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Abstract

The energy E(G) of a graph G is defined as the sum of the absolute val-
ues of its eigenvalues. An n-vertex graph G is said to be hypoenergetic if
E(G) < n and strongly hypoenergetic if F(G) < n — 1. A connected graph
with cyclomatic number k is called a k-cyclic graph. In this paper, we consider
hypoenergetic and strongly hypoenergetic k-cyclic graphs. We first show that
there exist hypoenergetic and strongly hypoenergetic k-cyclic graphs of order
n and maximum degree A for all (suitable large) n and A. Then we show that
for A > 4 there exist hypoenergetic unicyclic, bicyclic and tricyclic graphs for
all n except very few small values of n. For A < 3 we show that K53 is the

unique hypoenergetic graph among all unicyclic and bicyclic graphs.

1 Introduction

Let G be a simple graph with n vertices and m edges. The cyclomatic number of a
connected graph is defined as ¢(G) = m —n + 1. A graph G with ¢(G) = k is called
a k-cyclic graph. Denote by A the maximum degree of a graph. The eigenvalues

A1, A, ..y A, of the adjacency matrix A(G) of G are said to be the eigenvalues of the
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graph G. The nullity of G, denoted by ng(G) (or simply nyg), is the multiplicity of

zero in the eigenvalues of G. The energy of G is defined as
E=EG) = Al
i=1

For several classes of graphs it has been demonstrated that the energy exceeds
the number of vertices (see, [8]). In 2007, Nikiforov [11] showed that for almost all
graphs,

E= <i + 0(1)) n®2.

3
Thus the number of graphs satisfying the condition E < n is relatively small. In [10],
a hypoenergetic graph is defined to be a graph satisfying £ < n. In [13], a strongly
hypoenergetic graph is defined to be a graph satisfying £ < n — 1. For hypoenergetic
trees, Gutman et al. [9] obtained the following results.
Lemma 1.1. [9] (a) There exist hypoenergetic trees of order n with mazimum degree
A <3 only forn=1,3,4,7 (a single such tree for each value of n, see Figure 1); (b)

If A = 4, then there exist hypoenergetic trees for all m > 5, such that n =k (mod 4),
k=0,1,3; (¢) If A > 5, then there exist hypoenergetic trees for alln > A+ 1.

A

Figure 1: The hypoenergetic trees with maximum degree at most 3.

And the authors [9] proposed the following conjecture.

Conjecture 1.2. [9] There exist hypoenergetic trees of order n with A = 4 for any
n =2 (mod 4), n > 2. Consequently, there exist hypoenergetic trees of order n with
A =4 foralln > 5.

We will give a very simple proof to this conjecture later, and therefore, Lemma
1.1 is extended to the following result.
Lemma 1.3. (a) There exist hypoenergetic trees of order n with mazimum degree

A <3 only forn=1,3,4,7 (a single such tree for each value of n, see Figure 1); (b)
If A > 4, then there exist hypoenergetic trees for alln > A+ 1.
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For hypoenergetic unicyclic and bicyclic graphs, You and Liu [14] obtained the
following results.
Lemma 1.4. [14] (1) There exist hypoenergetic unicyclic graphs for all n > 7; (2)

If nis even and A € [%,n — 1] or n is odd and A € [*H, n — 1], then there exist

hypoenergetic unicyclic graphs with maximum degree A for all n > 9.

Lemma 1.5. [14] (1) There exist hypoenergetic bicyclic graphs for all n > 8; (2) If
n is even and A € [2 +1,n—1] or n is odd and A € ["F*,n — 1], then there exist
hypoenergetic bicyclic graphs with mazimum degree A for all n > 9.

Recently, You, Liu and Gutman [15] considered hypoenergetic tricyclic and k-
cyclic graphs, they obtained the following results.
Lemma 1.6. [15] (1) There exist hypoenergetic tricyclic graphs for all n > 8; (2) If
n is even and A € [2 +1,n—1] or n is odd and A € ["$2,n — 1], then there exist

hypoenergetic tricyclic graphs with mazimum degree A for all n > 10.

Lemma 1.7. [15] There exist hypoenergetic k-cyclic graphs for any k.

In this paper, we consider hypoenergetic and strongly hypoenergetic k-cyclic
graphs with order n and maximum degree A. In Section 2, we will show that for
any given k three exist hypoenergetic and strongly hypoenergetic k-cyclic graphs of
order n and maximum degree A for all (suitable large) n and A. In Sections 3-5, we
consider hypoenergetic unicyclic, bicyclic and tricyclic graphs, respectively. We ob-
tain that for A > 4 there exist hypoenergetic unicyclic, bicyclic and tricyclic graphs
for all n except very few small values of n. For A < 3 we show that K3 3 is the unique
hypoenergetic graph among all unicyclic and bicyclic graphs. These results greatly

extend the results in Lemmas 1.4-1.6.
2 Hypoenergetic and strongly hypoenergetic
k-cyclic graphs

The following results are need in the sequel.

Lemma 2.1. [7] Let G be a graph with n vertices and m edges. If the nullity of G is

ng, then E(G) < \/2m(n —ny).
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Lemma 2.2. [1] Suppose that G is a simple graph on n wvertices without isolated
vertex. Then

(1) no(G) = n — 2 if and only if G is isomorphic to a complete bipartite graph
Ky, no, where ny +mng =n, ny,ng > 0.

(2) no(G) = n — 3 if and only if G is isomorphic to a complete tripartite graph

Ky noms, where ny +ng +ng =n, ny,ng,ng > 0.

Lemma 2.3. [4] Let v be a pendent vertex of a graph G and u be the vertex in G
adjacent to v. Then ng(G) = no(G —u—v), where G —u — v is the induced subgraph
of G obtained by deleting v and v.

Hi(k,ny,ng) Hy(k,ny,ng)

Figure 2: The Graphs H;(k,ny,ns) and Ho(k, ny, ns).

Let H;(k,n1,n9) (i =1,2) (or simply H;) be the graph of order n given in Figure
2, where kK > 1, ny > 0,ny > 0. Obviously, H; and H, are k-cyclic graphs, and
[V(Hy)| > k+2, |[V(Hs)| > k+3. If ny = ny = 0, then ng(Hy) = n—3, no(Hz) = n—2
by Lemma 2.2; otherwise ng(H;) = ng(Hs) = n — 4 by Lemma 2.3. Hence we have
no(Hy) > n —4 and no(Hy) > n — 4.

By Lemma 2.1, we have

E(H;) < v/2m(n—ng) =2 +k—1)(n —ng) < /S(n+k—1).
If
V8(n+k—1)<n, (1)

then H; is hypoenergetic. Inequality (1) can be transformed into (n—4)2—8k—8 > 0,
which are obeyed by all n >4+ /8(k + 1). It is easy to check that

max{k + 1,4 + 8(k+1)}:{4+ 8k+1), if 1<k<13

k+1, if k> 14
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and

masc{k 42,4+ 8(k+1)}:{4+«/8(k+1)7 ifl1<k<12

k+2, if k> 13
Hence we have the following

44 Bk+1), if1<k<13

Lemma 2.4. (1) Ifn > max{k+1,4+./8(k +1)} = { ka1 Fh> 14
1, if k>

then Hi is hypoenergetic.

b+ BEED, fl<k<12
(2)Ifn>max{k+2,4+s/8(k+1)}:{k128(k+ ) Z;k;%— , then
) ? =

Hsy is hypoenergetic.
Notice that the inequality \/8(k + 1) < k+ 3 holds for any k > 1, so we have the

following

Theorem 2.5. There exist hypoenergetic k-cyclic graphs for all n > k + 8.
It

V8(n+k—1)<n-—1, (2)
then H; is strongly hypoenergetic. Inequality (2) can be transformed into (n — 5)% —
8k — 16 > 0, which are obeyed by all n > 5+ /8(k + 2). It is easy to check that

1nax{k+1,5+\/8(/€7+2)}:{ Oty 8(k+2)’ flsk<15

k41, if k> 16

and

masc{k 42,5+ 8(k+2)}:{5+\/8(k:+2)7 ifl1<k<14

k+2, if k> 15
Hence we have the following

54+8(k+2), ifl<k<15

Lemma 2.6. (1) Ifn > max{k+1,5++/8(k +2)} { bt k> 16
41, if k>

then Hy is strongly hypoenergetic.

Vi 2 if 1 <k<14
(2) If n > max{k + 2,5+ y/8(k+2)} = { 212 Sk +2), ik ; ];5_ , then
) =z

Hsy is strongly hypoenergetic.

In the following, we consider hypoenergetic and strongly hypoenergetic k-cyclic

graphs with order n and maximum degree A.
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Theorem 2.7. (1) If n—Fk is even and A € " n—1] orn—k is odd and A = n—1,

then there exist hypoenergetic k-cyclic graphs of order n with maximum degree /\ for

all n > max{k + 1,4+ /8(k+ 1)}.

(2) If n — k is odd and A € [%, n — 2], then there exist hypoenergetic k-cyclic
graphs of order n with mazimum degree A for all n > max{k + 2,4 + /8(k + 1)}.

Proof. Suppose n — k is even and A € [%’“n —1]orn—Fkisodd and A =n — 1.
Let G = Hy(k,A —k —1,n— A — 1), then by Lemma 2.4, G is hypoenergetic when

n>max{k + 1,4+ /8(k+1)}.
Suppose n—k is odd and A € [%,n—Q]. Let G = Ho(k,A—k—1,n—A—2),
then by Lemma 2.4, G is hypoenergetic when n > max{k + 2,4+ /8(k + 1)}. The

proof is then complete. O

By Lemma 2.6, similar to the proof of Theorem 2.7, we can obtain

Theorem 2.8. (1) Ifn—Fk is cven and A € " n—1] orn—Fk is odd and A = n—1,

then there exist strongly hypoenergetic k-cyclic graphs of order n with mazimum degree

A for all n > max{k + 1,5+ /8(k +2)}.

(2) If n—k is odd and A € [L’;*l7 n—2], then there exist strongly hypoenergetic k-
cyclic graphs of order n with mazimum degree A for alln > max{k+2,5++/8(k +2)}.

In order to prove Conjecture 1.2 and extend the interval for A in Theorem 2.7, we
need the following notations and preliminary results, which can be found in [13]. Let
G and H be two graphs with disjoint vertex sets, and let v € V(G) and v € V(H).
Construct a new graph G o H from copies of G and H, by identifying the vertices u
and v. Thus |V(G o H)| = |V(G)| + |V(H)| — 1. The graph G o H is known as the
coalescence of G and H with respect to u and v.

Lemma 2.9. [13] Let G, H and Go H be graphs as specified above. Then E(GoH) <

E(G)+ E(H). Equality is attained if and only if either u is an isolated vertex of G
or v is an isolated vertex of H or both.

Lemma 2.10. [13] Let G, H and G o H be graphs as specified above. If G is strongly
hypoenergetic and H is hypoenergetic (or vice versa), then G o H is hypoenergetic.

Proof of Conjecture 1.2. Suppose n = 2 (mod 4), n > 2. If n = 6, then by [3]
(Table 2), there exists a unique tree Tg of order 6 with A = 4, and E(7Ts) = 5.818 < 6,
i.e., Ty is hypoenergetic. Let S5 be the 5-vertex star, then A(Ss) = 4 and E(S5) = 4.

Let u be a leaf vertex in T and v be a leaf vertex in S;. Then by Lemma 2.9, for the
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coalescence Tyg = Tg 0S5 of Ty and S5 with respect to u and v, we have E(T) < 10.
Obviously, Ty is a tree of order 10 with A = 4. By consecutively doing the coalescence
operations (---((Tg 0 S5) 0 S5)--+) o S5, we can construct hypoenergetic trees with

A =4 for any n > 10 such that n = 2 (mod 4). The proof is thus complete. O

Theorem 2.11. (1) If n—k is even and max{ 2}, SARaAVA G V28(k+2)} <A <n-—1, then
there exist hypoenergetic k-cyclic graphs of order n with maximum degree A for all
n > max{k + 3,7+ /8(k +2)}.

(2) If n — k is odd and max{2:L, Lkt yse?) ”ZS(M} < A < n—1, then there exist
hypoenergetic k-cyclic graphs of order n with mazimum degree A for all n > max{k +

4,7+ /80k +2)}.

Proof. (1) Suppose n—k is even. By Theorem 2.7, we may assume that A < ”T*'k —1.
Let G = Hi(k,A — k — 1,A — k — 1), then |V(G)] = 2A — k < n — 2. Since
V(G)| = 2A — k > max{k + 1,5 + /8(k+2)}, G is strongly hypoenergetic by
Lemma 2.6.

Let H be a hypoenergetic tree of order n—2A+k+1 with A = 4if n—2A+k+1 > 5
and Ss if n —2A+k+1 = 3 (Such an H does exist by Lemma 1.3). Let u be a vertex
of degree 2 in GG, v a leaf vertex in H and G o H be the coalescence of G and H with
respect to v and v. Since A > max{@, SARARVALAL] WL we have A > 4. Hence Go H
is a k-cyclic graph of order n with maximum degree A. By Lemma 2.10, G o H is
hypoenergetic.

(2) Suppose n — k is odd. By Theorem 2.7, we may assume that A < % — 1.
Let G = Ho(k,A — k —1,A — k — 1), then |V(G)] = 2A —k+1 < n — 2. Since
V(G)| = 2A — k+1 > max{k + 2,5+ \/8(k + 2)}, G is strongly hypoenergetic by
Lemma 2.6.

Let H be a hypoenergetic tree of order n —2A + k with A =4ifn—-2A+k>5
and S5 if n — 2A + k = 3. Let u be a vertex of degree 2 in G, v a leaf vertex
in H and G o H be the coalescence of G and H with respect to u and v. Since
A > max{ZkT“, faiasAlas) VQS(M}, we have A > 4. Hence G o H is a k-cyclic graph of
order n with maximum degree A. By Lemma 2.10, G o H is hypoenergetic. O

Similar to the proof of Conjecture 1.2, we can obtain the following result, which
provides a useful method to construct more hypoenergetic k-cyclic graphs.
Theorem 2.12. If there exist a t-vertex hypoenergetic k-cyclic graph with A > 4 and

at least a vertez of degree at most A—1, then there exist hypoenergetic k-cyclic graphs
with A for all n > t, such that n =t (mod 4).
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3 Hypoenergetic unicyclic graphs

This section is devoted to finding more hypoenergetic unicyclic graphs, greatly ex-
tending the results in [14].

Lemma 3.1. [14] Ifn < 6, then there do not exist any hypoenergetic unicyclic graphs.

Lemma 3.2. Ifn is even and A € [5,n—1] orn is odd and A € [6,n— 1], then there

exist hypoenergetic unicyclic graphs of order n with mazimum degree A for alln > 9.
Proof. Notice that when k = 1, we have that n > max{k + 2,4+ /8(k + 1)} implies
n>9,n>max{k+4,7+ /8(k +2)} implies n > 12, A > max{2E!, SARARVALGE) V28<k+2)}
implies A > 6 and A > max{%T“, Lrkty/E0t2) VQS(M} implies A > 5. Hence the result

follows from Theorem 2.7 for 9 < n < 11 and from Theorem 2.11 for n > 12. O
Uu‘,s U 11,4
Uisa Uiza

Figuro 3: GI'&phS []11“57 []11)47 U14>4 and U1714.

Table 1

n A E(UnA) n A E(UnyA) n A E(Un’A)
7T 5 6.89898 |8 6 7.39104 |11 5 10.58501
7 6 6.64681 |8 7 7.07326 |14 4 13.90827
8 4 7.72741 |9 5 824621 |17 4 16.96885
8 5 7.65069 | 11 4 10.87716

In the following, we consider the case 4 < A < 7. Let Uz = H(1,3,0), Urg =
Hi(1,4,0), Usg = Hx(1,2,2), Ugs = Hy(1,3,1), Ugs = Ha(1,4,0), Usr = H,(1,5,0)
and Uy s = Hy(1,3,2). Let Uy s, Urr4, Ursg and Uy 4 be the graphs given in Figure

3. Obviously, these graphs U, ; are hypoenergetic unicyclic graphs of order n with
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A =1 by Table 1. Since Ug 4, U114, Urau, Urz4, Ugs and Uy, 5 are hypoenergetic, by
Theorem 2.12, we can obtain
Lemma 3.3. (1) If A =4, then there exist hypoenergetic unicyclic graphs of order n

foralln =8,11,12 and n > 14; (2) If A =5, then there exist hypoenergetic unicyclic
graphs of order n for all odd n > 9.

Combining Lemmas 3.2, 3.3 and Table 1, we can obtain

Theorem 3.4. If (a) n = 8,11,12 orn > 14 and A = 4 or (b)) n > 7 and A €
[5,n — 1], then there exist hypoenergetic unicyclic graphs with order n and mazimum
degree A.

When n < 6, by Lemma 3.1, there exist no hypoenergetic unicyclic graphs. By
[2], there are 12 unicyclic graphs with n = 7 and A = 4. In these graphs, the minimal
energy is £ = 7.1153 > n = 7, and the extremal graph is Hy(1,1,2). We can also
show that there are no hypoenergetic unicyclic graphs with n = 9 or 10 and A = 4.
Thus, n = 13 is the only case for which we can not determine whether or not there
exist hypoenergetic unicyclic graphs of order n = 13 and A = 4. But we can show
that there are no hypoenergetic unicyclic graphs with n = 13, A =4 and girth g > 7.
The details are tedious and hence omitted.

In the end of this section, we consider the remaining case A < 3. The following
results are needed.

Lemma 3.5. [12] Let G be a graph of order n with at least n edges and with no
isolated vertices. If G is quadrangle-free and A(G) < 3, then E(G) > n.

Lemma 3.6. [6] If F' is an edge cut of a simple graph G, then E(G — F) < E(G),
where G — F' is the subgraph obtained from G by deleting the edges in F.

Lemma 3.7. If there exists an edge cut F' of a connected graph G such that G — F
has two components Gy and Go, and both Gy and Gy are non-hypoenergetic, then G

is non-hypoenergetic.
Proof. 1t follows from Lemma 3.6 that

E(G) 2 E(G = F) = E(G) + E(G2) 2 V(G| + [V(G2)| = m,

which completes the proof. O
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Theorem 3.8. There does not exist any hypoenergetic unicyclic graph with A < 3.

Proof. Let G be an n-vertex unicyclic graph with A < 3. We will show that G is
non-hypoerergetic. If n < 6, then G is non-hypoenergetic by Lemma 3.1. If G is
quadrangle-free, then G is non-hypoenergetic by Lemma 3.5. So in the following we
assume that n > 7 and G contains a quadrangle C' = xjzox3242. We only need to
consider the following four cases:

Case 1. There exists an edge e on C' such that the end vertices of e are of degree

Without loss of generality, we assume that d(zq) = d(x4) = 2. Let F = {&129, z423},
then G — F has two components, say (G; and Go, where (1 is the tree of order 2 with
1 € V(G1) and Gy is a tree of order at least 5 since n > 7. Since A(G) < 3, Gy can
not be isomorphic to W. Therefore Gy, G5 are non-hypoenergetic by Lemma 1.1 (a).
The result follows from Lemma 3.7.

Case 2. There exist exactly two nonadjacent vertices z; and x; on C' such that
d(z;) = d(z;) = 2.

Without loss of generality, we assume that d(zs) = d(z4) = 2, d(zy) = d(z3) = 3.
Let y3 be the adjacent vertex outside C' of x3. Then G — x3y3 has two components,
say GG; and Go, where GG is a unicyclic graph and G5 is a tree. Notice that G is
non-hypoenergetic by Case 1. If Gy 22 51,53, S4, W, then we are finished by Lemmas
1.1 (a) and 3.7. So we only need to consider the following four cases.

Subcase 2.1. Gy = 5.

Let F' = {xoxs, x324}, then G — F has two components, say G| and G}, where
G is a tree of order at least 4 and G} is a tree of order 2. If G} 2 Sy, W, then we
are finished by Lemmas 1.1 (a) and 3.7. If G} = Sy, then n = 6, a contradiction. If

1 = W, then G must be the graph as given in Figure 4 (a), by direct computing,
we have E(G) = 9.78866 > 9 = n.

Subcase 2.2. G, = S;.

Then G must have the structure as given in Figure 4 (b) or (¢). In the former case,
G — y3z has two components, say G and G%, where G is a unicyclic graph and GY is
a tree of order 2. It follows from Subcase 2.1 that G is non-hypoenergetic. Therefore

we are finished by Lemmas 1.1 (a) and 3.7. In the latter case, G — {z122, z4x3} has



Figure 4: The graphs in the proof of Theorem 3.8.

two components, say G and G, where G is a tree of order at least 3 and G, is a tree
of order 5. If G} % Ss,S4, W, then we are finished by Lemmas 1.1 (a) and 3.7. Since
A(G) < 3, G can not be isomorphic to Sy or W. If G} = S;, then G must be the
graph as given in Figure 4 (d), by direct computing, we have E(G) = 8.81463 > 8 = n.

Subcase 2.3. Gy = S,.

Then G must have the structure as given in Figure 4 (e). Let F' = {xqxs3, w324},
then G — F has two components, say G} and G%, where G} is a tree of order at least
4 and G} is a tree of order 5. If G} % Sy, W, then we are finished by Lemmas 1.1 (a)
and 3.7. If G} = S,, then G must be the graph as given in Figure 4 (f), by direct
computing, we have E(G) = 9.78866 > 9 = n. If G| = W, then G must be the graph

as given in Figure 4 (g). Now, G — {z122, 2324} has two components, say G| and GY,
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where G7 is a tree of order 6, i = 1,2. Therefore we are finished by Lemmas 1.1 (a)
and 3.7.

Subcase 2.4. G, &2 W.

Then G must have the structure as given in Figure 4 (h) or (i). In the former case,
G — y32z has two components, say G and G%, where G is a unicyclic graph and G is
a tree of order 6. It follows from Subcase 2.1 that G is non-hypoenergetic. Therefore
we are finished by Lemmas 1.1 (a) and 3.7. In the latter case, G — {zox3, 2324} has
two components, say G and G, where G is a tree of order at least 4 and G} is a
tree of order 8. If G} % S;, W, then we are finished by Lemmas 1.1 (a) and 3.7. If
G = Sy, then G must be the graph as given in Figure 4 (j), by direct computing, we
have E(G) = 13.05749 > 12 = n. If G} = W, then G must be the graph as given in
Figure 4 (k). Now, G — {z129, 2324} has two components, say G| and G}, where G/
is a tree of order 6 and G is a tree of order 9. Therefore we are finished by Lemmas
1.1 (a) and 3.7.

Case 3. There exists exactly one vertices z; on C such that d(z;) = 2.

Without loss of generality, we assume that d(z;) = 2. Let F' = {124, 2223}, then
G — F has two components, say G; and Gy, where (i1 is the tree of order at least 3
with z; € V(G;) and Gy is a tree of order at least 4. Since A(G) < 3, Gy, Gy can
not be isomorphic to Sy or W. So if G; 2 Ss, then we are finished by Lemmas 1.1
(a) and 3.7. If G; = S3, then G — {x w9, 2223} has two components, say G and
GY, where G is the tree of order at least 5 with z; € V(G)) and G} is a tree of
order 2. If G} % W, then we are finished by Lemmas 1.1 (a) and 3.7. If G} = W,
then G must be the graph as given in Figure 4 (1), by direct computing, we have
E(G) =9.80028 > 9 = n.

Case 4. d(z1) = d(z2) = d(x3) = d(z4) = 3.

Let F = {x124, 2923}, then G — F has two components, say G; and Gg, where
G and Gy are trees of order at least 4 and it is easy to check that G, Gy can not be
isomorphic to Sy or W. Therefore we are finished by Lemmas 1.1 (a) and 3.7. The

proof is thus complete. O
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4 Hypoenergetic bicyclic graphs

This section is devoted to finding more hypoenergetic bicyclic graphs, also greatly
extending corresponding results in [14].

Lemma 4.1. [14] If n = 4,6,7, then there do not exist any hypoenergetic bicyclic
graphs.

Lemma 4.2. Ifn is even and A € [T,n—1] orn is odd and A € [6,n— 1], then there

exist hypoenergetic bicyclic graphs of order n with mazimum degree A for all n > 9.
Proof. Notice that when k = 2, we have that n > max{k + 2,4+ /8(k + 1)} implies
n>9,n>max{k+4,7+ /8(k+2)} implies n > 13, A > max{2£, GARARVALGe) ES(HZ)}
implies A > 7 and A > max{@, iy S2) VQS(M} implies A > 6. Hence the result

follows from Theorem 2.7 for 9 < n < 12 and from Theorem 2.11 for n > 13. O
@FH @l: s
e e e
By 4 Bios B

s

Bigy

Figure 5: Graphs By 4, Bos, Biis, Bis.a, Bisa and Biga.

Table 2

n A E(B,a)|n A EB,a) |n A E(B,a)
8 5 790778 |9 5 848528 |16 4 15.77861
8 6 7.74597 |10 5 9.25036 |18 4 17.94188
8 7 7.68165 | 10 6 8.98112 |19 4 18.87354
9 4 8.75560 | 11 5 10.74799
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In the following, we consider the case 4 < A < 7. Let Bgs = H3(2,1,2), Bsg =
H5(2,0,3), Bs7 = H1(2,0,4), Bys = H>(2,2,2) and Bigg = H5(2,2,3). Let Bygp,
Bi1s, Boa, Biea, Bisa and Bigy be the graphs given in Figure 5. Obviously, these
graphs B, ; are hypoenergetic bicyclic graphs of order n with A = [ by Table 2. By
Theorem 2.12, we can obtain
Lemma 4.3. (1) If A = 4, then there exist hypoenergetic bicyclic graphs of order n
for alln = 9,13 and n > 16; (2) If A =5, then there exist hypoenergetic bicyclic

graphs of order n for alln > 8; (3) If A = 6, then there exist hypoenergetic bicyclic
graphs of order n for all even n > 8.

Combining Lemmas 4.2, 4.3 and Table 2, we can obtain

Theorem 4.4. If (a)n=9,13 orn > 16 and A =4 or (b)) n > 8 and A € [5,n—1],

then there exist hypoenergetic bicyclic graphs with order n and mazximum degree /.

When n = 4,6,7, by Lemma 4.1, there exist no hypoenergetic bicyclic graphs. By
[3] (Table 1), there are two bicyclic graphs with n = 5 and A = 4, and the minimal
energy is £ = 6.04090 > n = 5, and the extremal graph is H;(2,0,1). Thus, for
A =4,n=28,10,11,12,14, 15 are the only few cases for which we can not determine
whether or not there exist hypoenergetic bicyclic graphs. One can employ a computer
to determine them easily.

In the end of this section, we consider the remaining case A < 3.

Theorem 4.5. Complete bipartite graph K 3 is the only hypoenergetic bicyclic graphs
with A < 3.

Proof. Let G be an n-vertex bicyclic graphs with A < 3. If n = 4,6, 7, then G is non-
hypoenergetic by Lemma 4.1. If n = 5, by [3] (Table 1), there are three bicyclic graphs
with A < 3, and K, 3 is the only hypoenergetic graph with E(K,3) = 4.8990. If G is
quadrangle-free, then G is non-hypoenergetic by Lemma 3.5. So in the following we
assume that G contains a quadrangle, G 2 K33 and n > 8. We will show that G is
non-hypoenergetic.

If the cycles in G are disjoint, then it is clear that there exists a path P connecting
the two cycles in G. Obviously, for any edge e on P, G — e has two components which

are unicyclic graphs. Thus G is non-hypoenergetic by Lemma 3.7 and Theorem 3.8.
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Otherwise, the cycles in G have two or more common vertices. Then we can assume

that G contains a subgraph as given in Figure 6 (a), where Py, P,, P; are paths in G.

/T“\
NP G
v (b) >
2 ) e 2 i
) y
) 62 o
Gy
(e) '
Gy
(2) & (h) = ()
Y

g @ w )

Figure 6: The graphs in the proof of Theorem 4.5.

We distinguish the following three cases:

Case 1. At least one of P, P, and P, say P has length not less than 3.

Let e; and ey be the edges on P, incident with u and v, respectively. Then
G — {e1,e2} has two components, say G; and G, where Gy is a unicyclic graph
and G5 is a tree of order at least 2. It follows from Theorem 3.8 that G is non-
hypoenergetic. If Gy 2 S3,S,, W, then we are finished by Lemmas 1.1 (a) and 3.7.
So we only need to consider the following three cases:

Subcase 1.1. G = S;.
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Then G must have the structure as given in Figure 6 (b) or (c). In either case,
G — {e2, e3} has two components, say G} and G%, where G is a unicyclic graph and
GY is a tree of order 2. By Theorem 3.8, G’ is non-hypoenergetic. Therefore the
result follows from Lemmas 1.1 (a) and 3.7.

Subcase 1.2. G, = S,.

Then G must have the structure as given in Figure 6 (d). Obviously, G — {e3, e4}
has two components, say G} and G, where G} is a unicyclic graph and G}, is a tree
of order 2. Therefore the result follows from Theorem 3.8, Lemmas 1.1 (a) and 3.7.

Subcase 1.3. Gy, = W.

Then G must have the structure as given in Figure 6 (e), (f) or (g). Obviously,
G — {xy,yz} has two components, say G} and G, where G is a unicyclic graph and
G is a tree of order 5 or 2. Therefore the result follows from Theorem 3.8, Lemmas
1.1 (a) and 3.7.

Case 2. All the paths P;, P, and P3 have length 2.

We assume that Py = uzv, P = uzv and P, = uyv. Let F' = {uy, vy}, then G— F
has two components, say GGy and G5, where GGy is a unicyclic graph and G, is a tree.
It follows from Theorem 3.8 that (G; is non-hypoenergetic. If Gy 2 S1, S5, Sy, W, then
we are finished by Lemmas 1.1 (a) and 3.7. So we only need to consider the following
four cases.

Subcase 2.1. G, = 5;.

Let F' = {uy, zv,zv}, then G — F’ has two components, say G| and G, where G,
is the tree of order 2 with y € V(GY}), G is a tree of order at least 6 since n > 8. Since
A(G) < 3, G can not be isomorphic to W. Therefore G, G are non-hypoenergetic
by Lemma 1.1 (a). The result follows from Lemma 3.7.

Subcase 2.2. G, = S5.

Then G must have the structure as given in Figure 6 (h). Let I’ = {uy, zv,zv},
then G — F’ has two components, say G} and G, where G}, is the path of order 4
with y € V(GY), G} is a tree of order at least 4 since n > 8. Since A(G) < 3, G can
not be isomorphic to Sy or W. Therefore G/, G% are non-hypoenergetic by Lemma
1.1 (a). The result follows from Lemma 3.7.

Subcase 2.3. Gy = 5,.
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Then G must have the structure as given in Figure 6 (i). Let F' = {uy, zv,zv},
then G — F’ has two components, say G} and G}, where GY is the tree of order 5
with y € V(GY), G} is a tree of order at least 3. Since A(G) < 3, G} can not be
isomorphic to Sy or W. If G| 2 Ss, then we are finished by Lemmas 1.1 (a) and 3.7.
If G = S3, then G must be the graph as given in Figure 6 (j), by direct computing,
we have E(G) = 8.24621 > 8 = n.

Subcase 2.4. G, = W.

Then G must have the structure as given in Figure 6 (k). Let F' = {uy, zv, zv},
then G — I’ has two components, say G} and G5, where G is the tree of order 8
with y € V(GY), G is a tree of order at least 3. Since A(G) < 3, G} can not be
isomorphic to Sy or W. If G} 2 S5, then we are finished by Lemmas 1.1 (a) and 3.7.
If G| = S3, then G must be the graph as given in Figure 6 (1), by direct computing,
we have E(G) = 11.60185 > 11 = n.

Case 3. One of the paths P, P, and P3 has length 1, and the other two paths
have length 2.

Without loss of generality, we assume that P, = uxv, P = wv and P, = uyv.
Then similar to the proof of Case 2, we can show that G is non-hypoenergetic. The

proof is thus complete. O

5 Hypoenergetic tricyclic graphs

This section is devoted to finding more hypoenergetic tricyclic graphs, greatly ex-

tending corresponding results in [15].

Lemma 5.1. [15] If n = 4,5,7, then there do not exist any hypoenergetic tricyclic
graphs.

Lemma 5.2. If n is even and A € [T,n — 1] orn is odd and A € [8,n — 1], then
there exist hypoenergetic tricyclic graphs of order n with mazimum degree A for all
n > 10.

Proof. Notice that when k = 3, we have that n > max{k + 2,4+ /8(k + 1)} implies
n > 10, n > max{k+4,7++/8(k + 2)} implies n > 14, A > max {2, GALERVACI ‘S(M}

2
implies A > 8 and A > max{2H, i ySt2) VZS(M} implies A > 7. Hence the result

follows from Theorem 2.7 for 10 < n < 13 and from Theorem 2.11 for n > 14. O
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Ti64 Tig4

Figure 7: Graphs Ty s, T, T11,5~, Thap5, Tn,m T34, T1ﬁ,4 and Tig4.

Table 3

n A E(T,aA) |n A E(T,a) |n A E(T,a)

6 4 565685 |9 8 850189 |11 7 9.63287

8 6 791375 | 10 5 9.50432 |12 5 11.50305
9 5 8.93180 | 10 6 9.15298 |13 4 12.78001
9 6 859845 | 11 5 10.00000 | 16 4  15.90909
9 7 846834 | 11 6 10.94832 |19 4 18.88809

In the following, we consider hypoenergetic tricyclic graphs with 4 < A < 8.
Let Tga = H2(3,0,0), Ty = Ha(3,0,2), Tos = Ho(3,1,2), Tor = Ha(3,0,3), Ths =
H,(3,0,4), Tioe = H2(3,2,2) and 1117 = H2(3,2,3). Let Tos, Tho5, Ti1,5, Tho5, Ti16s
T34, Ti6,4 and Thg 4 be the graphs given in Figure 7. Obviously, these graphs T5,; are
hypoenergetic tricyclic graphs of order n with A = [ by Table 3. By Theorem 2.12,
we can obtain
Lemma 5.3. (1) If A = 4, then there exist hypoenergetic tricyclic graphs of order
n for all n = 6,10,13,14 and n > 16; (2) If A = 5, then there exist hypoenergetic
tricyclic graphs of order n for allm > 9; (3) If A =6, then there exist hypoenergetic

tricyclic graphs of order n for all m > 8; (4) If A =T, then there exist hypoenergetic
tricyclic graphs of order n for all odd n > 9.

Combining Lemmas 5.2, 5.3 and Table 3, we can obtain
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Theorem 5.4. If (a) n =06,10,13,14 orn > 16 and A =4 or (b)) n > 8 and A =6
or (¢)n>9and A =5 o0r7 or (d)n>9 and A € [8,n — 1], then there exist

hypoenergetic tricyclic graphs with order n and maximum degree A.

When n =4,5,7, by Lemma 5.1, there exist no hypoenergetic tricyclic graphs. By
[5] (Table 1), there are four tricyclic graphs with n = 6 and A = 5. In these graphs,
the minimal energy is F = 6.89260 > n = 6, and the extremal graph is H,(3,0,1).
When n = 8 and A = 7, it is easy to check that there are five tricyclic graphs,
and the minimal energy is £ = 8.04552 > n = 8, the extremal graph is H;(3,0,3).
We also can obtain that the minimal energy among all tricyclic graphs with n = 8
and A =5 is E = 8 = n, and the extremal graph is Hy(3,1,1). Thus, for A = 4,
n = 8,9,11,12,15 are the only few cases for which we can not determine whether
or not there exist hypoenergetic tricyclic graphs. One can employ a computer to

determine them.
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