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Abstract

Gutman and Zhou (Relations between Wiener, hyper-Wiener and Zagreb in-
dices, Chemical Physics Letters 394 (2004) 93-95) obtained some bounds on Wiener
and hyper-Wiener indices, in term of the first Zagreb index in molecular graphs
with girth greater than four. We obtain new inequalities for Wiener and hyper–
Wiener indices, in terms of the first and the second Zagreb indices and the number
of hexagons in these graphs. These inequalities improve the bounds obtained by
Gutman and Zhou and are the best possible bounds. Using these relations we ob-
tain a bound on the second Zagreb index in terms of the first Zagreb index, for
hexagon–free graphs.

1 Introduction

Throughout this paper we consider connected simple graphs, i. e., graphs without

loops and multiple edges. Our notations are standard and mainly taken from [1]. Let

G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). We denote by

d(x, y), N(x) and deg(x), the distance between vertices x and y, vertices in distance one

with vertex x and the degree of x, respectively. The diameter of G, denoted by diam(G),

is defined as the largest distance between vertices of G. We also denote by g(G) the girth

of the graph G which is defined as the length of the smallest (induced) cycle in G, if G

has at least one cycle, and is defined to be infinite if G has no cycle. Thus the girth of

trees and more generally the girth of the forests is defined to be infinite.
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A topological index is a number related to a graph which is structural invariant, that

is to say it is fixed under graph automorphisms. The Wiener index, denoted by W , is

perhaps the most studied topological indices from application and theoretical view points.

This index is defined as the sum of all distances between vertices of the graph. Randić

introduced an extension of the Wiener index for trees, and this has come to be known as

the hyper-Wiener index, denoted by WW . Klein et al. [2] generalized this extension to

cyclic structures as

WW (G) =
1

2

∑
{u,v}⊆V (G)

(
d(u, v) + d(u, v)2

)
.

The graph invariant hyper-Wiener is also a distance based graph invariant. For every

k, 1 ≤ k ≤ diam(G), let d(G, k) denotes the number of pairs of vertices in V (G) with

distance k, i. e.,

d(G, k) := |{{x, y} | x, y ∈ V (G), d(x, y) = k}| .

Note that we have d(G, k) = 0 for every k > diam(G). Clearly
∑
k≥1

d(G, k) =
n(n− 1)

2

and it is evidently obtained that

W (G) =
∑
k≥1

kd(G, k) and WW (G) =
1

2

∑
k≥1

k(k + 1)d(G, k) .

The graph invariants M1 and M2, the first and the second Zagreb indices respectively,

were firstly considered in 1972, see [3], are not distance based graph invariants. They are

defined as

M1(G) :=
∑

xy∈E(G)

(deg(x) + deg(y)) =
∑

x∈V (G)

deg(x)2

and

M2(G) :=
∑

xy∈E(G)

deg(x) deg(y) .

This expressions which now are called the Zagreb indices were deduced within the study

of the dependence of total π-electron energy on molecular structures [3] and are measures

of branching of the molecular carbon-atom skeleton [4]. For recent research on Zagreb

indices see [5, 6], the articles published in this issue, and the references cited therein.

Recently Gutman and Zhou, using the expression of d(G, 2) in terms of the first

Zagreb index and the number of edges, obtained some bounds on Wiener and hyper-

Wiener indices, in term of the first Zagreb index, the number of vertices and edges in the

-28-



graph G with girth greater than four [7]. In fact, for a simple triangle and square free

graph G they proved that

W (G) ≥ 3

2
n(n− 1)−m− 1

2
M1

and

WW (G) ≥ 3n(n− 1)− 2m− 3

2
M1 , WW (G) ≥ 2W (G)− 1

2
M1 .

In this note we obtain some new inequities for Wiener and hyper-Wiener indices of a

graph, in term of the first and the second Zagreb indices and the number of hexagons

(induced cycles of size six). We show that these inequalities improve the bounds obtained

by Gutman and Zhou and are the best possible bounds. In what follows we use M1 and

M2 instated of M1(G) and M2(G) when there is no confusing.

2 Main Results

Let G = (V (G), E(G)) be an arbitrary graph. For every adjacent vertices x, y ∈ V (G) we

have d(x, y) = 1 and vice versa. So d(G, 1) is equal to the number of edges of the graph

G, that is d(G, 1) = |E(G)|.

Lemma 1. Let G be a graph with h hexagons, m edges and g(G) > 4. Then

(i) d(G, 2) =
1

2
M1 −m

(ii) d(G, 3) = M2 −M1 +m− 3h .

Proof. Let x, y ∈ V (G) be two vertices of distance two in G and xzy be a path

of size two between them. Then we have z ∈ N(x) ∩ N(y) and so N(x) ∩ N(y) �= ∅.
Conversely, if x1, y1 are two distinct (non-adjacent) vertices with N(x1)∩N(y1) �= ∅, then
we must have d(x1, y1) = 2, since G has no triangle. Note also that G has no square and

so |N(x1) ∩N(y1)| = 1. Thus there is a bijection between the sets {{x, y} | d(x, y) = 2}
and {{x, y} | x �= y, ∃z ∈ V (G) : x, y ∈ N(z)}, and so we have

d(G, 2) =
∑

z∈V (G)

(
deg(z)

2

)
=

1

2

⎛
⎝ ∑

z∈V (G)

deg(z)2 −
∑

z∈V (G)

deg(z)

⎞
⎠ =

1

2
M1 −m .

Similarly if x, y are two vertices of distance three in G and xz1z2y be a path of size three

between them, then z1z2 ∈ E(G), x ∈ N(z1) − z2 and y ∈ N(z2) − z1. Conversely, if

x, y are two (distinct) vertices such that there exist z1z2 ∈ E(G) with x ∈ N(z1) − z2
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and y ∈ N(z2) − z1, then d(x, y) = 3. Note that in this case, since g(G) > 4, we have

x /∈ N(z2), y /∈ N(z1) and xy /∈ E(G). Since G has no square, there is a unique (shortest)

path of size two between each pair of vertices of distance two in G. But in each hexagon

in G there are exactly three pairs of vertices of distance three with two distinct (shortest)

paths of size three in G. Thus according to the above arguments we have

d(G, 3) =
∑

z1z2∈E(G)

(deg(z1)− 1)(deg(z2)− 1)− 3h

=
∑

z1z2∈E(G)

(deg(z1) deg(z2)− (deg(z1) + deg(z2)) + 1)− 3h

= M2 −M1 +m− 3h

which completes the proof of lemma. �

Theorem 2. If G is a graph with h hexagons, m edges and g(G) > 4, then W (G) ≥
2(n(n− 1)−m)−M2 + 3h and equality holds if and only if diam(G) ≤ 4.

Proof. By the definitions and using the above lemma we obtain that

W (G) =
∑
k≥1

kd(G, k) = d(G, 1) + 2d(G, 2) + 3d(G, 3) +
∑
k≥4

kd(G, k)

= m+ 2

(
1

2
M1 −m

)
+ 3(M2 −M1 +m− 3h) +

∑
k≥4

kd(G, k)

= 3M2 − 2(M1 −m)− 9h+
∑
k≥4

kd(G, k)

≥ 3M2 − 2(M1 −m)− 9h

+ 4

((
n

2

)
−m− (

1

2
M1 −m)− (M2 −M1 +m− 3h)

)

= 2(n(n− 1)−m)−M2 + 3h .

This bound is the best possible since for the path with five vertices P5, we haveW (P5) = 20

and M2(P5) = 12. In fact this bound is attained for all graphs with diameter at most

four. �

Obviously we have

3
∑
k≥3

d(G, k) ≤ 3d(G, 3) + 4
∑
k≥4

d(G, k) .

Since the left hand side of the above inequality is used by Gutamn and Zhou as a lower

bound for
∑

k≥3 kd(G, k) and our lower bound takes in to the account the right hand side
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of above inequality, so our lower bound for W (G) is greater and so

3

(
n

2

)
− 1

2
M1 −m ≤ 2(n(n− 1)−m)−M2 + 3h .

This observation yields the following corollary.

Corollary 3. With the notations and conditions of Theorem 2, we have M2 ≤ 1
2
(M1 +

n(n− 1)− 2m).

The following theorem gives us two lower bounds for the hyper-Wiener index.

Theorem 4. If G is a graph with h hexagons, m edges and g(G) > 4, then

(i) WW (G) ≥ 5n(n− 1)− 6m− 4M2 +
1
2
M1 + 12h

(ii) WW (G) ≥ 5
2
W (G)−m+ 1

2
M1 − 3

2
M2 +

9
2
h

and in above inequalities, equality holds if and only if diam(G) ≤ 4.

Proof. By the definition of hyper-Wiener in terms of d(G,K)’s and by using Lemma

1 we obtain that

WW (G) =
1

2

∑
k≥1

k(k + 1)d(G, k)

= d(G, 1) + 3d(G, 2) + 6d(G, 3) +
1

2

∑
k≥4

(k2 + k)d(G, k)

= m+ 3(
1

2
M1 −m) + 6(M2 −M1 +m− 3h) +

1

2

∑
k≥4

(k2 + k)d(G, k)

= 6M2 + 4m− 9

2
M1 − 18h+

1

2

∑
k≥4

(k2 + k)d(G, k)

≥ 6M2 + 4m− 9

2
M1 − 18h+ 10

∑
k≥4

d(G, k)

= 6M2 + 4m− 9

2
M1 − 18h

+ 10

((
n

2

)
−m− (

1

2
M1 −m)− (M2 −M1 +m− 3h)

)

= 5n(n− 1)− 6m− 4M2 +
1

2
M1 + 12h .
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This proves the first case. For the second one we compute

WW (G) =
1

2

(
W (G) +

∑
k≥1

k2d(G, k)

)

=
1

2
W (G) +

1

2
d(G, 1) + 2d(G, 2) +

9

2
d(G, 3) +

1

2

∑
k≥4

k2d(G, k)

≥ 1

2
W (G) +

1

2
d(G, 1) + 2d(G, 2) +

9

2
d(G, 3) +

4

2

∑
k≥4

kd(G, k)

=
1

2
W (G) + 3m− 7

2
M1 +

9

2
(M2 − 3h)

+ 2

(
W (G)−m− 2

(
1

2
M1 −m)− 3(M2 −M1 +m− 3h

))

=
5

2
W (G)−m+

1

2
M1 −

3

2
M2 +

9

2
h .

Note that all of the above inequalities turn to equalities if and only if d(G, k) = 0, for

k ≥ 5, that is if and only if diam(G) ≤ 4, which completes the proof of theorem. �
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