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Abstract

The Laplacian energy LE[G] of a simple graph G with n vertices

and m edges is equal to the sum of distances of the Laplacian eigen-

values to their average. For 1 < j <'s, let A; be matrices of orders n;.

Suppose that
S
det(L(G) — AI,) = T det(A; — )\In])tf,
j=1
with ¢; > 0. In the present paper we prove

LE[G] < _zltjﬁjHAj =20 p < VR |ILG) = 2|
ps

where ||.||  stands for the Frobenius matrix norm.

*E-mail addresses: mariarobbiano@gmail.com, enide@ua.pt, rjimen@ucn.cl, san-
marti@Qucn.cl

fResearch supported by Centre for Research on Optimization and Control from the
Fundagao para a Ciéncia e a Tecnologia, cofinanced by the European Community Fund
FEDER/POCI 2010.



-08-

1 Preliminaries

Let G = (V, E) be a simple (n,m)— graph where V is a nonempty finite set
of n vertices and F is the set of m edges. We denote by d; > ... > d,, its
vertex degree sequence. Let D(G) be the diagonal matrix of vertex degrees
and A(G) the adjacency matrix. Its eigenvalues A, ..., \, form the spectrum

of G. The matrix L (G) = D (G) — A(G) is the Laplacian matrix of G. The
Laplacian spectrum of G corresponds to eigenvalues puy, ..., pu, of L(G),
(cf. [1]).

The notion of energy of a (n, m)—graph G (written E[G]) was introduced

by Gutman and it is intensively studied in chemistry since it can be used to

approximate the total 7-electron energy of a molecule (cf. [3], [4], [5] and [8]).

It is defined by
E[G] =) INl,
j=1
whereas the Laplacian energy of a (n, m)—graph G (written LE[G]) (cf. [6],
[7], [15], [16], [17], [11]) is defined by

LE|G] = Z },U’j - QTm : (1)

Given a complex mxn matrix C, we index its singular values by s1(C), s2(C), . . ..

The value €& (C) = Z $;(C), is the energy of C' (cf.[10]), thereby
J
extending the concept of graph energy introduced by Gutman. Consequently,
if ¢ € R™" is symmetric with eigenvalues A(C), ..., \,(C) its energy is

given by £ (C) = Z [Xi(C)|. Let s € N. Denote I, the corresponding
i=1

identity matrix of order s. Evidently, using the previous concept, the energy
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of any graph G is the energy of its adjacency matrix and its Laplacian energy
is given by
LE[G] =€ (L(G) - %”L,) . (2)

Let C' = (cij),<; j<, be a square matrix so that o (C) and ||Cl|; denote the

eigenvalues set (with its multiplicity) of C' and the Frobenius matrix norm

of C, [9], respectively. Moreover, consider the matrix |C| = (CTC)l/ Ic

is a symmetric matrix then

1/2

n 1/2
IC1le = (Zlczj?) = (trace|CP)* = | 37 AP

ij=1 Aea(C)
The following upper bound on the energy of a (n,m)—graph G have been

established, [6].
E[G] < V2mn. (3)

By setting
M=m+3> (d;—22)%, (4)
j=1
the authors, in [6], together with the concept of Laplacian energy introduced

the next upper bound (analogous to (3)),

LE|G] < V2Mn. (5)
A standard verification shows that
m 2
2M = ||L(G) — 221, || .- (6)

Thus Eq. (5) can be expressed by LE[G] < /n|L(G) — %”I,,,HF‘ The
aim of this paper is to establish a new and improved upper bound for the

Laplacian energy of graphs whose Laplacian characteristic polynomial can be
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decomposed as a product of other characteristic polynomials. Moreover, we
prove for the mentioned graphs that our new upper bound is better than (5).
There are numerous results in the literature related with the decomposition
of the characteristic polynomial and the Laplacian polynomial. For exam-
ple, in [12] Rojo and Soto have decomposed the characteristic polynomial
and the Laplacian characteristic polynomial of generalized Bethe trees as a
product of characteristic polynomial of nonnegative, symmetric, tridiagonals
matrices [cf. [12], [13], and [14]]. Recently Fernandes R. et al, [2], also done
a similar decomposition for graphs like weighted rooted trees. The authors
also decomposed the characteristic polynomial as a product of characteris-
tic polynomial of nonnegative, symmetric, tridiagonals matrices and some
polynomials related with the characteristic polynomials of the referred ma-
trices. As an application of our result, with the decompositions presented in
[12] we construct an improved upper bound (in comparison with (5)) of the
Laplacian energy to the case of generalized Bethe trees.

We introduce the following notation. For a = (a1, ..., a,) € R its norm

llall, is given by |lal| = \/a? + a3+ ... +a2. Let b = (by,...,b,) € RI. We

recall the Cauchy Schwarz inequality (cf. [9]): E q ) a;b; < all ||l .
=
Let p < q. Define

WP ={a=(ar,...,a;) €ER 1 ap1 =...=a,=0}.

It is well known that WP is a subespace p dimentional of R?. For a =
(a1,...,ay) € RY consider the vectors ¢, (a) = (a1,...,a,,0,...,0) € W?
and 0, (a) == (ap41,--.,0a4,0,...,0) € WP,

The following properties can be directly verified:

L 51’(817(0’)) = (070)7
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2. 6y, (0p, (@) = Opy4py (@) and
3. lla—e, (a)[I” = 116, (@)l = llall* = lle, (a)]*-

Lemma 1 Let a = (ay,...,a,) € R? . Let p < q and consider ¢, (a) and
0, (a) defined as above. Then,

VP lgp (@)l +va = pl6, ()| <vgllal- (7)

Proof. If a = (0,...,0) € R? the inequality (7) is trivially verified. From
now on we consider a# 0. Let b = (b1, ..., b,) € R? be the unitary vector ﬁ

namely b; = a;/ |ja]|, for 1 <i < gq. Thus, |e,()|> =03 +b3+...+ b <1

and
lall* lep B)I* = llep (@) (8)

It is easily checked that the inequality (7) follows from the inequality

Vplle, (01 + \/(1 —ll& O)I*) (4= p) < V. 9)

together with Eq. (8) and the property 3. Thus, this prove can be obtained
from establish that

VPI+ V(1 —g)(g—p) < g forall 0<g<1. (10)
Consider the nonnegative numbers gg and p, it is well known that,

2,/49/P < qg+p. From this, we derive to ¢ —qg—p+pg < ¢+pg—2,/4\/Dg.
Then,
(a—p) (1—9) < (Vi—vp9)*. (11)

Now, by computing in both sides square root in inequality (11) , the inequality

2

(10) holds. Hence, by considering g = ||&, (b)||” the inequality (9) follows. m
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Theorem 2 Let A; be square symmetric matrices of order n; and
Pj(\) = det(A; — Al,;) with 1 < j < s. Consider a square symmetric matriz
A of order n with characteristic polynomial P(\) so that
P(A\) = Pi(A\)Pa(N) ... Py(N). (12)
Then .
E(A) <D v 145l < VAl (13)
j=1

Proof. From the statement it is clear that

s
i=1

Let 1 <j<sando(4;) = {uij 1<i < nj} , be the spectrum of A;. Thus,

o (1A;]) = {sij = |my;| : 1 <i < ny}. Consider the vectors a; = (s15,...,5,,;) €
R". From definition of Frobenius matrix norm we obtain || 4; H% = oyl =
Yoy sy, 1< j < s With our notation, a = (a,...,a;) is the vector of
cigenvalues of |A|. Hence, [A|2 = |la|®> = POy lla,||> . Therefore,
S
2 2
1AIF =D 114l (14)
j=1

On the other hand, it is clear that

nj

EA) = s (15)

Furthermore, the description of P(\) = det(A— Al,) in (12) makes it evident
that

s nj

gA) =33 sy = Zg(Aj). (16)

j=1 i=1

By considering the vectors (1,...,1) and o; € R™ and by applying Cauchy

Schwarz inequality on Eq. (15), we have

E(Ay) < Vg llagll = vaj 4l 1<j<s (17)
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Finally from Egs. (16) and (17) we conclude that  £(A) < >7°_, \/n; | Al -
Thus, the first inequality in (13) follows. It only remains to verify the second
inequality in (13). We see that the following identity is immediate from the

terminology introduced:

||5m+1 (6nl+~-»+m—1+nt ((I)) H = ||At+1||F ) 1 S t S s—1 (18)

Using Lemma 1 we replace ¢ by n, p by n; and considering Eqgs. (14) and

(18), we obtain

Vi llAullp +v/n =1 l|on, (@)l <Vnllall = V| Allg (19)

via |le, (a)|| = ||A1]lp . We continue using Lemma 1, but this time we shall
stick to change ¢ to n —ny, p to ny and a to d,, (a) € W"™ together with

Eq. (18) and the property 2, we arrive to

V2 [[Az]lg v =m0 =12 |00y 40, (@)l SV =11 [[60, (@) (20)
via ||en, (0n, (@))]| = ||A2|r . By considering Egs. (19) and (20), we deduce

that

Vit Al + Vs [ Aslle + V=1 =723 G (@] < VA [AlLp . (21)
Using again Lemma 1 we replace g by n—nj—na, p by ng and a by d,,.,, (a) €
Wn=n2=m and considering Eq. (18) and the above property 2, we arrive to
Vs | Aslly +vn —n1 — na — 13 |00 4npmn (@)l <V =01 =12 |60, (@)

(22)
via [|eng (dns4ny (@)l = [[As[lg - Egs. (21) and (22) imply

Vi [ Aulg + /e (| Azllp + /73 (| Asllp +v/n =11 — 12 — 13 [[0ng 4nptn (@)]] <
Vi Allg -
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If s > 3 we continue by applying the same kind of reasoning until to arrive
to change in the inequality (7), gton —n; —ng — ... — g9 =nNg +Ng_1, p

to ns_y and @ t0 Op, yin, gt..tmy (@) € W1 to obtain

Vit Al v/ ([0 anatetm (@)||p S VAT R0 [0 st gt (@[5
via ||gn,_y (0n,_ptmo_soem (@) ||p = [|Ascallp - Then,
Vit [Aacally + Vs [Adle < Ve F e ([0 ssne st (@]
via (|6, 1 ns st (@)]|y = [[Aslp - Therefore
VT [ Al + - VT Al + Vs Al <
VT [ Aillp + -+ Vs [Asally + Vits 7 7051 |6n st st (@)]]p

and
Vi [Aillpt. - Ay [ Asallp+v/ns + 11 ||5n<—2+"s—3+~»+"1 (a)HF = \/EHAHF ’
considering the previous step. This completes our argument. =
Corollary 3 Let G be an (n, m)—graph such that
det(L(G) — A,,) = Pi(A\)Pa(N) ... Ps(N) (23)

where P;(\) = det(A; — AI;), where A; are square matrices of order n; with

1<j<s. Then
LE[G] < Z Vi ||Aj = 221, ||, < V2Mn, (24)
j=1

where M is defined by (6) .
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Proof. From the decomposition of det(L(G) — AI,) in (23) we see that
det((L(G) — 221,) — AI,,) = det(L(G) — (22 + \)I,)

= PI(NB (V). PL(V),

s

where P} (\) = det(A; — (22 +\)1,,). Using Theorem 2 we replace the matrix
Aby L(G) — 221, and the matrices A; by A; — 221, together with Eqgs. (2)
and (6), the expression in Eq. (24) follows. m

Corollary 4 Let G be an (n,m)—graph such that

det(L(G) = AL,) = PI'(A) Py (M) ... P (N), (25)

where P;(\) = det(A; — AI;), where A; are square matrices of order n; and

t; >0 with1 <j<s. Then
LEIG) < 3ty |4 - 21, |, < VA, (20
j=1
where M is defined by (6) .
Proof. We consider Eq. (25) as
det(L(G) = AL) = (PUN) ... P()) (Po(N) ... BOV) ... (P.(N)... P(W)
Therefore, using Corollary 3 we obtain

LEIG) < 350 v |4 - 21, |, < VAN,
i=1 |p|

where |P;| stands for the number of times that P; is a factor of

det(L(G) — AL,), namely ¢;. Thus, the inequalities in (26) follow. m
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2 Improved upper bound for Laplacian en-
ergy of generalized Bethe trees

Let k > 2. A generalized Bethe tree By, of k levels [13] is a rooted tree in
which vertices at same level have the same degree. For j = 1,... k, we
denote by di_;41 and by nj_;1; the degree of the vertices at level j and their
number, respectively. Thus, d; = 1 is the degree of the vertices at the level k
and d, is the degree of the root vertex. Let n = (ny,...,n;). From now on we

denote By, by By (n). In particular By (n) is a bipartite graph. The following

figure illustrates the generalized Bethe tree By(n) with n = (20, 10,5,1).

With the customary abuse of notation, we shall take n and m as the

number of vertices and the number of edges of Bj(n), respectively. Then,
m =mn—1 and 277" =2 % The Laplacian energy of By(n) is denoted by
LE[k].

The aim of this section is to improve an upper bound for LE[k]. On this

way, we consider the tridiagonal symmetric matrix of order %k

1 Jd—1
V=1 dy
Ti = :

di1r Vi
Vi d
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For 1 < j <k —1, by setting T} the corresponding principal leading subma-

trices of order j of T} we consider the characteristic polynomials
Pi(\) =det(T; — AI;), 1<j<k

In addition let
®={1,2,...,....,k—1} and

Q:{jGQJ:nj>n]~+1}

and denote by a; the integer
a]-:n‘,-fnjﬂ, 1 S] Sk’*l

The next result provides a split up of the characteristic polynomial of the

Laplacian matrix.

Theorem 5 ([12]) For 1 < j < k, let a;, P; be defined as above, respec-
tively. Then the characteristic polynomial P (\) = det(L (By(n)) — Al,,) is
decomposed in the form
PN =pPWN]IE" ™.
jea

By an application of Corollary 4 we obtain.

Theorem 6 For1 < j <k, leta;,T; be defined as above, respectively. Then

LEK] < VE|Te = 2L, + Y a7 | T — 25|, < V2Mn, (27

n
JjeQ

where M is defined by (6) with G replaced by Bj(n).
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Example 7 In what follows the vector n is equal to the number of vertices of
Bi(n) labelled from bottom to top, the columns LE[k], OUB, NUB are the
Laplacian energy, the upper bound obtained in [6], the upper bound obtained

here, respectively.

n k LEk] OUB NUB
(20,10,5,1) 4 555044 64.0312  60.9150
(27,9,3,1) 4 67.3657 78.4602 72.0270
(24,12,6,3,1) 5 70.3991 79.0696 76.4526

(64,32,16,8,4,2,1) 7 195.1063 219.0936 212.5950

(5,1) 2 8.6667 11.8322  9.2326
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