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Abstract

Suppose G is a graph and dg(x,y) denotes the length of a minimum path
connecting vertices x and y of G. In this paper, some distance-based
polynomials such as Hosoya, edge Wiener, Schultz and Gutman polynomials
and their relationship are investigated. The Schultz polynomial of some graph
operations is also computed. Finally, the mathematical properties of a new
two variables polynomial are presented.

1. Introduction

Throughout this paper we consider only simple connected graphs with vertex and edge sets V(G)
and E(G), respectively. A topological index Top(G) for a graph G, is a number with this property
that for every graph H isomorphic to G, Top(H) = Top(G). Between topological indices of
graphs those are “distance-based” is very important both in mathematics and in chemistry. To
explain, we assume that dg(x,y) denotes the length of a minimum path connecting vertices x and

y of G. A “distance-based topological index” is a topological index related to the distance
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function dg(-,-). The Wiener index W(G) is the first distance-based topological index introduced
by the chemist Harold Wiener [28] for investigating boiling point of alkanes, see also [14]. This
index is defined as the sum of all distances between vertices of the graph under consideration,
see [4,5,7] for details. The definition of the Wiener index in terms of distances between vertices

of a graph was first given by a Japanese chemist Haruo Hosoya [15].

We recall some definition that will be used in the paper. Suppose G and H are graphs.
The Cartesian product G x H has the vertex set V(G x H) = V(G) x V(H) and (a,x)(b,y) is an
edge of G x Hifa=b and xy € H or ab € E(G) and x = y. If G|, Gy, ..., G, are graphs then we
denote G; x Gy X ... X G, by ®Gi. In the case that G; = G, = ... = G, = G, we denote QG;j by
G".

Suppose G and H are graphs and V(G) N V(H) = E(G) n E(H) = &. Then the join G + H
is the graph union G U H together with all edges joining V(G) and V(H). If G=H + ... + H then
G is denoted by nH. The composition G[H] is the graph with vertex set V(G) x V(H) and u =
(uy,vy) is adjacent with v = (uz,v2) whenever u, is adjacent with u, or u; = u, and v, is adjacent
with v, [16, p. 185]. The disjunction G v H is the graph with vertex set V(G) x V(H) and (u;,v;)
is adjacent with (u,,v,) whenever uju, € E(G) or vyv, € E(H). The symmetric difference G @ H
is the graph with vertex set V(G) x V(H) and E(G @ H) = {(u;,u2)(v1,v2) | u1v; € E(G) or upv, €
E(H) but not both}.

The edge Wiener index of a graph G is defined as Wo(G)=X, rer(q) d(e, f), where for
edges e = uv and f = ab of G, d(e,f) = min{d(u,a),d(u,b),d(v,a),d(v,b)}. The hyper wiener index
is defined as WW(G) = % Z{u,,,}gv(g)(dz(u, v) + d(u,v)). The Schultz [26] and Gutman [12]
indices of G are defined as W(G) = Xvjcv(e)(degw) + deg(v)) d(u,v) and W«(G) =
Yuviev(c) deg(u)deg(v) d(u, v) , respectively. The first and second Zagreb indices have been
introduced more than thirty years ago by Gutman and Trinajsti¢ [9]. They are denoted by M;(G)
and My(G) and defined as Mi(G) = Yyev(s) deg (v)? and Ma(G) = Xyper(c) deg (w)deg (v). We
encourage the interested readers to consult [1-3, 6, 10-13, 27] and references therein for more

information on this topic.

In [25], Sagan et al. computed some exact formulas for the Hosoya polynomials of

various graph operations. In [8, 17-24, 29], the authors computed exact formulas for the Wiener,



-41-

edge Wiener, PI, vertex PL, first and second Zagreb, Szeged and edge Szeged indices of some

graph operations.

In this paper the Schultz polynomial of some graph operations are investigated. We also
obtain some new relations between Schultz, Gutman Schultz, Wiener, and edge Wiener

polynomials of graphs. We begin with the following crucial lemma that will be used later.
Lemma 1. Let G and H be graphs. Then we have:

(@) [V(GxH)| = [V(GVH)| = [V(G[H])| = [V(G®H)| = [V(GQ)|[V(H)| ; [E(GxH)| = [E(G)I[V(H)|
+ [V(G)|[EH)| ; [E(G+H)| = [EG)+EH)]| + [V(G)|[V(H)| ; [E(G[H])| = [E(G)|[V(H)] +
[EH)|V(G)| ; [EGVH)| = [EG)[VH) + EH)V(G)] - 2[EG)[EH)| ; [E(GOH) | =
EG)[VH)P + [EFE)V(G)* - 4EG)|[EH)!.

(b) G x H is connected if and only if G and H are connected.

(c) If (a,c) and (b,d) are vertices of G X H then dgxy((a, c), (b, d)) =dg(a,b) + du(c,d).

(d) The Cartesian product, join, composition, disjunction and symmetric difference of graphs

are associative and all of them are commutative except from composition.

0 u=v
_ uv € E(G) oruv € E(H)
(©) dgen(w,v) =91 (u eV(6) &v e V(H))

2 otherwise
dg(a,c) a#c
0 a=c,b=d
(f) dG[H]((a7b)7(C7d)) = 1 a=c, bd € E(H) )
2 a=cbd¢&EH
0 a=cb=d
(&) devu((@b)(c.d) = [1 ac € E(G) or bd € E(H),
2 otherwise
0 a=c,b=d
(h) dgeu((ab),(c,d)) = {1 ac € E(G) or bd € E(H) but not both,
2 otherwise

() deggxu(a,b) = degg(a) + degy(h),
() deggrm(a,b) = |V(H)|degg(a) + degy (b),
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_(degg(a) +|V(H)| a€V(G)
(k) deggu(a) = {degi(a) +|V(G)| a€V(HY

() deggvu((a,b)) = IV(H)|degs (@) + |V(G)|degy (b) — degs (a)degy (b),
(m)deggeu((a,b)) = IV(H)|degs (a) + |V(G)|degy (b) — 2deg (a)degy (b).
Proof. The parts (a-e) are consequences of definition and some well-known results of the book

of Imrich and Klavzar [16]. For the proof of (f-m) we refer reader to [21]. [ ]

Throughout this paper, our notation is standard and taken mainly from the standard book

of graph theory. The notations K,, S, and P, stand for the complete, star and path on n vertices.
2. Preliminary Results

Hosoya [14] introduced a distance-based graph polynomial as H(G,x) = Y0 d (G, k)x* called
Wiener polynomial where d(G.,k)=|{(u,v): d(u,v)=k}|, but recently most of authors prefer the
name “Hosoya polynomial”. An equivalent from of this polynomial is H(G,x) =
Yiablev(c) x4(@h) Since the Hosoya polynomial at x = 1 is equal to the Wiener index, one can
consider it as a polynomial version of the Wiener index. In a similar way as Hosoya polynomial,

one can define the edge Hosoya polynomial as Ho(G,X) = Y5, gcr(s) x %9
In [12], Ivan Gutman introduced a polynomial version of the Schultz and modified
Schultz indices of graphs as follows:
Hi(G, X) = Xuvjer)(deg(w) + deg (V))x ),
Hy(G, %) = Zunjcv(c)(deg(w) deg (V))x ™).
He proved that if G is a n-vertex tree then the polynomials H;(G,x) and H(G,x) are related as
Hi(G,x) = 2(1 + 1/x)H(G,x) — 2(1 + n/x). Recently, most of authors prefer to change the name
“modified Schultz index” by “Gutman index”. For this reason, we name H,, the Gutman
polynomial. These polynomials have the following mathematical properties:
Lemma 2. Let G be a graph. Then the following statements are hold:
a) Hi(G,1) =2(V(G)| - 1) [E(G),

b) H1(G,1) = W(G), H3(G, 1) = W+(G),
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¢) If G is r-regular then H,(G,x) = 2rH(G,x),

d) H; (G, 0) =My(G),

e) H;(G,0) = Ma(G).
Proof. The proof is straightforward and so omitted. |
Lemma 3. The following statements are hold:

a) Hi(Ky,x) = n(n—l)zx

b) Hi(Kmax) = mn(m + mx + 2n(7) + 2m(;)x’

¢) Hi(Wy,x) = (n-1)[(n + 5)x + 2(n-4)x*]

d) Hy(Pox) = T 4(n — ) — 2]«

&) Hy(Conx) = 8050 + dnx™

1

) Hi(Cant1,X) = (8n + 4)

xt1_q
x—1

8 Hi(Qux)=2n((1+ )" - 1).

In the end of this section, relationship between coefficients of H(G,x) and H;(G,x) is

presented.

Lemma 4. Suppose a; is the coefficient of x'in H(G,x) and b is the coefficient of X in Hi(G,x).

Then we have:

1. a;=|E(G)| and b; = M(G),

2. If the girth of G is greater than 4, then a, = Zle(‘;"), where d;’s are degree of vertices
and p is the number of vertices.

Proof. The part (1) is trivial. To prove part (2), we assume that u and v are two vertices with

d(u,v) = 2. But the number of paths of length two is equal to Ele(‘;"). and if G is triangular

and rectangular free, then the number of pairs which distance is 2 is equal the number of path

of length 2, proving the lemma. ]



3. Main Results
In this section, the main properties of edge Hosoya polynomial are achieved.
Theorem 1. Let G be a connected graph. Then Hc(G,x)= %H(L(G),x).

Proof. If the edge ¢; and ej have common vertices then d(ej,ej) = 0 and dig)(e;.¢j) = 1. Clearly,

di)(eiej) = d(ei,ej) + 1. Therefore, H(L(G),x) = xHc(G,x) and this complete the proof. ]

By derivation of this polynomial at x=1, we have W(G) = W(L(G)) - ('E (ZG)I).

Theorem 2. Let T be a tree. Then the Schultz, Hosoya, Gutman and edge Wiener polynomials

are related as follows:
Hi(T,x) - Ho(T,x) = H(T,x) - He(T,x)

Proof. Let A= {uw | d(v,w) = d(u,v) + 1} x {vw | d(u,w) = d(u,v) + 1}. Then we have E(T) x
E(T) = UAw,y) and |[Aw| = (deg(u) - 1)(deg(v) - 1) and for every (ab,cd) € A, d(ab,cd) =
d(a,c). So the sets Ay, constitute a partition of E(T) x E(T). Therefore,

1 1
Ho(T.X)= e pyermxam ¥ aen = 2 LUV DIXV(T) 2, f)eAan X a(ef)

1
= S Xwn)ermxv(r) [ACu, v) x4 @)

= > Tuwermern (degw) — 1)(deg(v) — 1)xd»

1
= 5 Cuwermxvr deg(u) deg (v)x4@»)

= Ywermyxv(deg) + deg W)X ED+T vy ev(ryxw ) x4 )
=Hx(T.x) - Hy(T,x) + H(T ).
This completes the proof. ]

Theorem 3. Suppose G; and G; are connected graphs, V| = V(G)), V2 =V(Gy), E| =E(G)), Ex =
E(G,) and V =V, x V,. Then we have:
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a) Hi(Gi % Go,x) = 2H(G1,x)H1(G2,x) + 2H(G2,x)H (G1,x) + [Vi[H(G2,x) + [V2[Hi(G1,x) +
4|E1[H(G2,x) + 4[EzH(G1,x)
b) Hi(Gi + G2.x) = Mi(G) + Mx(G) + 4[E|[Va| + 4|E|[Vi] + [Vi|[V2(Vi] + [V2] )x +
(VAIVal([Vi] + [Va]) - 2[E(G1+Ga)| - Mi(Gr) = Mi(Ga) + 2([Ei| - [Ea))([Vi| - [V2] )) x*
¢) Hi( Gi[Gal.x) = [V2P'Hi(Grx) + 4|Val [EoH(Grx) + 2(Val = D(VafEi| + [Va[E2x” +
(4[V2[Eq[[Bo| + [ViIMi(G))(x — x*)
d) Hi(Gi v Go.x)=QIE|(VI-1)-Mi(G)x+Mi(G)x
¢) Hi(GI @ Gox) = QEI(V] ~ 1) = Mi(G))x* + My(G)x .
Proof. In each part, it is assumed that G is the graph obtained from G, G, and the corresponding
graph operations. The part (a) proved in [6]. To prove (b), we apply Lemma 1. The distance
between two vertices of G is 1 or 2. Therefore, it is enough to compute the coefficient of x and x*

in the Schultz polynomial.

i) If d(u,v) = 1 then u and v are adjacent in G; or G, oru € E; andv € E; or v € E| and

u € E,. By considering all cases, we have:
Coefficient of x = Yuev, Xven,(dege, W) + dege, () + V1| + V2]
+ Yuver(cy)(dege, (W) + degg, (v) + 2|V3|)
+ Luwver(ey)(deds, W) + dege, ) + 2|V4)
= Mi(G)+Mi(Go)H4[E [V H4E| [V [FHVA[Va|(Vi] + V2] )
i) If d(u,v) = 2 then both of u and v are in G, or G,. Therefore,
Coefficient of x’(when u, v €G;) = ;ZueVl Yver,(degs, () + degg, (v) +2|V3|) —

%Z,,EVl(Zdegal @) +2|V2]) = (M1(G) + 2|V2l|Ex]) = 2Ei[Vi| + [V2lIViF-2E V2|V -
Mi(Gy) = 2[V2|[Eq] .

Coefficient of x*(when u, v € G) = 2[Ey|[Va| + [V1||Va* = 2| - [V1|[Va] - My(G2) — 2|V 1| [Ea).

Thus by summation, we have:
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Coefficient of X’ = [V||[Val(IVi| + [Va]) - 2[E( G + Ga)| - Mi(G1) — Mi(G2) + 2([Ei | - [E2)([ V1| -

[V,]), which proves the theorem. n

For part (c), we assume that u = (u;,v;) and v = (uy,v2). Then for computing Schultz

polynomial of G[G:], two cases are considered.

i) Suppose wiFu; and A = X, o Yo wu,[(IV2] deguy + degvi) + ([Voldegu, +
degv,)]x@(®1¥2) Then

A =T, 0, Ty 2, [([V2] (deg(ur) + degluz)) xM122) + (deg(vi)+ deg(va)) x4 4.42)
= Yv, v, [V2IHI(G1,X) + (degvi+degva)H(G),x)
= ‘VzPH](G],X) + 4|V2‘ |E2‘H(G|,X) .

i) Suppose u; = u, and B = Zu12y1v2552(2|V2|d€g(u1)+d€g(171)+d€g(vz)x+
Sty Ssyye, (21Valdeg () + deg (vy) + deg (v,)x. Then

B = (4Val[E4[[Ea| + [Vi[Mi(G2)x + 2(IVa| — D)(IVal[Ei] + [Vi[[Ea])x’
— (AIVAl[E4[[Ea| +[V1IM1(G) X*.

It is easy to see that, the Schultz polynomial of G is equal to A + B, which is
obtained from (i) and (ii).

To prove part (d), apply again Lemma 1. Suppose u and v are vertices of G; v G, then

d(u,v) =2, ifuv ¢ E. So,
Hi(G1 v G2,X) = Buwjcr(c)(deg(u) + deg (V))x40?
=Y fumev(ci v cz)(degw) + deg (v))x? —Yuvcr(er v 62y (deg(w) + deg (v))x?
+ Yuvcr(e v azy(deg(w) + deg (v))x*
=2|E|([V| - l)x2 - I\/Il(G)x2 + M (G)x .

The proof for part (e) is similar to (d) and is omitted. [ ]
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The Gutman polynomials of some graph operation are computed in [6].
Corollary 1. The Schultz index of some graph operation is computed as follows:

) Wi(G1xGa) = |V1[2(Ga) + [V2|*W+(Gy) + 4[E |[V1|W(G2) + 4[Es|[V2| W(Gi)
b) W(Gr+Gy) = [VI(IV] = 1) = [Vi[([Vi] = 1)’ = [Va|([Val = 1) + 4[E|(IVe] - 1) +
4[E|([Va = 1) = Mi(Gy) - M (Go)
) Wi(Gi[Ga)) = [Va|Wi(Gy) + 4Val[Eo| W(G) — [V1|M;(Ga) + 4(|Va| - DIVAf[Ey
+ [Vi||Ea| = 4|V2|[E|[E)]
d) Wi(GivG)=4E(GVvG)|(VGIVvG)-1)-Mi(G1 v Gy) .

Proof. This follows from Theorem 3 and Lemma 2.
Corollary2. The first Zagreb index of three graph operations is computed as follow:

a) Mi(G1xGy) = |ViIMi(Gy) + |V2Mi(G1) + 8|Ei||E,|
b) Mi(G1:G2) = My(Gy) + M (Ga) + [Vi[[Vaf* + [Va[ Vi + 4[E ][ Va] + 4[Eo| [V
) Mi(Gi[G2]) = [Va'Mi(Gy) + [Vi]M(G2) + 8 V2l [Eo[Ey] .

Proof. This is follows from Theorem 3 and Lemma 2(d).

4. A New Two Variables Polynomial

In this section, a two variable polynomial is introduced by which it is possible to compute the
Wiener, hyper Wiener, Schultz and first Zagreb index of graphs. An exact formula for this

polynomial under Cartesian product of graphs is obtained. This polynomial is defined as:
W(G, %, )= Eupcr (e x 1808 Wy dn),

We obtain the following result immediately from its definition:

oW (G,1y)

L === w(G)
20w (G,x,y)

2. T = WaG)
00w (G x,
PEELD) 051=Mi(G)

dyox
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1( 90w (G,1,y), )+6W(G.1,J/)|
2 9y2 ly=1 ay ly=

1=ww(G) , where ww(G) is the hyper wiener index of G.

5. If G is regular graph then we have: W(G,x,y)=x2rH(G,y).
Theorem 4. Suppose G, and G; are graphs. Then,
W(G1*Ga.x.y) = Zuev(ey) ¥* ¥ OW (G2, %,y) + Zuev(ey ¥* W (Gy,%,y)

+ 2W(G,xy)W(Gy, x,y)

Proof. By definition,
W(G1xGax,y)= Z{u,v] V' (G1xG2) X deg(u)+deg (U)y ()

Suppose u = (u;,vy) and v = (uz,v2), where u;,u,€ V(Gy) and v;,v2€ V(G;) .Then we have:

W(G %Gy x,y)= Z(u V)EV(G1XG )xdeg(ul)+deg(uz)+deg(v1)+deg(v2)yd(ul,uz)+d(vl,vz)
% , 1XGa
=2u1=u2 x2deg (u1) Z(Ul,vz}gV(Gz) xdeg(vl)+deg(v2)yd(v1,v2)

+ Zv1=v2 x2deg (v1) Z{ul W)V (Gy) xdeg(ul)+deg(u2)yd(ulruz)

+2 X, 1, xdeg(ua)+deg(uz)y d(usuz) Yo, 40, xdegwn)+deg(vz) ,d(vy,vz)

= Yuev (e X9 DWW (Ga %, y) + Tuev(e,) ¥248 PW( Gy, x,y)
+2W(Gy, %, Y)W(Gy, X, ¥)
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