MATCH Communications in Mathematical and in Computer Chemistry

Order of Magnitude of the PI Index

M. H. Khalifeh,¹ H. Yousefi-Azari¹ and A. R. Ashrafi²

¹School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, I. R. Iran ²Department of Mathematics, Faculty of Science, University of Kashan, Kashan 87317-51167, I. R. Iran

(Received July 1, 2009)

Abstract

Deng in [H. Deng, On the PI Index of a Graph, *MATCH Commun. Math. Comput. Chem.* **60** (2008) 649–657] determined the extremal graphs with respect to the PI index among all complete multipartite graphs. He wrote: "we do not know whether K_n is the graph with the maximal PI index among all the simple connected graphs on n vertices". In this paper, we study the problem of the order of magnitude for the PI index. As a consequence, a sequence $\{F_n\}_{n\geq 1}$ of graphs is presented for which PI(F_n) > PI(K_n), for n > 32.

1. Introduction

A topological index is a real number related to a molecular graph. It must be a structural invariant, i.e., it does not depend on the labelling or the pictorial representation of a graph. The PI index is a new topological index introduced very recently by Khadikar [9-11]. Let G be a graph. The PI index of G is defined as $PI(G) = \sum_{e=uv \in E(G)} [m_u(v) + m_v(u)]$, where $m_u(v)$ is the number of edges lying closer to u than to v and $m_v(u)$ is defined analogously. The mathematical properties of this new index can be found in recent papers, [1-8,12-14,16-20].

In [7], Deng proved that $PI(G) \ge M_1(G) - 2m$ with the equality if and only if G is a complete multipartite graph. Here, m is the number of edges and $M_1(G)$ is the sum of squares of the vertex degrees of G. He also determined the extremal graphs with respect to the PI index among all complete multipartite graphs. He wrote: "we do not know whether K_n is the graph with the maximal PI index among all the simple connected graphs on n vertices". The aim of this paper is to present a new approach for studying such problems. As a consequence, a sequence $\{G_n\}_{n\geq 1}$ of graphs is presented such that $PI(G_n) \ge PI(K_n)$, for all $n \ge 1$.

Let G and H be simple graphs. The union $G \cup H$ of G and H is a graph with $V(G \cup H) = V(G) \cup V(H)$ and $E(G \cup H) = E(G) \cup E(H)$. The join G + H of graphs G and H with disjoint vertex sets V(G) and V(H) and edge sets E(G) and E(H) is a graph with $V(G + H) = V(G) \cup V(H)$ and $E(G + H) = E(G) \cup E(H) \cup$ $\{uv \mid u \in V(G) \& v \in V(H)\}$. For three or more disjoint graphs $G_1, G_2, ..., G_n$, the sequential join $G_1 + G_2 + ... + G_n$ is the graph $(G_1 + G_2) \cup (G_2 + G_3) \cup ... \cup$ $(G_{n-1} + G_n)$. Obviously, if K_n shows a complete graph by n vertices then $K_n + K_m$ $= K_{n+m}$.

For two vertices u and v of a graph G, the distance d(u,v) is defined as the length of a minimal path connecting them. Suppose $e = uv \in E(G)$ and $w \in V(G)$. Define $d(e,w) = Min\{d(u,w),d(v,w)\}$. If $f = ab \in E(G)$ then f is said to be parallel with e and write f || e, if d(e,a) = d(e,b). Now define $M_u(v)=\{f \in E(G) | d(f,v) < d(f,u)\}$ and $M_v(u)$ analogously. Set $m_u(v) = |M_u(v)|$ and $m_v(u) = |M_v(u)|$. It is easy to see that the parallelism is not generally symmetric.

In this paper, we only consider connected graphs. Our notation is standard and mainly taken from [15].

2. Results and Discussion

Suppose G is a simple graph with exactly m edges. In [5], the authors proved that $PI(G) \le m(m - 1)$ with equality if and only if G is a tree or a cycle of odd length. Therefore, it is natural to ask about the order of magnitude for PI index with respect to the number of vertices.

Suppose n is given and i is a natural number such that $n \equiv i \pmod{4}$. Define sequence $\{F_n\}_{n\geq 1}$ as follows:

$$F_n = K_{((n-i)/4)} + H_1 + H_2 + K_{((n-i)/4)+i},$$

where H_1 and H_2 are arbitrary graphs with exactly (n-i)/4 vertices, and K_m shows a complete graph with m vertices, Figure 1.

Figure 1. The Structure of the Graph F_n.

For every n, F_n has n vertices and for any edge $uv \in E(F_n)$ such that $u \in V(H_1)$ and $v \in V(H_2)$, $M_u(v) \cup M_v(u) \supseteq E(K_{((n-i)/4)+i}) \cup E(K_{((n-i)/4)})$. Notice that all of the vertices of $K_{((n-i)/4)}$ are closer to u than v and all of the vertices of $K_{((n-i)/4)+i}$ are closer to v than u. By the structure of F_n , the number of such edges between H_1 and H_2 in F_n is equal to $((n-i)/4)^2$. So

$$\operatorname{PI}(\mathbf{F}_{n}) > \left(\frac{n-i}{4}\right)^{2} \left[\binom{n-i}{4} + \binom{n-i}{4} + i \\ 2 \end{bmatrix}$$

On the other hand $PI(K_n) = n(n-1)(n-2)$ and so

$$\lim_{n\to\infty}\frac{\mathrm{PI}(\mathrm{F}_n)}{\mathrm{PI}(\mathrm{K}_n)}=\infty.$$

Thus, we can find a sequence $\{G_n\}_{n>r}$ of graphs such that for some r, $\text{PI}(G_n)>$ $\text{PI}(K_n), n>r.$

Proposition. For any n-vertex graph G the inequality $PI(G) < \frac{n^4}{4}$ holds. On the other hand, there is a sequence of graphs $\{H_n\}_{n>0}$ such that H_n is an n vertices graph and

$$lim_{n\to\infty}\frac{PI(H_n)}{n^4} > \ 0.$$

Proof. Suppose G is an n-vertex graph then for $e = uv \in E(G)$, $[m_u(v) + m_v(u)] \le |E(G)| - 1 \le {n \choose 2} - 1$. Thus $PI(G) < {n \choose 2}^2 < \frac{n^4}{4}$. Now consider $\{H_n\}_{n>0}$ to be a sequence of graphs with $H_n \cong F_n$, for each n. Then $\lim_{n\to\infty} \frac{PI(F_n)}{n^4} \ge \frac{1}{256}$, as desired.

To construct a family of graphs $\{G_n\}$ with greater PI index than complete graphs, we consider a special case of F_n , i.e. $H_1 \cong K_{\frac{n-i}{4}} \cong H_2$. Suppose a = (n - i)/4. Then, for $uv \in E(G)$, we have:

$$[m_u(v) + m_v(u)] = \begin{cases} 2(a-2) + 2a & uv \in E(K_{n-i}) \\ 2(a+i-2) + 2a & uv \in E(K_{n-i}) \\ 2(a+i-2) + 2a & uv \in E(K_{n-i}) \\ \binom{2a+i}{4} + a + 2(a-1) + 2(a-1) & u \in V(H_1); v \in V(K_{n-i}) \\ \binom{2a}{2} + 2(a+i-1) + 2(a-1) + a & u \in V(H_2), v \in V(K_{n-i}) \\ 2(a-2) + 4a & uv \in V(H_1) \\ 2(a-2) + 2(a+i) + 2a & uv \in V(H_2) \\ 2(a-1) + a + \binom{a}{2} + 2(a-1) + (a+i) + \binom{a+i}{2} & u \in V(H_1), v \in V(H_2) \end{cases}$$

Since $|\{e \mid e=uv, u \in V(H_1), v \in V(H_2)\}| = |\{e \mid e=uv, u \in V(H_1), v \in V(K_{\frac{n-i}{4}})\}|$ = a^2 , $|\{e \mid e=uv, u \in V(H_2), v \in V(K_{\frac{n-i}{4}+1})\}| = a(a + i), |E(K_a)| = |E(H_1)| = |E(H_2)| = \binom{a}{2}$ and $|E(K_{a+i})| = \binom{a+i}{2}$ then

$$\begin{split} & \operatorname{PI}(G_n) = \sum_{e=uv \in E(Gn)} [m_u(v) + m_v(u)] \\ &= 2 \binom{a}{2} [8a - 6 + i] + 2 \binom{a+i}{2} [2a - 2 + i] \\ &+ a^2 [2\binom{a}{2} + 2\binom{a+i}{2} + a(a+i) + 11a + i - 8] \\ &+ a(a+i) [2\binom{a}{2} + a^2 + 5a + 2i - 4] \\ &= 2i + 8a - 30a^2 - 12ai + 5a^3i + 12a^2i - 3i^2 + 6ai^2 + 5a^4 \\ &+ 23a^3 + i^3 + a^2i^2 \\ &= \frac{5}{256}n^4 + \frac{23}{64}n^3 + \frac{1}{256}(-480 - 84i - 14i^2)n^2 \\ &+ \frac{1}{256}(512 + 192i + 276i^2 + 8i^3)n + \frac{1}{256}i^2(i + 12)(i - 40). \end{split}$$

Define $F(n) = PI(G_n) - PI(K_n) = \frac{5}{256}n^4 - \frac{41}{64}n^3 + \frac{9}{8}n^2 - \frac{21}{64}n^2i - \frac{7}{128}n^2i^2 + \frac{3}{4}ni + \frac{69}{64}ni^2 + \frac{1}{32}ni^3 + \frac{1}{256}i^4 - \frac{7}{64}i^3 - \frac{15}{8}i^2$. By elementary calculus, for $n \ge 32$, F(n) > 0. In the following tables, the values of $PI(F_n)$ and $PI(K_n)$, $27 \le n \le 40$, are computed.

n	PI(G _n)	PI(K _n)	n	PI(G _n)	PI(K _n)
27	15390	17350	34	37312	35904
28	18480	19656	35	41110	39270
29	20790	21924	36	47214	42840
30	23282	24360	37	51858	46620
31	25962	26970	38	56772	50616
32	30400	29760	39	61962	54834
33	33740	32736	40	70080	59280

Table 1. The Values of PI(Gn) and PI(Kn), $27 \le n \le 40$.

We end this paper with the following conjecture:

Conjecture. For every sequence $\{L_n\}_{n\geq 1}$, $|V(L_n)| = n$, of simple connected graphs,

$$lim_{n \rightarrow \infty} \frac{PI(L_n)}{n^4} \, \leq \, \frac{3}{5^3} \; .$$

Moreover, the bound is sharp.

Acknowledge. We are indebted to the referee for some helpful remarks leaded us to improve the paper.

References

- R. Ashrafi, A. Loghman, PI index of zig-zag polyhex nanotubes, *MATCH Commun. Math. Comput. Chem.* 55 (2006) 447–452.
- [2] A. R. Ashrafi, A. Loghman, PI index of armchair polyhex nanotubes, Ars Combin. 80 (2006) 193–199.
- [3] A. R. Ashrafi, A. Loghman, Padmakar-Ivan index of TUC₄C₈(S) carbon nanotubes, *J. Comput. Theor. Nanosci.* 3 (2006) 378–381.
- [4] A. R. Ashrafi, F. Rezaei, PI index of polyhex nanotori, MATCH Commun. Math. Comput. Chem. 57 (2007) 243–250.

- [5] A. R. Ashrafi, B. Manoochehrian, H. Yousefi-Azari, On the PI polynomial of a graph, *Util. Math.* 71 (2006) 97–108.
- [6] H. Deng, Extremal catacondensed hexagonal systems with respect to the PI index, MATCH Commun. Math. Comput. Chem. 55 (2006) 453–460.
- [7] H. Deng, On the PI index of a graph, *MATCH Commun. Math. Comput. Chem.* 60 (2008) 649–657.
- [8] I. Gutman, A. R. Ashrafi, On the PI index of phenylenes and their hexagonal squeezes, MATCH Commun. Math. Comput. Chem. 60 (2008) 135–142.
- [9] P. V. Khadikar, On a Novel Structural Descriptor PI, *Nat. Acad. Sci. Lett.* 23 (2000) 113–118.
- [10] P. V. Khadikar, P. P. Kale, N. V. Deshpande, S. Karmarkar, V. K. Agrawal, Novel PI indices of hexagonal chains, *J. Math. Chem.* 29 (2001) 143–150.
- [11] P. V. Khadikar, S. Karmarkar, R. G. Varma, The estimation of PI index of polyacenes, *Acta Chim. Slov.* 49 (2002) 755–771.
- [12] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, A matrix method for computing Szeged and vertex PI indices of join and composition of graphs, *Lin. Algebra Appl.* **429** (2008) 2702–2709.
- [13] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, *Discr. Appl. Math.* 156 (2008) 1780–1789.
- [14] S. Klavžar, On the PI index: PI-partitions and Cartesian product graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 573–586.
- [15] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
- [16] H. Yousefi-Azari, B. Manoochehrian, A. R. Ashrafi, The PI index of product graphs, *Appl. Math. Lett.* 21 (2008) 624–627.
- [17] H. Yousefi-Azari, B. Manoochehrian, A. R. Ashrafi, PI and Szeged indices of some benzenoid graphs related to nanostructures, *Ars Combin.* 86 (2008) 371–379.
- [18] H. Yousefi-Azari, A. R. Ashrafi, N. Sedigh, On the Szeged index of some benzenoid graphs applicable in nanostructures, *Ars Combin.* 90 (2009) 55–64.
- [19] J. Hao, Some graphs with extremal PI index, MATCH Commun. Math. Comput. Chem. 63 (2010) 211–216.
- [20] S. Liu, H. Zhang, PI index of toroidal polyhexes, MATCH Commun. Math. Comput. Chem. 63 (2010) 217–238.