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Abstract

Dendrimers are hyper-branched structures with rigorously tailored architecture. If
the tetrahedral carbon atoms are substituted, in silico, by tetrapodal graphitic
junctions, as those possibly appearing at the intersection (and annealing) of
nanotubes, the resulting nano-dendrimers will show a polyhedral tubular structure.
The construction of tetrapodal junctions is given in terms of both map operations
and fullerene spanning. The topology of such dendrimers can be described by the
aid of some counting polynomials, such as the recently proposed Omega and
Sadhana polynomials. Analytical formulas for counting the above polynomials, and
derived indices, in nano-dendrimers, are given in terms of the number of
monomeric repeat units.

Introduction

Junctions of carbon nanotubes can appear by “nano-welding” of crossing tubes in an
electron beam.[1] Tetrapodal junctions[2,3] are open structures of genus g=2 and negative
Gaussian curvature [4] which can be designed by introduction of polygonal faces larger
than hexagons in the graphite honeycomb. Such tetrapodal units are entirely built of sp?
carbon atoms. The structures considered within this paper are junctions of (3,3)
armchair carbon nanotubes.

Dendrimers are hyper-branched structures with rigorously tailored architecture. If the

tetrahedral carbon atoms are substituted, in silico, by tetrapodal graphitic junctions, as
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introduced above, the resulting nano-dendrimers will show a polyhedral tubular structure. The
construction of tetrapodal junctions will be detailed in the next section.

Visiting the associate graph of such a dendrimer is equivalent to the counting of
monomeric units and their consisting substructures. In Chemical Graph Theory, several
counting polynomials have been defined and used for characterizing the topology of
molecules.

Let G(V,E) be a connected bipartite graph, with the vertex set /(G) and edge set
E(G). Two edges e = (x,y) and = (u,v) of G are in relation “co” (i. e., codistant ): e co f
) if

dx,v)=d(x,u)+1=d(y,v)+1=d(y,u)

If “co” is an equivalence relation, the set of edges C(e):={f € E(G); f coe} is
called an orthogonal cut oc of G and E(G) is the union of disjoint orthogonal cuts:
CiuC,u..uCand CinGi=@fori# j,i,j=12,.k.

A set of opposite or topologically parallel edges within the same face/ring
eventually forming a strip of adjacent faces, is called a quasi-orthogonal cut qoc or
ops.(opposite edge strip). Relation goc/ops does not necessarily asks for the transitivity
of “co”.

Let m(G,c) be the number of goc strips of length ¢ (i.e., the number of cut-off
edges); for the sake of simplicity, m(G,c) can be written as m. The Omega polynomial is

defined as: [5]
Q(G,x) = Zcm(G,c)~xc (1

The first derivative (in x=1) equals the number of edges in the graph:

Q(G,l):zcm-c:e:|E(G)| @)
A topological index, called Cluj-Ilmenau,[6] C/=CI(G), was defined on Omega
polynomial:

CI(G) ={[Q(G, DI -[Q(G,)+Q"(G, )]} 3)

The Sadhana polynomial can also be defined on the ground of goc strips:[7, 8]

Sd(G.x)=) m(G,e)-x** )
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with e being the cardinality of the edge set e=|E(G)|. This polynomial is based on a

recently introduced ‘Sadhana index’, Khadikar et al.[9, 10]
$d(G)=), m(G,0)-(EG)|-c) )

From the definition of Omega polynomial,[6, 11-13] one can obtain the Sadhana

ke Then the Sadhana index will be the first derivative

polynomial by replacing x° with x
of Sd’(G,x) evaluated at x=1. In fact, the first derivative (in x=1) is a multiple of

e(G):[14]

Sd'(G,1)=Y" m(G,c)-(e=c)= Y. m(G,cle~Y m(G,c)c=
c c c
:ez‘m(G,c)—e:e(Z)m(G,c)—l):e(Sd(G,l)—l) ©)
The relation of Sadhana index with Omega polynomial, out of the basic definition, is:
8d(G)=8d'(G,1)=Q'(G.,)((QG,1)-1) %)

The way for calculating the above two counting polynomials in nano-dendrimers will be

presented below.
Construction of tetrapodal junctions

There are at least two ways to design a tetrapodal junction:

1. Tetrapodal junctions by map operations. Large structures with high symmetry
can be obtained by the aid of map operations [5, 15] (e.g., leapfrog, chamfering, capra
and opening) starting from smaller objects (basically, the Platonic solids). These
transformations preserve the symmetry of the parent map, therefore tetrapodal junctions,
of T, or T symmetry can be obtained from the tetrahedron.

Leapfrog [16-18] (tripling) Le is a composite operation that involves
triangulation Ps, dualization Du and/or truncation 77:
Le(M) = Du(P,(M)) = Tr(Du(M))
This operation rotates the parent s-gonal faces by z /s . Figure 1 provides a molecular

realization of Le.
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Figure 1. Design of a tetrapodal junction by leapfrog Le map operation

Chamfering (quadrupling) Q is another composite operation, which can be
achieved by the sequence: Q(M)=RE(Tr, (B(M))) where RE denotes the (old) edge

deletion in the truncation 77, of each central vertex of the P5 capping. Figure 2 gives an

example of such a transformation.
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Figure 2. Tetrapodal junction designed by Chamfering Q operation

A third composite operation on maps is called Capra Ca [19] (or septupling
operation) and it was developed by TOPO GROUP Clu;. It can be written as a sequence
of simple operations: S,(M)=Tr, (5(M)), with Tr, being the truncation of the face

centered vertex introduced by Ps pentangulation. Figure 3 illustrates this last operation.

e s
P £~
I ik
N I [
LK ~ AN
7 ow N [ s P N
M R A - N
i By 7 .
J [ SRy . i \
y: L™ T L N N 0 2
PN A A A NM 7
L4V 4 174} AN sy
N St N 4
e S
Ca(T) Op(Ca(T)) Le(Op(Ca(T)))

Figure 3. Tetrapodal junction designed by Capra Ca operation
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2. Tetrapodal junctions by fullerene spanning

Four small fullerene cages Ceo-Ih, C76- Ta, C34-20-Tg4, and Cj20-T were here chosen as
the core of tetrapodal junctions [16]. The basic structural motif of the selected cages
is the sumanene, a benzene ring surrounded by alternating pentagons and hexagons

[6:(5,6)3]. Figure 4 illustrates the studied opened fullerenes.

Figure 4. Opened Op fullerenes

A tetrapodal junction can be designed by opening a fullerene graph and next
attaching four nanotube arms.[20] By inserting two divalent vertices on the bonds
shared by a pentagon and the core hexagon in the sumanene unit, a heptagon is created

and the fullerene polyhedron is thus opened. Figure 5 illustrates these junctions.

Cyo-junction Cs-junction
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Figure 5. Tetrapodal Junctions
In all cases, the (3,3) armchair tube is the fitted tube.

Tetrapodal junctions were next connected by identification (a procedure
implemented in our software Nano Studio [21]) to build dendritic molecules. Nano-
dendrimers, at the first and second-generation stages, respectively, are illustrated in

Figure 6.

First dendrimer level Second dendrimer level

Figure 6. Dendrimer of Cgs-junction ( Le(Op(Le(Le(T)))))

Omega and Sadhana polynomials in tetrapodal junctions

As above mentioned, a set of opposite or topologically parallel edges within the
same face/ring eventually forming a strip of adjacent faces, is called a goc or an ops.
The number of ops of length ¢ is given by the polynomial coefficients of terms at
exponent c; the number of distinct ¢ exponents equals the number of equivalence classes

of opposite edges in G. Figure 7 illustrates an ops of ¢=7 in a dimmer structure.



Figure 7. A goc/ops of length ¢=7, in a tetrapodal junction dimmer [1, 5]

Analytical formulas of the Omega [6] and Sadhana[7] polynomial in tetrapodal
junctions were derived; in every formula, m represents the number of monomers.
Examples of Omega, Sadhana polynomials and derived indices, in the case of

dendrimers built up from tetrapodal junctions are presented in the tables below.

Table 1. Omega and Sadhana polynomials of Cgo-T¢-junction.
Ceo-Ta-junction Le(Op(Ca(T))) TUB.3.0);v=284,f=16,/=12,e=114
QG,x)=122m+D X" +12mX* +18mX’

Q(G,1) =54m+12

Q(G,1)=102m+12

CI =102*-m* +2214m +132; Example: m = 2;CI =46176

Sd(G,x) =122m+1)"*"" +12mX"' " +18mXx "+

Sd'(G,1) = 5508m> +1770m+132

Table 2. Omega and Sadhana polynomials of Cy6-T4-junction.

Cre-Tg-junction TU(3.3.0); v= 100, /o =24 f; = 12, e = 138
Q(G,x) =12Q2m+ D) X" +12mX? +6mX> +12mX*

Q(G,1) = Sd(G,1) = 54m +12

Q(G,1)=126m+12

CI =126 -m* +2598m +132; Example m = 2;CI = 68832

Sd(G,x) — 12(2m + 1)X126m+11 +12mX126m+10 + 6mX126m+9 + 12mX126m+7
Sd'(G,1) = 6804m* +2034m +132

Table 3. Omega and Sadhana polynomials of Cgs-7-junction.

Css-Tyjunction Le(Op(Le(Le(T)))) TU(3.3.0); v=108 , fs =28, f7=12,e=150

Q(G,x)=12Q2m+ 1) X" +24mX> + 6mX’
Q(G,1) = 5d(G,1) = 54m+12
Q(G,1)=138m+12
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CI=138-m*+2778m+132; Example: m =3; CI =179862

Sd(G, )C) — 12(2m + 1)X138m+ll + 24mX138m+9 + 6mX|38m+5
Sd'(G,1) =7452m’ +2166m +132

Table 4. Omega and Sadhana polynomials of C;2o-7~junction.

Ciao-T-junction Le(Op(Le(Q(T)))) TU3.3.0); v = 144, f; = 46, f, = 12, e = 204

Q(G,x) =122m+ D) X" +12mX> + 6mX* +12mX° +3mX "
Q(G,1)=8d(G,1)=5Tm+12
Q'(G,1)=192m+12

CI =192 -m* +3516m +132 ; Example: m = 2;CI =154620

Sd(G,x) =12(2m+1) X" £ 12mX 2" 4+ 6mX """ +12mX %" 4 3mX "
Sd'(G,1) =10944m” +2796m +132

The first derivative of Omega polynomial [22, 23] gives the number of the edges
in G. The first derivative of Sadhana polynomials in x=1 is a multiple of the number of
the edges, as shown above. The Cluj-Ilmenau CI index [24] is a topological index,
useful in correlating properties with molecular structures.

By construction, the “negative” polygon is 7 (an odd ring, with no opposite
edges), so that the strip remains at the level of a single monomer unit and the
polynomials are additive in their coefficients. In the above, “negative” refers to
polygons inducing the negative curvature at the junction of tetrapodal units. The terms
at c=1 (in Omega polynomial) account for the non-opposite edges or the odd rings.

Remark, in these tables, the simplicity, at exponents, of Omega vs Sadhana
polynomials; the polynomial order increases as the size of fullerenes increases. The first
derivative is 1* and 2™ order in m, for Omega and Sadhana, respectively. The value in
x=1 is the same for both polynomials and accounts for the total number of strips. For the

first three units, the same value Q(G,1);Sd(G,1) are obtained, telling about their

structural relatedness.

Conclusions
Omega Q(G,x)and Sadhana polynomials count the opposite edge strips ops of

all extent in G. Analytical formulas for the calculation of the two polynomials in nano-
dendrimers build up from four tetrapodal junctions were given in terms of the number of

monomer units m. The Omega polynomial is remarkably simpler than Sadhana one and
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enables direct interpretation of the exponents. Even the number of generations of such

(yet hypothetical dendrimers) is rather limited, the established formulas are of

diagnostic value, as composition rules of a global (topological) property by local

contributions of the monomeric repeat units.
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