-dimensional vector with each reaction in the following way. For

the reaction C; — Cj, the corresponding reaction vector denoted by hy, is given by
he =[Y].; = [Y]i (6)

where [Y].; denotes the ith column of Y. Similarly to reaction rate coefficients, whenever
it is more practical, h;j denotes the reaction vector corresponding to the reaction C; — Cj.

The rank of a reaction network denoted by s is defined as the rank of the vector set
H = {hq,hy...,h.} where r is the number of reactions. The elements of H span the so-

called stoichiometric subspace denoted by S, i.e. S = span{hi,hy...,h.}. The positive

stoichiometric compatibility class containing a concentration zy is the following set [11]:
(zo+ S)NRY

where R denotes the positive orthant in R™.

The deficiency d of a reaction network is defined as [10,11]
d=m-—1—s (7)

where m is the number of complexes in the network, [ is the number of linkage classes
and s is the rank of the reaction network.

A reaction network is called reversible, if each of its reactions is a reversible reaction.
A reaction network is called weakly reversible, if each complex in the reaction graph lies on
at least one directed cycle (i.e. if complex Cj is reachable from complex C; on a directed
path in the reaction graph, then C; is reachable from C; on a directed path). An important
point of the well-known Deficiency Zero Theorem [11] says that the ODEs of a weakly
reversible deficiency zero CRN are globally stable with a known logarithmic Lyapunov
function for all positive values of the reaction rate coefficients. Therefore (among other
realization problems) it is of interest whether we can find a (weakly) reversible deficiency

zero kinetic realization of a nonnegative polynomial system.
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Using the notation M =Y - Ay, eq. (3) can be written in the compact form
&= M- (x) (8)

The invariance of the nonnegative orthant for CRN dynamics is shown e.g. in [6].

2.2 Kinetic realizability of positive (nonnegative) polynomial sys-

tems

An autonomous polynomial nonlinear system of the form

i= f(x) 9)

is called kinetically realizable or simply kinetic, if a mass action reaction mechanism given
by eq. (3) can be associated to it that exactly realizes its dynamics, i.e. f(z) =Y -
Ay - ¥(x) where ¢ contains the monomials, matrix Y has nonnegative integer elements
and Ay is a valid Kirchhoff matrix (see section 2.1 for its properties). In such a case,
the pair (Y, Ay) will be called a realization of the system (8) (note that Y contains all
information about the composition of the monomials in ¢ in the case of mass-action
dynamics). As it is expectable from linear algebra, the same polynomial system may have
many parametrically and/or structurally different realizations. Thus, two CRNs will be
called dynamically equivalent if they realize the same polynomial system of the form (9).
Therefore, CRN A will also be called a realization of CRN B, if A and B are dynamically
equivalent.

The problem of kinetic realizability of polynomial vector fields was first examined and
solved in [17] where the constructive proof contains a realization algorithm that produces
the directed graph of a possible associated mass action mechanism. It is important to
remark here that the above mentioned realization algorithm typically produces high defi-
ciency CRNs that are non-minimal in the sense that they usually contain more reactions
and complexes than the minimal numbers that are necessary to realize the given kinetic
polynomial system. According to [17], the necessary and sufficient condition for kinetic
realizability is that all coordinates functions f; of the right hand side of (9) must have
the form

filw) = —wigi(v) + hi(x), i=1,...,n (10)

where g; and h; are polynomials with nonnegative coefficients.
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2.3 Mixed integer linear programming

A special subset of optimization problems is the class of Mixed Integer Linear Programs
(MILPs) where the objective function and the constraints are linear functions of the
decision variables. A mixed integer linear program with k variables (denoted by w € R¥)

and p constraints can be written as [23]:

minimize ¢’ w

subject to:

Ajw = by

Asw < by (11)
i <w;<wu;fori=1,...,k

wj is integer for j € I, I C{1,... k}

where ¢ € RF, A} € RP*F Ay € RP2%kE and p; + pa = p.

If all the variables can be real, then (11) is a simple linear programming problem that
can be solved in polynomial time. However, if any of the variables is integer, then the
problem becomes NP-hard. In spite of this, there exist a number of free (e.g. YALMIP
or the GNU Linear Programming Kit) and commercial (such as CPLEX or TOMLAB)
solvers that can efficiently handle many practical problems [18,21,22].

A propositional logic problem, where a statement denoted by S must be proved to
be true given a set of compound statements containing so-called literals Si,...,S,, can
be solved by means of a linear integer program. For this, logical variables denoted by
0; (0; € {0,1}) must be associated with the literals S;. Then the original compound

statements can be translated to linear inequalities involving the logical variables d; |4,26].

2.4 Computing CRN realizations with the minimal/maximal

number of reactions as a MILP problem

For convenience, this subsection briefly summarizes the results of [29] without going into
the details. The starting point is that a kinetic polynomial system of the form (8) is given
with its parameters. This means that M is known, the stoichiometrix matrix Y is also
known from the monomials of ¥, and we would like to determine the Kirchhoff matrix

Aj € R™™ that fulfils given requirements.
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The characteristics of the mass-action dynamics can be expressed in the form of the

following equality and inequality constraints:

YA, =M (12)
DA =0, j=1,....m (13)
i=1

[Ak]L_/ > 0~ 27.] = 17"'77”> { #J (14)
[Ar)i <0, i=1,...,m (15)

where the decision variables are the elements of Aj. Clearly, constraints (13)-(15) express
that we are searching for a valid Kirchhoff connection matrix. To make the forthcoming
optimization problems computationally tractable, appropriate upper and lower bounds

are introduced for the elements of Aj as

0<[Api; <lij, 4,j=1,...,m, i #] (16)

Ly < [Aplu <0, i=1,...,m. (7)

In this problem set, we are searching for such A, that contains the minimal/maximal
number of nonzero off-diagonal elements. For this, we introduce logical variables denoted

by ¢ and construct the following compound statements
6u=1<_) [Ak]tj > €, Z'7.7‘:17"'777% 2747 (18)

where the symbol "<»" represents "if and only if", and 0 < ¢ < 1 (i.e. elements of
Ay, below € are treated as zero). Taking into consideration (16), statement (18) can be

translated to the following linear inequalities (see, e.g. |4])

0 < [Aglij — €0y, 4,5=1,...,m, i #] (19)

0 < —[Aplij + lijoij, 4,5=1,....m, i #j (20)

Now we are able to compute the realization containing the minimal/maximal number of

reactions by minimizing/maximizing the objective function

m
C4(8) = Z 3ij (21)
ig=1
£
The realizations of a reaction network containing the minimal and maximal number of

reactions will be called the sparse and dense realizations, respectively [29].
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2.5 A simple motivating example

Consider the simple reaction mechanism depicted in Fig. 1 a). It is easy to check that
the reaction structures in Figs 1 b), ¢), d) and e) lead to the same dynamical description

as the original structure a), namely

11.31 = 3k1Ig - k‘QIf

i’g = —3]{?11’3 + k’gI%, (22)

with ki, ke > 0, 5ky > ki (i.e. the CRNs in Fig. 1 are dynamically equivalent). It
is worth having a look at the structural properties of the different realizations of eq.
(22) shown in the subfigures. The realizations in Figs. 1.a) and b) are irreversible, the
structure in Fig. 1.c) is weakly reversible, while the networks in Figs. 1.d) and e) are fully
reversible. The deficiencies of the first four realizations a) d) are 1, while the deficiency
of realization e) is zero. This means that both the weaker Deficiency one theorem and
the stronger Deficiency zero theorem can be applied to all realizations a) e), and this
way to the dynamical system described by eq. (22) (see [11]). Shortly speaking, the
Deficiency one theorem for such weakly reversible networks as ¢) says that its differential
equations admit precisely one steady state in each positive stoichiometric compatibility
class. Moreover, by applying the Deficiency zero theorem to realization e), we obtain the
additional valuable fact that each steady state of (22) is asymptotically stable within the

corresponding positive stoichiometric compatibility class with the Lyapunov function:

Viz) = ix <111 (?) - 1> +al, (23)

i=1 i
where 2* denotes the equilibrium point of (22) corresponding to the given stoichiometric
compatibility class.

First of all, the above example shows very transparently that important structural
properties such as deficiency, reversibility or weak reversibility are not encoded uniquely
in the polynomial differential equations of a kinetic system. Secondly, it is definitely of

interest to develop computational tools to search for realizations with such properties that

are useful in the dynamical analysis of given kinetic polynomial systems or CRNs.
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k
3X——3X, 3X —2—3X,
ko 3k,/2
2X+X, 2X +X,
a) b)
(5k; k,)/15
X3, 3k1 7
2X +X, X, +x
c) d)
C’:XZ,—’—;'E)X1
k/3
o)

Figure 1: Dynamically equivalent reaction networks

3 Properties of dense realizations and its consequences

The main result of this section is that the dense realization of a CRN is structurally
unique if the set of possible complexes is fixed. We recall that the realizations of a
reaction network containing the minimal and maximal number of nonzero reaction rate
coefficients are called the sparse and dense realizations.

3.1 The uniqueness of the structure of dense realizations

Firstly, we state the following result.

Theorem 3.1. If a set of kinetic differential equations denoted by X is given with matrices
M and Y, then the directed unweighted graph of any realization of > must be a subgraph
of the directed unweighted graph of the dense realization.

Proof. The proof is based on the following elementary fact of linear algebra. Consider an

inhomogenous set of linear equations:
Ax =b (24)
If p is any specific solution of (24) then the entire solution set of (24) can be given as

{p +v | v is any solution of Az = 0} (25)
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The matrix equation Y - A, = M (see eqs. (3) and (8)) obviously defines m sets of linear

equations of the form

where the unknown is [A].; (i.e., the ith column of Aj). For any i, let us assume that
p = [Ay].; is a dense solution of (26) i.e., it contains the maximal possible number of
nonzero elements. Let [ denote the number of nonzero elements in p. If [ = m then the
theorem is trivial, so from now on we assume that [ < m. Let us assume furthermore that
p' # pis also a solution of (26) and let (ji,...,j;) denote the indices where p(j.) = 0
while p'(jx) # 0 for k = 1,...¢q. With ¢ > 0, this means that the directed unweighted
reaction graph defined by p’ is not a subgraph of the directed unweighted reaction graph

defined by p. Then, according to (25), p’ can be written as
P=p+v, (27)

where Y -v = 0. According to our assumption, v # 0, and necessarily, v(j1) # 0, ..., v(j,)
# 0. Let I’ denote the number of nonzeros in p’. Since I’ < [ (because p is a dense
solution), there must exist indices (hy,...,h;) disjoint from (ji,...,J,) with z > ¢ such
that v(hy) = —p(hg) # 0 for k = 1,...,2. Then for any A € R, p”" = p+ X-v is also a
solution of (26), and X can always be chosen such that p” contains more nonzero elements

than p, which is clearly a contradiction. 0

We note that we did not use the further restriction that [Ay]. ; is an appropriate column
of a Kirchhoff matrix, but this was not needed for the proof. Now we easily obtain our

following result about the uniqueness of the dense realization.

Theorem 3.2. If a set of kinetic differential equations denoted by X5 is given with matrices

M and Y, then the directed graph structure of its dense realization is unique.

Proof. The proof is the special case of the proof of Theorem 3.1 with I’ =/ and ¢ = 2. [

3.2 Important consequences and special cases

The following remarks contain some important immediate consequences and additions to

Theorems 3.1 and 3.2.
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R1 According to Theorems 3.1 and 3.2, dense realizations give a unique "superstruc-
ture" for a CRN in the sense that the reactions of any realization of a CRN must
form a subset of the reactions of the dense realization if the set of possible com-
plexes is given. In other words, reactions that are not present in the dense realization

cannot appear in any other realization.

R2 Obviously, dense realizations are parametrically not unique. There may exist several
dense realizations for a CRN with different reaction rate constants (weights) but

always with the same graph structure.

R3 The graph structure of a CRN with a given set of complexes is unique if and only

if the graph structures of its sparse and dense realizations are identical.

This fact is easy to see: If the structures of the dense and sparse realizations are
identical, then it directly follows that the graph structure of the CRNs is unique,
since the only possible unique structure is determined by the dense realization (that
is the sparse realization at the same time). In other words, any realization of the
CRN can contain neither more nor less reactions than the dense realization does,
the structure of which is unique. If the graph structure of the CRN is unique, then it

trivially implies that the structures of the dense and sparse realizations are identical.

R4 The dense realization of a CRN is not only a theoretical construction but it can be
practically determined using well-formulated numerical procedures that are treat-

able even in the case of several hundred complexes and species (see, e.g. [13,26]).

R5 Sparse realizations of CRNs are structurally not unique, there may exist several
sparse realizations for a given CRN with different graph structures (see later in

subsection 5.1).
4 Transforming additional constraints corresponding to
preferred CRN properties into linear inequalities

This section presents some further answers to the open problems originally set in [17]

from an optimization point of view.
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4.1 Computing realizations with the minimal/maximal number

of complexes

In this section, the detailed MILP formalism will be presented for computing CRN realiza-
tions that contain the minimal/maximal number of complexes from a predefined complex
set.

Let us assume again that the set of feasible complexes is a’priori given with matrix
Y. The constraints written in eqs. (12)-(17) corresponding to the characteristics of
mass-action dynamics are used here again without change. Then, the minimization or
maximization of the number of non-isolated complexes in the reaction graph is based
on the following simple observation. A complex disappears from the reaction network’s
graph, if both the corresponding column and row in Ay contain only zeros. This means
that no directed edges start from or point to this complex in the graph and therefore it
becomes an isolated vertex that can be omitted.

For the optimization, m boolean variables denoted by d;, i = 1,..., m are introduced.

Using these boolean variables, the following compound statements are introduced:

Gi=1¢ > [Adii+ Y [Api>0 i=1....m (28)
ji=1 jo=1
J1#i JoF#i

Eq. (28) means that the value of ¢; is 1 if and only if there is at least incoming/outgoing
directed edge in the reaction graph to/from the ith complex. For practical computations,

the statement (28) is modified as follows:

(51' =1« Z [Ak]i,jl + [Ak'}jz,i >e, 1=1...,m (29)
j1=1 ja=1
#i JoFi

where again 0 < € < 1 (see, eq. (18)). Using the bound constraints (16)-(17), the linear
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inequalities corresponding to (29) are the following

m m
0< Z [Arlij + Z [Ailjpi —€ds, i=1,...,m (30)
Ji=1 jo=1
i ot
m m m m
0<= > [Aliji— D> Aljpitet | D liju+ D lpi—e| 6, i=1,...,m (31)
ji=1 Jj2=1 ji=1 Jo=1
J17i JoFi Jr1Fi JoFi

Now, the objective function to be minimized or maximized can be written as
Ca(0) =D 6 (32)

In contrast to the algorithm summarized in section 2.4, minimizing/maximizing the num-
ber of non-isolated complexes is not straightforward to parallelize (see also [29]). However,
the number of integer variables in this case is only m, compared to m? — m when mini-

mizing/maximizing the number of reactions.

4.2 Computing reversible realizations

Here, the basic constraints (12)-(17) expressing the properties of mass action dynamics
and lower and upper bounds for the reaction rate coefficients will be used again for the
optimization. To distinguish between zero and nonzero reaction rate coefficients, a small
positive scalar € is applied again, similarly to the previous case described in section 4.1.

The additional constraint for the full reversibility of the CRN structure is not difficult

to formulate as
[Ak],] > €9 <> [Akb, > €9, Vi > j (33)

where €, is a positive threshold value such that € < €. The linear inequalities equivalent

to (33) can be written as

0< (62— €) — [Ailij + (I — e2) - 6, Vi>j (34

0< (=€) = [Alji+ (i — e2) - 0, Vi>j (35

0<[Aulij —ex- 60, Vi>j (36

J

0 < [Aeji — €20, Vi>j (37



-323-

where [;; is the upper bound for [A;];; as it is introduced in eq. (16). Furthermore, m(”;l)

integer variables are introduced for the representation of the reversibility constraint that
are denoted by 51(].1), Vi > j.

In order to exclude reaction rate coefficients between e and e, and to obtain a nu-
merically stable solution, the following additional constraints in the form of a compound

statement are introduced
[Ak]” <e OR [Ak]” > €3+ 7, (38)

where v is a small positive threshold value that is in the same order of magnitude as es.

The set of inequalities equivalent to (38) is given by

0<67, i#j (39)
0.< by~ [Ady = (ly =) - 05, i# (40)
0< Ay — (2 +7) -6, i#] (41)
0< -0+ +06, i#j (42)
0<6;) 67, i#] (43)
0< 87 6, i#] (44)
where 6@, §® and 6 represent altogether 3(m? — m) integer variables.

Tt is remarked that the inequalities (34) (37) and (39) (44) express only constraints
and no objective function is associated to reversibility in itself. However, the reversibility
constraints can be easily combined with the minimization/maximization of either the
number of reactions or that of the non-isolated complexes, still in the framework of mixed
integer linear programming. Moreover, the strict reversibility constraint can be modified
into the minimization/maximization of reversible reactions in a straightforward way. It
is emphasized finally, that the constraints presented in this subsection together with an
appropriate MILP solver are suitable for deciding whether a reversible realization exists

for a given CRN or not.

5 FExamples

For the examples described in this section, the YALMIP modeling tool was applied under
the MATLAB computational environment [21]| using both the freely available GLPK |22]|
and the commercial CPLEX [18] solvers.
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5.1 Non-uniqueness of sparse realizations

For the illustration of several structurally different sparse realizations of a reaction net-

work, let us recall a literature example that was originally published in [8]. The original

CRN with all reaction rate coefficients equal to 1 is shown in Fig. 2 a). The CRNs in Figs.

2 b) and ¢) were obtained by using the parallel and non-parallel version of the method

described in [29] and summarized in section 2.4, respectively, using the GLPK MILP

solver. The network shown in Fig. 2 d) was computed using the CPLEX solver, using a

non-parallel approach. These results show that additional constraints in the optimization

procedure may be used to select the required sparse realization from the set of possible

alternatives.

Figure 2: Original reaction network and its three different sparse realizations.

X X

0
X1/ '\ X

reaction rates different from 1 are indicated.

d)

Only
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5.2 Motivating example continued

Consider again the reaction network shown in Fig. 1 a) with parameters k; = 1, ky = 2.

The matrices characterizing the CRN realization are the following.

03 9 -1 00
Y = A= 1 =20 45
{3 0 1 g (45)
0 20
M=v.a-=| 220 (46)
-3 20

5.2.1 Computing a realization with the minimal number of complexes

Finding a realization with the minimal number of complexes using the method described

in section 4.1 with parameters l;; = 100 Vi, j and € = 107 gives the following result:

~1  0.6667 0
AP = 1 —0.6667 0 (47)
0 00

It’s straightforward to check that M =Y - A;CQ). Here, Agf) gives a deficiency 0 structure
that is shown in Fig. 1 e). For the easy understanding of the constructed constrained
optimization problem, it is worth reading through the AMPL code of the computation
that is listed in the Appendix (AMPL is a recently developed and widely used modeling

language for mathematical optimization [14]).

5.2.2 Computing a dense reversible realization

If we search for a reversible realization given by eq. 46 that contains the maximal number
of nonzero reaction rate coefficients (i.e. a dense reversible realization), we have to com-
bine constraints (12)-(17), (34)-(37), (39)-(44) and (19)-(20), and maximize the objective
function (21). Using the parameters € = 1075, e = 0.05, v = 0.01 we obtain a fully
reversible structure given by the following Kirchhoff matrix
—1.0200  0.6467 33.3333
AP — | 09600 —0.7067  66.6667 (48)
0.0600  0.0600 —100.0000
which gives a deficiency 1 structure shown in Fig. 1.d. Again, it’s clear that Y - Ay =

Y- AP
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5.3 Equivalent reversible realization of an irreversible reaction

network
2X — > XX +X, X~ X +X
\ y 0.5 &5‘
X, +X,
2X +X 0
TR X +X+X,

Figure 3: Irreversible reaction network with a deficiency of 4

Let us start from the reaction network that is depicted in Fig. 3. This network
contains 9 complexes, 2 linkage classes and 8 irreversible reaction steps. The rank of the
stoichiometric subspace is 3, therefore the deficiency of the network is 4. The matrices

characterizing the network are given by

211201010

Y=l001100110 (49)
000011 110]|
2 0 00 0000 0]
1 0 350 00000
0 0 -550 00000
1 0 050 00000

Ac=| 0 0 00 —1500 0 0 (50)
0O 0 00 050000
O 0 00 050000
005 00 0000
0O 0 00 050000

Running the algorithm described in section 4.2 with parameters ¢ = 1075, ¢, = 0.05,

v = 0.01, where the objective function to be minimized was the number of nonzero
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reaction rate coefficients, gave the following Kirchhoff matrix:

-1 0 2 0 00000
00 00 00000
10 -350 050000
00 00 00000
A= 00 150 —050000 (51)
00 00 00000
00 00 00000
00 00 00000
00 00 00000

Tt is again easy to verify that

-1 0 05 0 05 0
Y- A=Y A = 10 =35 0 05
00 15 0 —-05 0

(52)

o o o
o o o
o o o

The above result implies that the deficiency zero theorem can be applied to the dynamics
of the original irreversible reaction network shown in Fig. 3. Moreover, due to the
existence of a deficiency 0 reversible realization with linearly independent reaction-pairs,
the dynamics of the reaction networks exhibit a dissipative Hamiltonian structure as it

was shown in [24].

2X X+X2 5= X,

Figure 4: Zero deficiency reversible reaction network dynamically equivalent to the one

shown in Fig. 3

6 Conclusions

Different possible realizations of dynamically equivalent CRNs have been studied in this
paper with the help of mixed integer linear programming. The main contributions of the
paper can be summarized as follows. Firstly, it has been shown that the structure of
a so-called dense realization of a given CRN is unique, and the structure of any other
realization is the subgraph of the dense realization if the set of complexes is given. By
computing a possible sparse realization, it is also possible to test numerically, whether the

structure of a CRN is unique or not. Secondly, a method has been given for finding a CRN
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realization with the minimal number of complexes (from within a predefined set) in the
framework of MILP. Finally, the numerically feasible constraints (linear (in)equalities)
for determining reversible realizations of CRNs have been presented. The theoretical
findings have been illustrated on examples. The results clearly show the power of linear
programming combined with propositional logic for determining preferred realizations of

reaction kinetic systems.
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Appendix

AMPL code of the computation corresponding to the example in section 5.2

var x {1..9};
var y {1..3} binary ;
minimize obj: y[1l+y[2]1+y[3];

subject to constrl: 0 == 3-3*x[2]-2*x[3];
subject to constr2: 0 == -3-3*x[1]-x[3];
subject to constr3d: 0 == -x[1]-x[2]-x[3];

subject to constr4: 0 == -2-3*x[5]-2xx[6];

subject to constr5: 0 == 2-3*x[4]-x[6];
subject to constr6: 0 == -x[4]-x[5]-x[6];
subject to constr7: 0 == -3*x[8]-2%x[9];

subject to constr8: == -3*x[7]-x[9];

o O o o o o

subject to constr9: 0 == -x[7]-x[8]-x[9];
subject to constrl0: 0 <= x[1];

subject to constril: 0 <= 100-x[1];
subject to constril2: 0 <= x[2];

subject to constri3: 0 <= 100-x[2];



subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
subject
solve;

display
display
display

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

to

X3

Vs

constri4:
constrib:
constri6:
constril7:
constri8:
constril9:
constr20:
constr21:
constr22:
constr23:
constr24:
constr2b:
constr26:
constr27:
constr28:
constr29:
constr30:
constr31l:
constr32:

constr33:

obj;

O O O O O O O O O O O O O O o o o o o o
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x[3];

100-x[3];

x[4];

100-x[4];

x[5]1;

100-x[5];

x[6];

100-x[6];

x[7];

100-x[7];

x[8];

100-x[8];

x[9];

100-x[9];
x[2]+x[3]+x[4]+x[7]-1e-008*y[1];
-x[21-x[3]-x[4]-x[7]1+400*y[1];
x[2]+x[4]+x[6]+x[8] -1e-008*y[2] ;
-x[2]-x[4]-x[6]-x[8]+400%y[2];
x[3]+x[6]+x[7]+x[8]-1e-008*y[3];
-x[3]-x[6]-x[7]1-x[8]+400*y[3];

In the above code, obj denotes the objective function to be minimized, y[i]l = ¢; for

i =1,2,3 is the vector of binary variables, and x contains the continuous optimization

variable, the elements of which form the A; matrix as follows:

x[1] x[4] =x[7]

Ap = | x[2] =x[5]1 x[8] (53)

x[3] x[6] x[9]
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