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ABSTRACT 

The Hosoya index of a graph � is defined as the total number of independent 
edge subsets of the graph. A connected tricyclic graph is a connected simple 
graph with � vertices and � � � edges. In this paper we characterize the 
��
 � � �� �graphs with the smallest Hosoya index. We show that the lower 
bound of the Hosoya index of the ��
 � � ��-graphs, is��� � �. 

 

1. INTRODUCTION AND PRELIMINARIES 

The Hosoya index or �-index ���� of a graph � is the total number of its matchings plus one, 

where a matching is a non-empty subset �  ! with the property that no two different edges 

of � share a common vertex. If "��
 #� denotes the number of its #-matchings, matchings 

consisting of # edges, then����� $ % "��
 #�&'()
*+, , where � is the number of the vertices of �. 

It is convenient to set "��
 -� $ .� By its definition, we deduce that "��
 #� $ - where 

# / &01). The Hosoya index is a prominent example of topological indices which are of 

interest in combinatorial chemistry. The Hosoya index was introduced by Hosoya [6] in 1971, 
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and it turned out to be applications with physico-chemical properties such as boiling point, 

entropy [7] or heat of vaporization are well studied. For more results on Hosoya index see the 

book [5], the recent papers [8-12] and the references cited therein. 

Let � $ �2���
 !���� be a simple connected graph with the vertex set 2��� and the edge set 

!���. For any 3 4 2���, 56�3� $ 789�83 4 !���: denotes the neighbors of 3, and ;6�3� $
956�3�9 is the degree of 3 in �� A end-vertex is a vertex of degree one. A pendant edge is an 

edge incident with a end-vertex. A path consisting exactly one end-vertex is called a pendant 

path. An ��
 � � ��- graph is a simple connected graph of order ��with � � � edges. Here, its 

three cycles are very important, so in this paper we call it a tricyclic graph freely. Let�!�  
!���, we denote by � � !� the subgraph of � obtained by deleting the edges of�!�. If 

<  2���
 � �< denotes the subgraph of � obtained by deleting the vertices in < and the 

edges incident with them. If < $ 73: is a singleton set, we use � � 3 instead of�� � 73:. Let 

u and v be two distinct vertices of G. By CG(u-v,p) we mean the set of cycles of length p that 

contain u but not contain v. The set of edges of CG(u-v,p) is denoted by !=>�8 � 3�. By MG(v) 

we mean the set of edges incident upon v in G. Let � $ �2���
 !���� and 

� � $ �2�� ��
 !�� ��� be two graphs such that 2��� ? 2�� �� $ @� Suppose that 3A
 31
 B 
 3* 4
2���  and 3A� 
 31� 
 B 
 3*� 4 2�� �� �# C .� by � D 3A $ 3A� 
 31 $ 31� 
 B 
 3* $ 3*� E � � we mean 

the obtained graph of identifying 3F�on 3F�  for G $ .
B 
 #� Suppose that H0 denotes the path on 

� vertices, I0 is the cycle on ��vertices and J0 is the star consisting of one center vertex 

adjacent to � � .��leaves. Let KA�be all unicycle graphs that obtained from attaching a non-

trivial path to a cycle. Precisely KA L M� D 8 $ 3 E �N92��� ? 2��N� $ @
 � O IP
 �N O
HQ
 ;RS6T�3� $ .
 U C �:� Among all �-vertex trees, the path H0 has the greatest Hosoya index 

and the star J0 has the smallest Hosoya index. This fact was established long time ago [3, 4], 

that is, for any tree V with � vertices, � $ ��J0� W ��V� W ��H0� $ X�� � .�
 where X��� is 

the �th Fibonacci number.  

We use the following results throughout the paper. 

Lemma 1.1. [6] If 3 is a vertex and R $ 83 is an edge of �
 then  

���� $ ��� � 7R:� � ��� � 78
 3:� 
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���� $ ��� � 73:� � Y ��� � 73
 Z:�
[4\]�^�

 

Lemma 1.2. [5] If � is a graph with components �A
 �1
 �_
 B 
 �* then����� $ `���F�. 

�

 

 

 

 

Some properties of the Fibonacci number are in the following lemma. 

Lemma 1.3. [1] X��� $ X�#�X�� � # � .� � X�# � .�X�� � #������������. W # W � 

2. TRICYCLIC GRAPHS 

In this section, we present the some lemma and methods by which one can construct a k+1-

cyclic graph from k-cyclic graph. 

Lemma 2.1. Let  � $ �2���
 !����  be a connected k-cyclic graph.  Suppose that IP a
8A81 B8P8A   and HQ a � 3A31 B3Q  are a cycle graph   and a   path   graph, respectively, such 

that 2��� ? 2bIPc $ @ and�2��� ? 2�HQ� $ @. Suppose that 8 and 3 are two distinct 

vertices of��. All the following graphs are k+1-cyclic graphs.  

 G���N $ � D 8 $ 3A
 3 $ 3Q E HQ , where U C d�eU�83 f !��� 
 GG���N $ � D 8 $ 8F E Ig, for G $ .
�
 B 
 h 

 GGG���N $ � D 8 $ 3i E j, where j 4 KA and 3i is the single end-vertex of H 

In the rest of the section, we refer to the items G
 GG and GGG as the methods G
 GG
 and�GGG
 
respectively. Note that, all the tricyclic graphs are constructed by applying the above lemma 

on the bicyclic graphs. Indeed the above lemma inspires an algorithm to construct a (k+1)-

cyclic graph from a k-cyclic graph. Therefore, by using the lemma we have the following 

theorem.  

Figure 1:  Three different classes of bicyclic graphs. 

k.
kdk��

Cs� Cs� Cs�Cr�Cr�Cr�
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Theorem 2.2. There are exactly nineteen different classes of the tricyclic graphs. 
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Figure�2:�All�the�classes�of��tricyclic�graphs�which�are�constructed��from�the�bicyclic�graphs.�
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Proof. For proving the theorem we apply the Methods G
 GG
 and GGG of the Lemma 2.1 on the 

graphs of classes kA
k1
 and k_ of bicyclic graphs (see Fig.1). 

At first let � 4 kA a  

Let H  be a common path of two cycles IQ  and Il  of �  (see Fig. 2). We partition the vertices 

of �  into three types as follow. 

Type 1:  2A =73 4 2���9 mno�3� $ ��p�;�3 4 2�H�:�      

Type 2: 21 $ 73 4 2���9 mno�3� $ d:�      

Type 3: 2_ $ 73 4 2���9 mno�3� $ ��p�;�3 f 2�H�:�  

By selecting two vertices of two different types of � for using Method G  we have three 

different classes of tricyclic graphs. If the selected two vertices are in the same type of 

vertices of � for using Method�G, then we have three other different classes of tricyclic graphs. 

Now, if we apply Method GG on��, then three other different classes are produced. Finally if 

we apply Method GGG on graph��, then we have three new different classes for tricyclic graphs 

(see Fig. 2). 

Now, let � 4 k1q 

For this class we partition the set 2��� as follows. 

Type 1: 2A $ 73 4 2���9 mno�3� $ �:. 

Type 2: 21 $ 73 4 2���9mno��3� r �:. 

Obviously, 21 is a singleton set whose element is a vertex of degree four. Since we already 

have applied the methods of Lemma 2.1 on bicyclic graphs in class kA we do not need apply 

Method G on class�k1. By using each of Methods GG and GGG on k1 we have two other different 

classes of tricyclic graphs, because the bicyclic graphs in k1 have two types of vertices (see 

Fig. 2).  

Finally, let � 4 k_q 

Suppose that H is that path of � that connects two cycles IQ and Il of � (see Fig. 2). Let us 

partition the vertices of � as follows. 
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Type 1:�2A $ 73 4 2���9 mno�3� $ ��p�;�3 4 2�H�: 

Type 2:�21 $ 73 4 2���9 mno�3� $ d: 

Type 3:�2_ $ 73 4 2���9;RS�3� $ ��p�;�3 f 2�H�: 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this class by using Method GGG we have three new classes of tricyclic graphs. After that 

applying Methods G and GG on this class of bicyclic graphs do not produce a new class of 

tricyclic graphs. Thus applying the methods of Lemma 2.1 on bicyclic graphs produces 

nineteen classes of tricyclic graphs (see Fig. 2).s 

  

Figure 3. Transformation A. 

Figure 4. Transformation B. 
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3. DECREASING TRANSFORMATIONS 

In this section, we present some results and decreasing transformations for the Hosoya index 

of graphs. At first we recall the following two decreasing transformations which have been 

presented in [2]. 

Transformation A: Let 83 be an edge of��, 56�8� $ 73
uA
 u1
 B 
ul:
 and 8uA
 8u1
 B 
 8ul 
are pendant edges. � � $ � � 73uA
 3u1
B 
 3ul: � 78uA
 8u1
 B 
 8ul:
 as shown in Figure 

3. 

Lemma 3.1. If � � is obtained from � by Transformation A, then ��� �� v ���� [2]. 

Transformation B: Let 8 and 3 be two vertices in �� Suppose that 88A
 881
 B 
 88l are the 

pendant edges incident with 8  and����33A
 331
 B 
 33w are the pendant edges incident with 

3� � �� $ � � 788A
 881
 B 
 88l: � 738A
 381
 B 
 38l:
 

� �� $ � � 733A
 331
 B 
 33w: � 783A
 831
 B 
 83w:, (see Figure 4). 

Lemma 3.2. If � � and � �� are obtained from � by Transformation�x, then either ��� �� v ���� 
or ��� ��� v ���  )  [2].       

    In the rest of the section, we present some new results and some new decreasing 

transformations for the Hosoya index. 

Lemma 3.3. Let �, be a simple graph and 8 and 3 be two distinct vertices of��,. Suppose that 

H* $ ZAZ1 BZ* be a path of order # (for k � 2) such that�2��,� ? 2�H*� $ @, then the 

Hosoya index of ��, D 8 $ ZA
 3 $ Z* E H*� is as follows. 

�����������������������������������������������������������������y,� � ���, � 7ZA
 Z1:��������# $ ��p�;�83 f !����
���������������������������������������������,� � ���, � 7ZA:� � ���, � 7Z_:�����# $ d�
��������������������������������������X�# � .����,� � X�# � �����, � 7Z*:� ��

�������������������������������������������������������������X�# � �����, � 7ZA:� � X�# � d����, � 7ZA
 Z*:������# C ��
 

Proof. By using the first part of Lemma 1.1 and deleting the edges ZAZ1
 Z*zAZ* the result 
follows.s 
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By using Lemma 3.3, we introduce the following decreasing transformation for the Hosoya 
index. 

Transformation C. Let $ ZAZ1 BZ* �# C d�, be an internal path in���, such that ;RS6�ZF� $
�
 XeU�G $ �B 
 # � .. The graph � � is obtained from � by deleting Z1Z_ and adding�ZA{_. 

Lemma 3.4. If � � is obtained from � by Transformation�|, then���� �� W ����. 
Proof. Suppose that the length of the path in Transformation I is�#. At first we prove the 
assertion for# C }. 

���N� $ ���N � 7ZAZ1:� � ���N � 7ZA
 Z1:� 
          $ ���N � 7ZAZ1:� � ���N � 7ZA
 Z1
 Z*zAZ*: 
          ����N � 7ZA
 Z1
 Z*zA
 Z*:� 
          $ X�# � �����,� � X�# � d����, � 7Z*:� 
          �X�# � d����, � 7ZA:� � X�# � �����, � 7ZA
 Z*:� 
������������X�# � �����, � 7ZA:� � X�# � d����, � 7ZA
 Z*:� 
          $ X�# � �����,� � X�# � d����, � 7Z*:� 
          �X�# � .����, � 7ZA:� � X�# � �����, � 7ZA
 Z*:� 
Now, by the above calculations and Lemma 3.3 we have  

~$ ���� � ���N� 
�$ X�# � d�b���,� � ���, � 7ZA:�c � X�# � ������, � 7Z*:� 
������, � 7ZA
 Z*:)) 
Since ���,� / ���, � 7ZA:��and����, � 7Z*:� / ���, � 7ZA
 Z*:��
����� / ��� �� for�# $ }.�
Now, suppose�that�# $ �.�
����N� $ ���N � 7ZAZ1:� � ���N � 7ZA
 Z1:��
��������$ ���N � 7ZAZ1:� � ���N � 7ZA
 Z1
 Z_Z�:��
������������N � 7ZA
 Z1
 Z_
 Z�:��
��������$ ���,� � ���, � 7ZA:� � ���, � 7Z�:��
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������������, � 7ZA:� � ���, � 7ZA
 Z�:��
~$ ���� � ���N��
���$ X�� � .����,� � X�� � �����, � 7Z�:��
����X�� � �����, � 7ZA:� � X�� � d����, � 7ZA
 Z�:��
������,� � ���, � 7Z�:� � ����, � 7ZA:� � ���, � 7ZA
 Z�:��
��$ ���,� � ���, � 7ZA:��
�

�

�

�

�

�

Since����,� / ���, � 7ZA:�,����� / ���N��for�k=4.�Finally, suppose that k=3.  

����N� $ ���,� � ���, � 7ZA
 Z_:� � ���, � 7ZA:��
���~$ ���� � ���N��
�����$ ���, � 7Z_:� � ���, � 7ZA
 Z_:��
Since� ���, � 7Z_:� / ���, � 7ZA
 Z_:� we conclude that ���� / ���N�� for k=3 too.� That 

means the assertion is true for all values of k. s 

The following lemma inspires a decreasing transformation.  

Transformatin D: Let G be a tricyclic graph. Suppose that u and v are two distinct vertices of 

G, such that d(u)>d(v) and 9I�8 � 3
 d�9 C 9I�3 � 8
 d�9. Moreover, suppose that for each 

edge R 4 �6�3� � !=��3 � 8� there is a v-u path of lengths 1 or 2, such that the mentioned 

paths above are internally disjoint. Let H be a star tree whose center is denoted by w. By this 

transformation we obtain �� $ � D 8 $ u E j� from  �N $ � D 3 $ u E j�(see Figure 6). 

Lemma 3.5. The Transformation D is a decreasing transformation. 
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Proof. Suppose that the order of H is n and 7uA
 u1
 B 
u0zA: is the set of its leaves. 

Obviously, 9I6�3 � 8
 d�9 W .; we denote the single edge in !=��3 � 8� � �6�3� for the 

equality case by x1x2 . In this case, since�. $ 9I6�3 � 8
 d�9 �W 9I6�8 � 3
 d�9 W �, we denote 

one arbitrary edge in !=��8 � 3� � �6�8� by y1y2. Since dG(u)>dG(v) so there exists a vertex 

� 4 56�8� � 56�3�. If the v-u path HF from the mentioned paths in Transformation D is of 

length 2, we denote the common vertex in 56�8� and 56�3� of HF by �F. Suppose that ����� 
and ����� are the families of the all matchings of �� and ��, respectively. We can show that 

����� v ����� by constructing an injective, non-surjective mapping � from ����� to ����� 
as follow. Suppose that �6N�3� ? !=��3 � 8� $ 73ZA
 3Z1: 

 �q����� � ����� 

 bx � M3�F
 8���c � bM�F8
 3u��c�������������������������������������3�F
 8u� 4 x
 for some i and j 

 �� � 7�u�:� � M3u���������������������������������������������8u� 4 x
 x ? �6�3� $ @��������n��� 

 bx � M3ZF
 8u��c � bM8�F
 3u��c��������������������������                3ZF 4 x
 �A�1 f x, i=1,2  

  (B�73ZF
 8u�, �A�1})� �M8�F
 3u�
 ZAZ1��                      3ZF 4 x
 �A�1 4 x, i=1,2   

 B                                                                                                                           o.w.  

The mapping ��is injective. However, there is no x 4 ����� with ��x� $ M3u�
 8��. So, 

����� v �����s 

Corollary 3.6. Let �, $ �2�y,�
 !��,�� be a non-trivial connected graph and 8, 4 2��,�� 
Assume that j O I_ and�8
 3� 4 2�j�. Suppose that � $ �, D 8, $ 8 E j��Suppose that V 

is a star tree of order��, whose center vertex is�u. If �A $ �� D 8 $ u E V�  and �1 $ �� D
3 $ u E V�  (see Figure 7), then ���A� v ���1�. 
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4. SMALLEST TRICYCLIC GRAPH 

In section 2 we have shown that a tricyclic graph has 19 classes, according to its cycles. In 

this section, we find the smallest Hosoya index of the tricyclic graphs without changing their 

orders. This is done by applying some decreasing transformations on the 19 classes of the 

tricyclic graphs. Let ���
 � � ��  be the set of simple connected graphs with � vertices and 

� � � edges-the set of connected tricyclic graphs of order��. We use the decreasing 

Transformations A, B, C, and �. We repeat these transformations to decrease the Hosoya 

index of ��
 � � ��-graphs as much as possible. Let �, 4 ���
 � � �� be a tricyclic graph. At 

first by repeating Transformation A on �, we construct a tricyclic graph �A which ���A� W
���,� and all pendant paths of �A are of length one. In the second step, by using 

Transformation B, we reach the tricyclic graph �1 in which these pendant edges are attached 

to the same vertex. Then we apply the Transformation C as the third step. We repeat this step 

until we obtain a tricyclic graph �_ which has no the conditions of the Transformation C. 

Note that, after each applying of the Transformation C we may use the Transformation B to 

achieve the conditions of the Transformation C (reducing the degree of the vertices of the 

internal paths to two). Now, we have a graph that all its pendant edges are attached to a finite 

set of vertices. Once again, by applying the Transformation B, we reach a graph in which 

these pendant edges are attached to the same vertex. Now, by applying three steps above we 

have some candidate graphs for each class to be smallest. Then for class number i (i=1,…,19 

and i�12) we use the Transformation D to select the smallest graphs among the candidate 

graphs. For class 12 we select the smallest one by directly comparison. Finally, we find the 

smallest Hosoya index of ���
 � � �� by comparison the smallest Hosoya index among all 

obtained smallest graph for each class. A summary is depicted as a table in Fig. 8. In this 

figure all classes are shown in the second column of the given table. The third column 

represents the obtained graph (or graphs) of using and repeating the decreasing 

transformations for each class. Finally, the fourth column represents the Smallest Hosoya 

index of each class. By comparison the smallest Hosoya index of the obtained graphs, we find 

the smallest Hosoya index of ���
 � � ��  which is �� � � and are related to classes number 

13 and 15. 
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Consequently, in the following theorem we present a lower bound for the Hosoya index of the 

tricyclic graphs of order n. Moreover, we show that the depicted graphs in Figure 9 are the 

extremal graphs. 

 

 class            Main graph       Smallest graph in the the class The smallest index  

1� � � ���� $ �� � ���

2� � � .�� � ���

�

3�

� � �-� � ��-�

4� � � .�� � ���

5� � � �-� � .--�

6� � � ��� � ��-�

7� � � .-� � �}�

8� � � .�� � ���

9� � � .�� � ���

10� � � �� � .��

11� � � �� � ���

12� � � �� � ���

13� � � �� � ��
14� � � }� � .-�

15� � � �� � ��

16� � � .-� � d}�

-68-



 

 

 

 

 

 

 

 

 

 

Theorem 4.1. If G is an arbitrary tricyclic graph of order�� C } then ���� C �� � �. 

Equality holds if and only if G�4 {G1, G2}, where G1 and G2 are the depicted graphs in Figure 

9. 

REFERENCES 

[1] H. Deng, The smallest Merrifield-Simmons index in (n,n+1)-graphs, Math. Comput. 

Model. 49 (2009) 320–326. 

[2] H. Deng, The smallest Hosoya index in (n, n+1)-graphs, J. Math. Chem. 43 (2008) 

119–133. 

[3] H. Deng, The largest Hosoya index of (n, n + 1)-graphs, Comput. Math. Appl. 56 

(2008) 2499–2506. 

[4] I. Gutman, A cyclic systems with extermal Huckel �-electron energy, Theor. Chim. 

Acta. 45 (1977) 79–87. 

[5] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, 

Berlin, 1986. 

17�

�

� � .�� � ���

18�

�

� � d�� � .���

19��

��

� � }� � .-�

Figure 8. Smallest graph (or graphs) with respect to the Hosoya index and the smallest 
Hosoya index for each class. 

                                      G1                                                             G2 

Figure 9. The smallest tricyclic graphs with respect to the Hosoya index 

-69-



[6]  H. Hosoya, Topological index. A newly proposed quantity characterizing the 

topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. 

Jpn. 44 (1971) 2332–2339. 

[7] R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New 

York, 1989. 

[8] S. Li, X. Li, Z. Zhu, On minimal energy and Hosoya index of unicyclic graphs, 

MATCH Commun. Math. Comput. Chem. 61 (2009) 325–339. 

[9] K. Xu, B. Xu, Some extremal unicyclic graphs with respect to Hosoya index and 

Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 62 (2009) 629–

648.  

[10] Y. Bai, B. Zhao, P. Zhao, Extremal Merrifield-Simmons index and Hosoya index of 

polyphenyl chains, MATCH Commun. Math. Comput. Chem. 62 (2009) 649–656.  

[11] X. Chen, B. Zhao, P. Zhao, Six-membered ring spiro chains with extremal Merrifield-

Simmons index and Hosoya index, MATCH Commun. Math. Comput. Chem. 62 

(2009) 657–665. 

[12] X. F. Pan, Z. R. Sun, The (n,m)-graphs of minimum Hosoya index, MATCH Commun. 

Math. Comput. Chem. 64 (2010) 811–820. 

-70-


