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Abstract

The topological index PI, is defined as PI(G)= Xc-yer@nu(e|G)+ n,(e|G) where
n,(e|G) is the number of vertices of G lying closer to u and n,(e|G) is the number of
vertices of G lying closer to v. In this paper, some GAP programs are prepared to
compute the vertex PI and Szeged polynomials of an infinite family of fullerenes
named Caps4.

1. Introduction

The fullerene era was started in 1985 with the discovery of a stable Cg cluster and its
interpretation as a cage structure with the familiar shape of a soccer ball, by Kroto and his
co-authors.! The well-known fullerene, the Cg molecule, is a closed-cage carbon
molecule with three-coordinate carbon atoms tiling the spherical or nearly spherical
surface with a truncated icosahedral structure formed by 20 hexagonal and 12 pentagonal
rings.” Let p, h, n and m be the number of pentagons, hexagons, carbon atoms and bonds
between them, in a given fullerene F. Since each atom lies in exactly 3 faces and each
edge lies in 2 faces, the number of atoms is n = (Sp+6h)/3, the number of edges is m =
(5p+6h)/2 = 3/2n and the number of faces is f = p + h. By the Euler’s formulan — m + f=
2, one can deduce that (Sp+6h)/3 — (5p+6h)/2 + p + h = 2, and therefore p =12, v=2h +
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20 and e = 3h + 30. This implies that such molecules made up entirely of n carbon atoms
and having 12 pentagonal and (n/2 — 10) hexagonal faces, where n # 22 is a natural
number equal or greater than 20.>

Mathematical calculations are necessary to explore important concepts in
chemistry. Mathematical chemistry is a branch of theoretical chemistry for discussion and
prediction of the molecular structure using mathematical methods without necessarily
referring to quantum mechanics. Chemical graph theory is an important tool for studying
molecular structures. This theory had an important effect on the development of the
chemical sciences.

We first describe some notations that will be kept throughout. Let G be a simple
molecular graph without directed and multiple edges and without loops, the vertex and
edge-sets of which being represented by V(G) and E(G), respectively. A topological
index of a graph G is a numeric quantity related to G. The oldest topological index is the
Wiener index which introduced by Harold Wiener.’

Khadikar®® defined a new topological index and named it Padmakar-Ivan (PI)
index. This newly proposed topological index does not coincide with the Wiener index
for acyclic molecules. It is defined as PI(G) = Xe-uverc)[mu(e|G)+ my(e|G)], where
my(e|G) is the number of edges of G lying closer to u than to v and my(e|G) is the number
of edges of G lying closer to v than to u. Edges equidistant from both ends of the edge uv
are not counted. Ashrafi,'* introduced a vertex version of PI index, named the vertex PI
index and abbreviated by PI,. This new index is defined as PI(G) = Xc-uver(G)[nu(e|G)+
n,(e/G)], and the Vertex PI polynomial is defined as PI(G,x)= Teopyep@x™ @™ ™€
where n,(e|G) is the number of vertices of G lying closer to u and n,(e|G) is the number
of vertices of G lying closer to v.

The Szeged index is another topological index, introduced by Ivan Gutman.""*
To define the Szeged index of a graph G, we consider the values n,(e|G) and n.(e|G)
defined in last paragraph. Then the Szeged index of the graph G is defined as Sz(G) =
2e-uvek(G)Mu(e|G)ny(e|G) and the Szeged polynomial is defined as Sz(G) = Xe-wer©)

XMAGVES) Notice that vertices equidistant from u and v are not taken into account.
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Ashrafi et al.">"® have calculated the Vertex PI and Szeged polynomials of some
Fullerenes. The aim of this paper is to compute the vertex PI and Szeged polynomials of

an infinite family of fullerenes. Throughout this paper, our notation is standard."

Figurel. The Fullerene Graph Cizp+4.

2. Computational Details

It is a well-known fact that for an acyclic graph T, Sz(T) = W(T). On the other hand, an
acyclic graph T does not have cycles and thus my(e|G) +my(e|G) = |V(T)|. Thus PI«(T) =
|[V(T)|-|[E(T)|. Since a fullerene graph F has 12 pentagonal faces, PI(F) < [V(F)|-|E(F)|.
The aim of this section is computing vertex PI and Szeged polynomial (and then the

vertex Pl and Szeged indices) of the fullerene graph Ciani4, Figure 1. We now assume
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that G is a graph, E = E(G) and V = V(G). Define N(e) = [V| — (ny(e|G)+ny(e|G)). Then
PI(G) = 2oy I VI-N@] = VI E| =Xy N(©).

If G is bipartite then N(e) = 0 and so PI,(G) = |V||E|. This shows that the vertex PI
index is the same for bipartite graphs with n vertices and m edges. On the other hand, the
vertex PI index of graphs with exactly n vertices has maximum value, for bipartite
graphs. We encourage the reader to consult ref. [20], for mathematical properties as well

as computational techniques of Szeged polynomial of graphs.

3. Result and discussion

In this section, by using a GAP program®' we compute the vertex PI and Szeged indices
of graphs. Here, GAP stands for Groups, Algorithms and Programming. The name was
chosen to reflect the aim of the system, which is a group of theoretical software for
solving computational problems in computational group theory. Because of including
GRAPE for working with graphs, GAP is useful also for working with graphs. This
software was constructed by GAP’s team in Aachen.”> Our program is accessible from
the author upon request.

The adjacency matrix of a molecular graph G with n vertices is an n x n matrix A
= [a;] defined by: a; = 1, if vertices i and j are connected by an edge and, a; = 0,
otherwise. The distance matrix D = [d;] of G is another n x n matrix defined by dj; is the
length of a minimum path connecting vertices i and j, i # j, and zero otherwise.

To compute the vertex PI and Szeged indices of molecular graphs, we first draw it
by HyperChem.?? Then we apply TopoCluj software of Diudea and his team® to compute
distance matrices of the molecular graph under consideration. We now upload D in our
GAP program to compute the vertex PI and Szeged indices of a molecular graph. Using
this program we obtain ten exceptional cases that n = 28, 40, 52, 64, 76, 88, 100, 112,
124 and 136. Our method can be applied to compute the vertex PI and Szeged indices of
nanotubes and tori studied by Diudea and his co-authors.”**’ In the mentioned paper

Diudea and his team computed Wiener index of these nanostructures.
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If n > 11 then we have the following general formula for computing the vertex PI

and Szeged polynomials of fullerene Cjpp44, Figure 1.

Theorem. The vertex PI and Szeged indices of Cj2p44 fullerenes are computed as follows:

PI,(Cpyppa>%) = (181-128)x"2"+* £ 32523 1 48x122 4 16x"2 + 8x'2" 4+ 8x12"*

+ 8x!1 28 4 4x 1220 gy 0y,

and

SZ(C12n+49x) =

8x342 + 2x289 + 8x396n—990 + 8x408n—1088 +

384n-896 504n-1596 504n-1680 528n-1760
1238417896 | g 504n 6x°0%4 22817

+1 +1 +
8x192n—320+4x108n—261+8x168n—308+8x300n—625+
_ _ _ 2
8x324n 702 +8x312n 624 +12x8|6n 4352 +12x36n +24n+4 +

12x672n—2912 + 8x396n—1056 + 24x744n—3658 + 12x240n—320 +

24n—24 51 12n-24
8){6 n—2496 +24x888n 5180 6)(6 n—2499

+1
+6(3+ (_1)1')”§3x(74+6i)(12n—70—6i) s even
i=1

42 2 - 408n-1
Q342 4 2289 | gy 396n-990 | o 408n-1088

12x384n—896 + 8x504n—1596 + 16x504n—1680 + 12x528n—1 760 +

8x192n—320+4x108n—261+8x168n—308+8x300n—625+

_ _ _ 2
8x324n 702 + 8x312n 624 +]2x816n 4352 + 6x36n +24n+4 +

12x672n—2912 + 8x396n—1056 + 24x744n—3658 2x240n—320

+1

+8x624n72496 + 24x888n75180 +1 6x612n72499

. n-13 . . .
+6(3 + (_1)1) D x(74+61)(12n770761) nis odd
i=1

Proof. From Figure 1, one can see that there are fifteen types of edges of fullerene graph

Ci2n. We name them ey, es,...,e;5 as see shown in Figure 1.
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Table 1. Computing ny(e) and n,(e) for Different Edges.

Edges ny, ny, Co Number
el 18, 19, 12n-33 8
e 16, 12n-20, 8 8
e3 9, 12n-29, 24 4
ey 14, 12n-22, 12 3
es 25, 12n-25, 4 8
e 27, 12n-26, 3 3

26, 12n-24, 2 8
34, 12n-32, 2 8
42, 12n-40, 2 16
56, 12n-52, 0 12
62, 12n-59, 1 24
e7 68, 12n-64, 0 12
74, 12n-70, 0 24
80, 12n-76, 0 12
86, 12n-82, 0 24
92, 12n-88, 0 12
eg 33, 12n-30, 1 8
ey 33, 12n-32, 3 8
ero 42, 12n-38, 0 8
el 52, 12n-48, 0 8
el 51, 12n-49, 2 16
€3 17, 17, 12n-34 2
€14 32, 12n-28, 0 12
€ls 33, 12n-30, 1 8
€6 44, 12n-40, 0 12

By using these calculations and Table 2 for exceptional cases, the proof is completed.
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Table 2. Some Exceptional Cases of Fullerenes.

Edges Cas Cao Cs; Cs4 Cre

e 8 12 |8 13 (15 (12 {16 |17 |19 |18 |19 |27 | 18 | 19 | 39
€ 12 |10 |6 |20 |13 |7 (29 |15 |8 |40 |16 |8 52116 | 8
€3 9 |9 10 |9 13 (1819 |22 (21 |9 |32 (23 | 9 |43 |24
€4 13 |11 |4 20 |13 |7 29 |14 |9 39 |14 |11 | 50 | 14 | 12
€s 9 12 |7 15 |18 |7 19 |27 |6 |23 |37 |4 24 147 | 5
€ 10 {13 |5 17 |19 |4 26 |21 |5 35 |24 |5 46 | 26 | 4
€7 12 |12 |4 16 (20 (4 |20 |28 |4 |23 |37 |4 25148 | 3
eg - - - 20 |20 [0 |20 [32 |0 |20 |44 |0 20156 | 0
€9 - - - 17 |19 |4 |23 |26 |3 27 |34 |3 30 143 ] 3
€10 - - - 16 |20 |4 24 124 |4 32 |28 |4 41 | 31 | 4
el - - - - - |- 23 123 |6 29 |32 |3 31 42| 3
en |- |- |- |- |- 3220 [0 [32[32]0 |32]44] 0
€3 - - - - - - 26 |23 |3 32 129 |3 36 | 38| 2
e |- |- |- |- |- |- [287]20[4 [34 273 |36]36] 4
eis |- |- |- |- [ [- - - ]- 4200 [38]38]0
e - |- |- |- |- |- |- [- |- [37[23[4 |4|31]3
e |- |- |- |- [- [~ [ |- [- [23[37[4 [31 |41
cis |10 |10 |8 |18 |15 |7 |27 |21 |4 |37 |23 [4 |47 |24 5
ew |- |- |- |- [- [- - 1-1-1-1-1-J43]30]3
e |- |- |- |- |- - - [- - - -1 Is6]20]0o
en |- |- |- |- |- [- |- [- |- |- |- |- [4a1]24]5s
€2 - - - - - - - - - - - - - - -
€23 - - - - - - - - - - - - - - -
€24 - - - - - - - - - - - - - - -
€25 - - - - - - - - - - - - - - -
€26 - - - - - - - - - - - - - - -
€27 12 |12 |4 16 |16 |8 17 |17 |18 |17 |17 |30 | 17| 17 | 42
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