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Abstract

A lot of properties especially bounds for the energy and the Laplacian energy of a

graph have been known. We now establish further upper bounds for the energy and

upper and lower bounds for the Laplacian energy. An upper bound for the energy of

bipartite graphs is given in terms of the Laplacian eigenvalues.

1. INTRODUCTION

Let G be a simple graph with n vertices. The eigenvalues of G are the eigenvalues

of its adjacency matrix A(G), which are denoted by λ1, λ2, . . . , λn, arranged in a

non-increasing order [1]. The energy of the graph G is defined as [2]

E(G) =
n∑

i=1

|λi| .

It has a long known chemical application with origins in the molecular orbital theory

of conjugated π-electron systems and has been studied extensively, see, e.g., [3–5], and
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for recent results, see, e.g., [6–9]. A lot of bounds for the energy have been known,

see, e.g., [4, 6, 8, 9].

Let D(G) be the diagonal matrix of vertex degrees of the graph G . Then L(G) =

D(G) − A(G) is the (ordinary) Laplacian matrix of G . Let μ1, μ2, . . . , μn be the

Laplacian eigenvalues of G, i.e., eigenvalues of L(G), arranged in a non-increasing

order [10]. The Laplacian energy of the graph G is defined as [11]

LE(G) =
n∑

i=1

|μi − d(G)|

where d(G) = 2m
n

is the average degree of G and m is the number of edges of G .

The basic properties including various upper and lower bounds for Laplacian energy

have been established in [11–16], and it has found remarkable chemical applications,

beyond the molecular orbital theory of conjugated molecules [17].

We now give upper bounds for the energy and upper and lower bounds for the

Laplacian energy. It is of interest to note that an upper bound for the energy of

bipartite graphs is given in terms of the Laplacian eigenvalues.

2. PRELIMINARIES

The singular values of a real matrix X are the square roots of the eigenvalues of the

matrixXXt, whereXt denotes the transpose of the matrixX . For an n×n real matrix

X, its singular values are denoted in a non-increasing order by s1(X), s2(X), . . . , sn(X) .

Thus, with In denoting the n× n identity matrix, we have

E(G) =
n∑

i=1

si(A(G))

LE(G) =
n∑

i=1

si (L(G)− d(G)In) .

Note that energy, Laplacian energy and singular values are concerned in [9, 14, 15],

and Laplacian energy and singular values are concerned in [16]. We need the following

lemmas.

Lemma 1. [18] Let M1 and M2 be n × n positive semi-definite matrices. Then

si(M1 −M2) ≤ si(M1 ⊕M2) for i = 1, 2, . . . , n, where M1 ⊕M2 =

(
M1 0
0 M2

)
.
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Lemma 2. [19] Let M1 and M2 be n × n real matrices. Then
n∑

i=1

si(M1 + M2) ≤
n∑

i=1

si(M1) +
n∑

i=1

si(M2) .

3. ENERGY

For a graph G, L+(G) = D(G) + A(G) is the signless Laplacian matrix of G [20].

Recall that both the Laplacian matrix and the signless Laplacian matrix are positive

semi-definite [10, 20]. Thus, for a graph G, the Laplacian eigenvalues and the signless

Laplacian eigenvalues are respectively the singular values of the matrices L(G) and

L+(G) .

For a graph G with n vertices, arrange the 2n numbers from the union of the

Laplacian spectrum and the signless Laplacian spectrum in a non-increasing order,

which are denoted by γ1, γ2, . . . , γ2n . Let M1 = L+(G) and M2 = L(G) in Lemma 1,

we have

2si(A(G)) ≤ γi for i = 1, 2, . . . , n

and thus we have

Proposition 1. Let G be a graph with n vertices. Then

E(G) ≤ 1

2

n∑
i=1

γi .

Let G be a graph with n vertices and m edges. Recall that
n∑

i=1

μi = 2m and a

similar formula holds also for the signless Laplacian eigenvalues. Thus, E(G) ≤ 2m

(see [4, 9]).

Let G be a bipartite graph with n vertices. Then the signless Laplacian spectrum

of G, i.e., the spectrum of L+(G), coincides with the Laplacian spectrum of G, and

thus

γ1 = γ2 = μ1, . . . , γn−1 = γn = μn/2 if n is even,

γ1 = γ2 = μ1, . . . , γn−2 = γn−1 = μ(n−1)/2, γn = μ(n+1)/2 if n is odd.

Therefore, we have
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Proposition 2. Let G be a bipartite graph with n vertices. Then

E(G) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n/2∑
i=1

μi if n is even,

(n−1)/2∑
i=1

μi +
1
2
μ(n+1)/2 if n is odd.

Let G be a bipartite graph with n vertices. Then by Proposition 2, E(G) ≤
�n/2�∑
i=1

μi . Recall that upper bounds for
k∑

i=1

μi with k = 1, . . . , n− 2 have already been

discussed in [21, 22].

4. LAPLACIAN ENERGY

Let Kn be the complete graph, and Kn the empty graph on n vertices. Let Pn be the

path on n vertices. Let G ∪H be vertex–disjoint union of the graphs G and H .

For a graph G with n vertices, let M1 = L(G) and M2 = d(G)In in Lemma 1, we

have

si (L(G)− d(G)In) ≤ max{μi, d(G)} for i = 1, 2, . . . , n

and thus we have

Proposition 3. Let G be a graph with n vertices. Then

LE(G) ≤
n∑

i=1

max{μi, d(G)} .

Lemma 3. [23] Let G be a graph with n vertices and minimum degree δ . If G �= Kn,

then μn−1 ≤ δ .

Recall that for a graph with n vertices, μn = 0 and the multiplicity of 0 as a

Laplacian eigenvalue is equal to the number of connected components of G [10], and

that the nonzero Laplacian eigenvalues of Kn are all equal to n for n ≥ 2 . A little

more precisely than Proposition 3, we have

Proposition 4. Let G be a graph with n ≥ 4 vertices. Then

LE(G) ≤ μ1 − μn−1 + d(G) +
n−2∑
i=2

max{μi, d(G)} .
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Proof. If G = Kn for n ≥ 4, then LE(G) = 2n−2 < n2−2n−1 = μ1−μn−1+d(G)+
n−2∑
i=2

max{μi, d(G)} . Note that μ1 ≥ d(G), μn = 0 and μi ≥ 0 for i = 2, . . . , n− 2 . If

G �= Kn, then by Lemma 3, μn−1 ≤ d(G), and thus

LE(G) = μ1 − μn−1 + d(G) +
n−2∑
i=2

|μi − d(G)|

≤ μ1 − μn−1 + d(G) +
n−2∑
i=2

max{μi, d(G)},

as desired. �

Proposition 5. Let G be a graph with n ≥ 3 vertices and m edges, where G �= K3 .

Then

LE(G) ≤ 4m− 2μn−1 − 2d(G) (1)

with equality if and only if G = Kn, G = K2 ∪Kn−2 or G = P3 .

Proof. It may be easily checked that for G = K3, K2 ∪K1 or P3, (1) is an equality.

Suppose that n ≥ 4. By Proposition 4 and using the fact that
n−1∑
i=1

μi = 2m, we

have

LE(G) ≤ μ1 − μn−1 + d(G) +
n−2∑
i=2

max{μi, d(G)}

≤ μ1 − μn−1 + d(G) +
n−2∑
i=2

μi + (n− 3)d(G)

= 2m− 2μn−1 + (n− 2)d(G) = 4m− 2μn−1 − 2d(G) .

This proves (1). Equality holds in (1) if and only if d(G) = 0 (i.e., G = Kn ) or

d(G) > 0 and μ2 = · · · = μn−2 = 0 (i.e., G = K2 ∪Kn−2 ). �

If G is a graph with n vertices and m edges, then by Proposition 5, LE(G) ≤
4m

(
1− 1

n

)
with equality if and only if m = 0, 1 . This was recently reported by

Robbiano and Jiménez [15].

Consider the graph G consisting of a graph H (not necessarily connected) with

n1 vertices and m edges and of additional n2 isolated vertices. For sufficiently large

n2, LE(G) = 4m(n2+p)
n1+n2

where p is the number of components of H (see [11]). This

example shows that the upper bound 4m for LE(G) may be arbitrarily approached.
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Proposition 6. Let G be a graph with n ≥ 2 vertices and at least one edge. Then

for any edge e of G,

LE(G) ≤ LE(G− e) + 4

(
1− 1

n

)
.

Proof. Relabel the vertices of G such that L(G) = L(G − e) + C where C =(
L(K2) O2,n−2

On−2,2 On−2,n−2

)
with Or,s denoting the r × s zero matrix. Then

L(G)− d(G)In = L(G− e)− d(G− e)In +C− 2

n
In .

Note that the spectrum of C − 2
n
In consists of 2 − 2

n
with multiplicity one and − 2

n

with multiplicity n − 1 . Let M1 = L(G − e) − d(G − e)In and M2 = C − 2
n
In in

Lemma 2, we have

LE(G) ≤ LE(G− e) + 2− 2

n
+

2

n
(n− 1),

from which the result follows. �

Note that G∪Kr denotes the graph obtained from G by adding r isolated vertices

with G ∪K0 = G .

Let G be a graph with n vertices and m edges. Note that for n ≥ 3, LE(P3 ∪
Kn−3 ) − LE(K2 ∪Kn−2 ) =

[
3− 4

n
+ |1− 4

n
|+ 4

n
· (n− 2)

] − 4
(
1− 1

n

)
< 4

(
1− 1

n

)
,

and for n ≥ 4, LE(K2∪K2∪Kn−4 )−LE(K2∪Kn−2 ) =
[(
2− 4

n

) · 2 + 4
n
· (n− 2)

]−
4
(
1− 1

n

)
= 8

(
1− 2

n

) − 4
(
1− 1

n

)
< 4

(
1− 1

n

)
. Then by Proposition 6, LE(G) ≤

4m
(
1− 1

n

)
with equality if and only if m = 0, 1 . Again, we have the result in [15]

mentioned above.

As in [9], by Proposition 6, we also have

Corollary 1. (i) Let G be a connected graph with n vertices and m edges, and T

its spanning tree. Then

LE(G) ≤ 4(m− n+ 1)

(
1− 1

n

)
+ LE(T ) .

(ii) Let G be a Hamiltonian graph with n vertices and m edges. Then

LE(G) ≤ 4(m− n)

(
1− 1

n

)
+ LE(Cn)

where Cn stands for the n-vertex cycle.
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Let G be a graph with vertex set V (G) . For u ∈ V (G), du denotes the degree of

u in G . Define α(G) =
∑

u∈V (G)

|du − d(G)| . Using Lemma 2, the following lemma was

proved in [9, 15].

Lemma 4. [9, 15] Let G be a graph. Then

LE(G) ≤ E(G) + α(G)

with equality if and only if G is regular.

Proposition 7. (i) Let G be a tree with n vertices, of which p are pendent vertices,

where 2 ≤ p ≤ n− 1. Then

LE(G) < E(G) + 2p

(
1− 2

n

)
.

(ii) Let G be a unicyclic graph with n vertices, of which p are pendent vertices, where

0 ≤ p ≤ n− 3. Then

LE(G) ≤ E(G) + 2p

with equality if and only if p = 0.

Proof. If G is a tree with n vertices, of which p are pendent vertices, then

α(G) =
∑

u∈V (G)

∣∣∣∣du − 2(n− 1)

n

∣∣∣∣
=

[
2(n− 1)

n
− 1

]
· p+

∑
u∈V (G)
du≥2

[
du − 2(n− 1)

n

]

=
∑

u∈V (G)

du − 2p− 2(n− 1)

n
(n− 2p)

=
2p(n− 2)

n
.

Thus the result in (i) follows easily from Lemma 4.

If G is a unicyclic graph with n vertices, of which p are pendent vertices, then

α(G) =
∑

u∈V (G)

|du − 2| = p+
∑

u∈V (G)
du≥2

(du − 2)

=
∑

u∈V (G)

du − 2(n− p) = 2p .
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Thus the result in (ii) follows easily from Lemma 4. �

By Corollary 1 (i) and Proposition 7 (i), we have:

Corollary 2. Let G be a connected graph with n vertices and m edges, and T its

spanning tree with p pendent vertices, where n ≥ 3 . Then

LE(G) < E(T ) + 4(m− n+ 1)

(
1− 1

n

)
+ 2p

(
1− 2

n

)
.

In the following, we give a lower bound for the Laplacian energy.

Proposition 8. Let G be a graph with n ≥ 3 vertices. Then

LE(G) ≥ 2d(G) (2)

with equality if and only if G is a regular complete k-partite graph for 1 ≤ k ≤ n .

Proof. Note that LE(Kn) = 2(n − 1) = 2d(Kn) . If G �= Kn, then by Lemma 3,

μn−1 ≤ d(G) and thus

LE(G) = μ1 − μn−1 + d(G) +
n−2∑
i=2

|μi − d(G)|

≥ μ1 − μn−1 + d(G) +

∣∣∣∣∣
n−2∑
i=2

[μi − d(G)]

∣∣∣∣∣
= μ1 − μn−1 + d(G) + |2m− (μ1 + μn−1)− (n− 3)d(G)|

= μ1 − μn−1 + d(G) + |3d(G)− μ1 − μn−1|

≥ μ1 − μn−1 + d(G) + 3d(G)− μ1 − μn−1

= 4d(G)− 2μn−1 ≥ 2d(G) .

This proves (2). The equality case in (2) has already been proven in [12]. �
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