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Abstract

The topology of puzzle-like zeolites is described in terms of Omega counting
polynomial. Close formulas for calculating the polynomial and the Cluj-
Tlmenau index derived from this polynomial are given.

1. Introduction

There are inorganic compounds of various classes including oxides, sulfides,
selenides, borates, silicates, etc. of many metals possessing ordered structures at the
nano-scale. In the last years, oxides and other above-mentioned inorganic substances
found applications in the design of nanostructured functional materials as films,
nanorods, porous systems, nanoclusters, nanocrystallites or nanofibers.' '

Zeolites are natural or synthetic aluminosilicates with an open three-dimensional

crystal structure. Zeolites are members of the family of microporous solids known as

"molecular sieves." The term molecular sieve refers to the property of these materials to
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selectively sort molecules based primarily on a size exclusion process. This is due to a
regular structure of pores, of molecular dimensions, forming channels. The maximum
size of the molecular or ionic species that can enter the pores of a zeolite is controlled
by the dimensions of the channels.''**

The rigorous and often aesthetically appealing architecture of crystal lattices,
attracted the interest of scientists in a broad area, from crystallographers, to chemists
and mathematicians.'®?* The studies on classification have been followed by studies on
the usefulness, in chemical reactions or in physical devices, and more recently by
applied mathematical studies, in an effort to give a new, more appropriate
characterization of the world of crystals. Thus, recent articles in crystallography
promoted the idea of topological description and classification of crystal structures.'®?!
They present data on real, but also hypothetical lattices designed by computer.

The present study is devoted to the study of a puzzle-like lattice of a
hypothetical zeolite, by using a topological description in terms of the Omega counting

polynomial.
2. Omega polynomial

Let G(V,E) be a connected graph, with the vertex set V(G) and edge set E(G).
Two edges e = uv and f'= xy of G are called codistant e co f if they obey the following
relation:*%

dv,x)=d(v,y)+1=d(u,x)+1=d(u,y) €8}

Relation co is reflexive, that is, e co e holds for any edge e of G; it is also
symmetric, if e co fthen f co e. In general, relation co is not transitive, an example

showing this fact is the complete bipartite graph X, ,. If “co” is also transitive, thus an
equivalence relation, then G 1is called a co-graph and the set of edges
C(e)={f € E(G); f co e} is called an orthogonal cut oc of G, E(G) being the union of
disjoint orthogonal cuts: E(G)=C, v C,V..0C,, C,NC, =@, i+j. Klavzar® has

shown that relation co is a theta Djokovi¢-Winkler relation.?”*

Let e = uv and f = xy be two edges of G which are opposite or topologically
parallel and denote this relation by e op f. A set of opposite edges, within the same

face/ring, eventually forming a strip of adjacent faces/rings, is called an opposite edge
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strip ops, which is a quasi-ortogonal cut goc (i.e., the transitivity relation is not
necessarily obeyed). Note that co relation is defined in the whole graph while op is
defined only in a face/ring.

The ops relation has the properties: (i) any two subsequent edges of such a strip
are in op relation; (ii) any three subsequent edges belong to adjacent (edge sharing)
faces/ rings; (iii) the inner dual of an ops is a path or a cycle, thus neither revisiting nor
branching is allowed.

An ops starts/ends in either one even face/ring or in two odd faces/rings; in the
first case, the ops is a cycle while in the second one it is a path. In case of open
structures, the open (or infinite) faces are equivalent to the odd faces. There are cases in
which the two odd faces/rings superimpose and ops is a pseudo cycle, because the op
relation in the first/last odd face/ring is not obeyed.”

The length of ops is maximal irrespective of the starting edge. The choice is
about the maximum size of face/ring, and the mode of face/ring counting, which will
decide the length of the strip. In case of ring mode counting, the procedure will search
for the detour of the inner duals of ops.

Let m(G,s) be the number of ops strips of length s. The Omega polynomial is

defined as®

Q(G,x) = zxm(G,s)-x" 2)
The first derivative (in x=1) equals the number of edges in the graph
Q'(G1)=) m(G,s)-s=e=|E(G) 3)

A topological index, called Cluj-Iimenau,”® CI=CI(G), was defined on Omega
polynomial
CI(G) = {[Q(G.DF ~[Q(G.)+ (G, D]} @
An example is given in Figure 1, which illustrates just the pattern of studied

lattice.



Figure 1. Q(C); v=32; (G, X)=4X%+3X®, Q(G.1)=48=¢(G) ; CI(G)=1968

Data were calculated by an original program called Nano Studio,” developed at

the TOPO Group Clu;.

3. Lattice building

The lattice was built up starting from the unit in Figure 1 (designed by applying

3237 on the cube C), by identifying the

the quadrupling/chamfering map operation
hexagonal faces of six units, in a circular manner. Different views of circular/toroidal

units, in various stacking can be seen in Figures 2 and 3.
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Figure 2. Circular units in the sheet-like stacking: top view (column a) and side view (column
b).
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It is easily seen that the puzzle-like stacking (either in sheet- of coronene-like
manner) leaves channels/hollows parallel to the Z-coordinate, a required property of

zeolites (see above).
4. Main results

In calculating Omega polynomial, the maximum considered ring Ry,,x was six.
Thus, squares and hexagons are counted in the ops appearing in these puzzle-like
structures, as shown in Table 1. In coronene lattice CorL, there is no ops of length 18
(consisting by only hexagons) or 26 (mixed squares and hexagons); the number of O(C)

units is easily seen in Figures 2 and 3.

Figure 3. Toroidal units in the coronene-like stacking; #=19

Table 1. ops length in the lattice structures

Q(C) Units 1 2 3 4 5 6 Increment
Hexagons 6 10 14 18 22 26 +4
Squares & Hexagons 8 14 20 26 32 38 +6

In the opposite, the sheet-like stacking shows these ops provided by four O(C)
units.

Keeping in mind the data in Table 1 it is easily to derive the number of ops (i.e.,
the coefficients) of a given length (i.e., the exponents). The lattice parameters (number
of units u;5s and vertices v) as well as the polynomial and C/ index are given in the
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following tables, for coronene-like CorL structures, sheet-like parallelogram domains
and linear ones.

To calculate the number of vertices of coronene-like structures, a composition
rule of the form: Core(k) & Contour(k+1) was used. In case of evaluating the maximum
exponent of the polynomial, the simple planar coronene-like structure CorS was built
up. The maximum length ops in the CorL structure is just the number of vertices in
CorS. Next, for counting the number of vertices in CorL, the same composition rule was
used; it follows the rule of construction by joining, by a simple formal bonding, the
points of lower valence in the core and contour. Alternatively, the rule superimposes
over the construction by identification of the core, at level k, with the contour in the next
level k+1,to give the whole structure at k+1 level, the common points (namely
72(2k+1)) being taken only once (see Table 2).

Table 3 contains data for the sheet-like structures. Tables 2 and 3 also contain
information about the (structural) source of the formulas for maximum exponents,
finally included in the formula of Omega polynomial. Table 4 lists examples for the
above formulas.

Table 2. Omega polynomial in puzzle-like lattice: coronenes.

Counting  Info source Formula
e max CoreS(k) + ContourS(k+1) €max (CorL) = v(CorS)
Polynomial

CorL Q(CorL, X) = 6(2k + ).X° + 62k + DX® + 6.X'0 + 62k + D X'* + 6(2k) X 2°
2
+6(2k) X% + 9k (k —1) X0 + 6(26) X% + 9k(k — 1) X33 4 X O4+10k+TE)
Q(G,1) = 618k2 +708k +252 ; Q"(G,1) =1764k* + 50403 + 24078k + 9540k +2700 ;
CI(CorL) = 380160k™ +870048k> + 788040k + 346584k + 60552

\4

ContourS v(ContourS) =120k; k =0,1,2,..
CorS k
24+ {120 - 9[4(i 1) +2]} v(CorS) = 6(4 + 10k + 7k?)
i=1
ContourL v(ContourL) = 2-71-u(contourL) = 852k
CoreL k
84+ 12{6[9+10(i = 2)]—i+k}  w(CoreL) =156 — 426k + 354k>
i=2
CorL  CoreL(k) & ContourL(k+1) W(CorL(k+1)) =156 + 426k + 354k
CorL(k) & ContourL(k+1) v(CorL(k+1)) = CorL(k) + ContourL(k + 1) — 72(2k +1)
Uiss
ContourL u(contourL) = 6k

CorL 6 u(CorL) = 1+ 3k + 3k>
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Table 3. Omega polynomial in puzzle-like lattice: parallelograms and linear structures.

Counting  Info source Formula
e max k 2
2423 (141 +13) 24+ 40k + 14k
i=1
Polynomial
Parallel- Q(Parallel, X) = (6+8k) X0 +(6+85) X +6x10 + (6+8k) x4 +2x18 + 8x 20
ogram

structure 1248k —2)) X 22 + (4= 6k +3k2) X 20 4+ (124 8(k —2) X 32 + (2 - 6k + 342 ) X 38 4 x24+40k+14k7

QUG,1) = 206k2 + 472k +252;
Q'(G,1) = 196k* +1120k> +8426k2 + 6360k + 2908
CI(Parallel) = 42240k% +193344)3 +317976k2 + 231056k + 60344

Linear Q(Linear, X) =[6+4(k = 1)]X +[6 + 4(k —D]X® +[6 + 2(k - DIX'0 +[6 + 4k -] X"
SUUCTUIE xS 4 2k — X2 4 (k— X2 4 X 20K+

Q'(G,1)=236k+16;
Q"(G,1) = 400k + 3108k — 808
CI(Linear) = 55296k> + 4208k +1048

\4

v(Parallel) k-1
156+ )" (236i+166)
i=1

v(Parallel) = —10 + 48k +118%>

v(Linear) v(Linear) =156 + 142k

Table 4. Omega polynomial in puzzle-like lattice: examples.

k Omega; CorL CI v

0 6X+6X*+6X' +6 X +1X** 60552 156

1 18X+18X+6X 18X +12X+12X2+12X°2+1 X' 2445384 936

2 30X30X°+6.X 30X 24X +24 X+ 1 8 X7 +24 X2+ 18 X5+ 1.4 12 16948824 2424
Omega; Parallel

0 6X+6X*+6 X' +6 X +1X** 60552 156

1 14X+ 14X546 X "+ 14X 3 X S+ 8 X+ 2 X2+ 3 X204+ 2. X2+ 1 X8 844856 558

2 22X%422X8+6 X0+ 22X 2 X 8+ 16 X0+ 1 2 X2+ 4 X0+ 12X+ 2 X8+ 1 X100 4016952 1196

Omega; Linear

0 6X+6X*+6 X +6 X +1x* 60552 156
1 10X*+10X*+8X ' +10X 4+ 1LY *+2 X2+ L. X2+ 1.x* 230648 298
2 14X+ 14X*+10X + 14X+ 2X +4 X0+ 275+ 1 X% 511336 440
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The number of atoms in the lattice is function of the number of layers s and the
toroidal units « (namely u;s6 ) in the plane (i.e., the number of hollows):
vy =sv —(s—1)-6u 5)
Omega polynomial coefficients of a given planar arrangement are simply
multiplied by s in the multi-layer lattice to give the polynomial for the whole structure
(Table 5).

Table 5. Multi-layer puzzle lattice: examples.

s Omega; u=7(Cor) Ccl v

1 18X+18X3+6 X +18 X +12X°%+ 1 2 X2+ 1 2 X°2+X' 26 2445384 936
2 36X436 X+ 12X 436X 24X 24 X2+ 24 X222 X1 9870936 1830
3 5AXH54XAH18X 54X 36 X 36 X363 X1 22276656 2724

5. Conclusions

The topology of puzzle-like lattices can be described by using the Omega
counting polynomial. Close formulas for calculating the polynomial and the Cluj-
Ilmenau index derived from this polynomial, as well as for the lattice parameters were
given. It was proven that Omega polynomial is a useful tool for topological description

of crystal-like lattices.
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