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Abstract 
Let G= (V, E) be a simple graph without isolated vertices. The GA1 index 
of G is defined as the summation of )),()(/()()(2 vdudvdud �  where 
for every vertex x, d(x) denotes the degree of vertex x. In this note, some 
properties of GA1 index are presented. 

 

 
1.  Introduction 

Let G = (V, E) be a simple graph where V(G) and E(G) are  the vertex and edge sets of 

the graph G, respectively. A topological index of a graph is a number invariant under its 

automorphisms. The simplest topological indices are the number of vertices and edges 

of the graph. The Wiener index (W) is one of the oldest topological indices introduced 

by Harold Wiener [1].  

The Cartesian product  G1 �G2 of graphs G1 and G2 is a graph such that V(G1 �  

G2) = V(G1) �V(G2), and any two vertices (a, b) and (u, v) are adjacent in G1 �  G2 if 

and only if either a = u and b is adjacent with v, or b = v and a is adjacent with u. If e = 

uv is an edge of G then GA1 index [2] of G defined as the summation of 

)),()(/()()(2 vdudvdud �  where for every vertex x, d(x) denotes the degree of vertex 

x [2]. In this paper, we present some new bounds for GA1 index. Throughout this paper, 

our notation is standard and taken from the standard graph theory books and [3-13]. In 

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 65 (2011) 33-38  

                          
                                          ISSN 0340 - 6253  

 



particular, papers [6,8,10] are concerned with geometric-arithmetic indices. For review 

on GA indices see [14]. 

2.  Bounds on the GA1 Index of Graphs 

By the well-known relation of arithmetic-geometric mean, we can easily seen that 

GA1(G) � m, with equality if and only if G is a union of regular graphs.  

Lemma 1. Let G be a simple graph. Then GA1(G) � ½ Zg1 with equality if and only if 

G is a union of K2. 

Proof. For any positive real numbers a and b, 
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 and so 11 2
1)( ZgGGA � . The equality holds if and only if 

)()( vdud � 1� ; for any edge e = uv. This condition satisfies if and only if G is a union 

of K2, proving the lemma. 

Lemma 2. If G is a simple graph without isolated vertices then 21 )( mZgGGA �  with 

equality if and only if G is a union of K2. 
 
Proof. Since G is a graph without isolated vertex,  
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For any edge e = uv, we define 1a uv �  and )v(d)u(dbuv � . Apply Cauchy-Schwarz 

inequality to conclude that 2uv uv
Euv

mZg)v(d)u(d1)v(d)u(d �� ���
�

 and equality 

holds if and only if 1)v(d)u(dbuv �� . Thus G is a union of K2, proving the lemma.  

 
Proposition 1. Suppose that G is a graph without isolated vertex. Then 

a) )1()( 21 ��� mmZgGGA  with equality if and only if G is a union of K2. 

 

b) 2
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�  with equality if and only if G is a union of an 

odd number of K2. 
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Proof. a)  We can see that, 
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�  and equality holds if and only if G is a 

union of an odd number of K2. 
 
Proposition 2. Suppose that G is a simple graph with no isolated vertex, then 
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Proposition 3. If G is a simple graph with no isolated vertices then 
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Proof.  By Proposition 1, 
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From our calculations given above, it is possible to compute the GA1 index of some 

nanostructures covered by C4. Notice that if G is a regular graph then 1
)v(d)u(d
)v(d)u(d2
�

�
. 

Thus GA1(G)=|E(G)|. 

I ) If G=Pn�Pm , then 
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7
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II ) If G = Cm�Pn then GA(G)= �
�

��
� �� BuvAuv )v(d)u(d

)v(d)u(d2
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 = 2m(n�1) + 
7

3m8 , where A={uv| d(u) = d(v) =3 or d(u) = d(v) = 4} and 

B = {uv | d(u) = 3 and d(v) = 4 }. 
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