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Abstract

The energy 𝐸(𝐺) of a graph 𝐺 is defined as the sum of the absolute val-

ues of its eigenvalues. An 𝑛-vertex graph 𝐺 is said to be hypoenergetic if

𝐸(𝐺) < 𝑛 and strongly hypoenergetic if 𝐸(𝐺) < 𝑛 − 1. A connected graph

with cyclomatic number 𝑘 is called a 𝑘-cyclic graph. In this paper, we consider

hypoenergetic and strongly hypoenergetic 𝑘-cyclic graphs. We first show that

there exist hypoenergetic and strongly hypoenergetic 𝑘-cyclic graphs of order

𝑛 and maximum degree Δ for all (suitable large) 𝑛 and Δ. Then we show that

for Δ ≥ 4 there exist hypoenergetic unicyclic, bicyclic and tricyclic graphs for

all 𝑛 except very few small values of 𝑛. For Δ ≤ 3 we show that 𝐾2,3 is the

unique hypoenergetic graph among all unicyclic and bicyclic graphs.

1 Introduction

Let 𝐺 be a simple graph with 𝑛 vertices and 𝑚 edges. The cyclomatic number of a

connected graph is defined as 𝑐(𝐺) = 𝑚− 𝑛+ 1. A graph 𝐺 with 𝑐(𝐺) = 𝑘 is called

a 𝑘-cyclic graph. Denote by Δ the maximum degree of a graph. The eigenvalues

𝜆1, 𝜆2, . . . , 𝜆𝑛 of the adjacency matrix 𝐴(𝐺) of 𝐺 are said to be the eigenvalues of the
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graph 𝐺. The nullity of 𝐺, denoted by 𝑛0(𝐺) (or simply 𝑛0), is the multiplicity of

zero in the eigenvalues of 𝐺. The 𝑒𝑛𝑒𝑟𝑔𝑦 of 𝐺 is defined as

𝐸 = 𝐸(𝐺) =
𝑛∑

𝑖=1

∣𝜆𝑖∣.

For several classes of graphs it has been demonstrated that the energy exceeds

the number of vertices (see, [8]). In 2007, Nikiforov [11] showed that for almost all

graphs,

𝐸 =

(
4

3𝜋
+ 𝑜(1)

)
𝑛3/2.

Thus the number of graphs satisfying the condition 𝐸 < 𝑛 is relatively small. In [10],

a ℎ𝑦𝑝𝑜𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐 graph is defined to be a graph satisfying 𝐸 < 𝑛. In [13], a strongly

hypoenergetic graph is defined to be a graph satisfying 𝐸 < 𝑛− 1. For hypoenergetic

trees, Gutman et al. [9] obtained the following results.

Lemma 1.1. [9] (a) There exist hypoenergetic trees of order 𝑛 with maximum degree

Δ ≤ 3 only for 𝑛 = 1, 3, 4, 7 (a single such tree for each value of 𝑛, see Figure 1); (b)

If Δ = 4, then there exist hypoenergetic trees for all 𝑛 ≥ 5, such that 𝑛 ≡ 𝑘 (𝑚𝑜𝑑 4),

𝑘 = 0, 1, 3; (c) If Δ ≥ 5, then there exist hypoenergetic trees for all 𝑛 ≥ Δ+ 1.

𝑆1 𝑆3 𝑆4 𝑊

Figure 1: The hypoenergetic trees with maximum degree at most 3.

And the authors [9] proposed the following conjecture.

Conjecture 1.2. [9] There exist hypoenergetic trees of order 𝑛 with Δ = 4 for any

𝑛 ≡ 2 (𝑚𝑜𝑑 4), 𝑛 > 2. Consequently, there exist hypoenergetic trees of order 𝑛 with

Δ = 4 for all 𝑛 ≥ 5.

We will give a very simple proof to this conjecture later, and therefore, Lemma

1.1 is extended to the following result.

Lemma 1.3. (a) There exist hypoenergetic trees of order 𝑛 with maximum degree

Δ ≤ 3 only for 𝑛 = 1, 3, 4, 7 (a single such tree for each value of 𝑛, see Figure 1); (b)

If Δ ≥ 4, then there exist hypoenergetic trees for all 𝑛 ≥ Δ+ 1.
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For hypoenergetic unicyclic and bicyclic graphs, You and Liu [14] obtained the

following results.

Lemma 1.4. [14] (1) There exist hypoenergetic unicyclic graphs for all 𝑛 ≥ 7; (2)

If 𝑛 is even and Δ ∈ [𝑛
2
, 𝑛 − 1] or 𝑛 is odd and Δ ∈ [𝑛+1

2
, 𝑛 − 1], then there exist

hypoenergetic unicyclic graphs with maximum degree Δ for all 𝑛 ≥ 9.

Lemma 1.5. [14] (1) There exist hypoenergetic bicyclic graphs for all 𝑛 ≥ 8; (2) If

𝑛 is even and Δ ∈ [𝑛
2
+ 1, 𝑛 − 1] or 𝑛 is odd and Δ ∈ [𝑛+1

2
, 𝑛 − 1], then there exist

hypoenergetic bicyclic graphs with maximum degree Δ for all 𝑛 ≥ 9.

Recently, You, Liu and Gutman [15] considered hypoenergetic tricyclic and 𝑘-

cyclic graphs, they obtained the following results.

Lemma 1.6. [15] (1) There exist hypoenergetic tricyclic graphs for all 𝑛 ≥ 8; (2) If

𝑛 is even and Δ ∈ [𝑛
2
+ 1, 𝑛 − 1] or 𝑛 is odd and Δ ∈ [𝑛+3

2
, 𝑛 − 1], then there exist

hypoenergetic tricyclic graphs with maximum degree Δ for all 𝑛 ≥ 10.

Lemma 1.7. [15] There exist hypoenergetic 𝑘-cyclic graphs for any 𝑘.

In this paper, we consider hypoenergetic and strongly hypoenergetic 𝑘-cyclic

graphs with order 𝑛 and maximum degree Δ. In Section 2, we will show that for

any given 𝑘 three exist hypoenergetic and strongly hypoenergetic 𝑘-cyclic graphs of

order 𝑛 and maximum degree Δ for all (suitable large) 𝑛 and Δ. In Sections 3-5, we

consider hypoenergetic unicyclic, bicyclic and tricyclic graphs, respectively. We ob-

tain that for Δ ≥ 4 there exist hypoenergetic unicyclic, bicyclic and tricyclic graphs

for all 𝑛 except very few small values of 𝑛. For Δ ≤ 3 we show that 𝐾2,3 is the unique

hypoenergetic graph among all unicyclic and bicyclic graphs. These results greatly

extend the results in Lemmas 1.4-1.6.

2 Hypoenergetic and strongly hypoenergetic

𝑘-cyclic graphs

The following results are need in the sequel.

Lemma 2.1. [7] Let 𝐺 be a graph with 𝑛 vertices and 𝑚 edges. If the nullity of 𝐺 is

𝑛0, then 𝐸(𝐺) ≤√
2𝑚(𝑛− 𝑛0).
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Lemma 2.2. [1] Suppose that 𝐺 is a simple graph on 𝑛 vertices without isolated

vertex. Then

(1) 𝑛0(𝐺) = 𝑛 − 2 if and only if 𝐺 is isomorphic to a complete bipartite graph

𝐾𝑛1,𝑛2, where 𝑛1 + 𝑛2 = 𝑛, 𝑛1, 𝑛2 > 0.

(2) 𝑛0(𝐺) = 𝑛 − 3 if and only if 𝐺 is isomorphic to a complete tripartite graph

𝐾𝑛1,𝑛2,𝑛3, where 𝑛1 + 𝑛2 + 𝑛3 = 𝑛, 𝑛1, 𝑛2, 𝑛3 > 0.

Lemma 2.3. [4] Let 𝑣 be a pendent vertex of a graph 𝐺 and 𝑢 be the vertex in 𝐺

adjacent to 𝑣. Then 𝑛0(𝐺) = 𝑛0(𝐺− 𝑢− 𝑣), where 𝐺− 𝑢− 𝑣 is the induced subgraph

of 𝐺 obtained by deleting 𝑢 and 𝑣.

𝐻1(𝑘, 𝑛1, 𝑛2)

𝑛1 𝑛2

𝐻2(𝑘, 𝑛1, 𝑛2)

𝑛1 𝑛2

𝑘 𝑘

Figure 2: The Graphs 𝐻1(𝑘, 𝑛1, 𝑛2) and 𝐻2(𝑘, 𝑛1, 𝑛2).

Let 𝐻𝑖(𝑘, 𝑛1, 𝑛2) (𝑖 = 1, 2) (or simply 𝐻𝑖) be the graph of order 𝑛 given in Figure

2, where 𝑘 ≥ 1, 𝑛1 ≥ 0, 𝑛2 ≥ 0. Obviously, 𝐻1 and 𝐻2 are 𝑘-cyclic graphs, and

∣𝑉 (𝐻1)∣ ≥ 𝑘+2, ∣𝑉 (𝐻2)∣ ≥ 𝑘+3. If 𝑛1 = 𝑛2 = 0, then 𝑛0(𝐻1) = 𝑛−3, 𝑛0(𝐻2) = 𝑛−2

by Lemma 2.2; otherwise 𝑛0(𝐻1) = 𝑛0(𝐻2) = 𝑛 − 4 by Lemma 2.3. Hence we have

𝑛0(𝐻1) ≥ 𝑛− 4 and 𝑛0(𝐻2) ≥ 𝑛− 4.

By Lemma 2.1, we have

𝐸(𝐻𝑖) ≤
√
2𝑚(𝑛− 𝑛0) =

√
2(𝑛+ 𝑘 − 1)(𝑛− 𝑛0) ≤

√
8(𝑛+ 𝑘 − 1).

If √
8(𝑛+ 𝑘 − 1) < 𝑛, (1)

then 𝐻𝑖 is hypoenergetic. Inequality (1) can be transformed into (𝑛−4)2−8𝑘−8 > 0,

which are obeyed by all 𝑛 > 4 +
√
8(𝑘 + 1). It is easy to check that

max{𝑘 + 1, 4 +
√
8(𝑘 + 1)} =

{
4 +

√
8(𝑘 + 1), if 1 ≤ 𝑘 ≤ 13

𝑘 + 1, if 𝑘 ≥ 14
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and

max{𝑘 + 2, 4 +
√
8(𝑘 + 1)} =

{
4 +

√
8(𝑘 + 1), if 1 ≤ 𝑘 ≤ 12

𝑘 + 2, if 𝑘 ≥ 13
.

Hence we have the following

Lemma 2.4. (1) If 𝑛 > max{𝑘+1, 4+√8(𝑘 + 1)} =

{
4 +

√
8(𝑘 + 1), if 1 ≤ 𝑘 ≤ 13

𝑘 + 1, if 𝑘 ≥ 14

then 𝐻1 is hypoenergetic.

(2) If 𝑛 > max{𝑘 + 2, 4 +
√
8(𝑘 + 1)} =

{
4 +

√
8(𝑘 + 1), if 1 ≤ 𝑘 ≤ 12

𝑘 + 2, if 𝑘 ≥ 13
, then

𝐻2 is hypoenergetic.

Notice that the inequality
√
8(𝑘 + 1) ≤ 𝑘+3 holds for any 𝑘 ≥ 1, so we have the

following

Theorem 2.5. There exist hypoenergetic 𝑘-cyclic graphs for all 𝑛 ≥ 𝑘 + 8.

If

√
8(𝑛+ 𝑘 − 1) < 𝑛− 1, (2)

then 𝐻𝑖 is strongly hypoenergetic. Inequality (2) can be transformed into (𝑛− 5)2 −
8𝑘 − 16 > 0, which are obeyed by all 𝑛 > 5 +

√
8(𝑘 + 2). It is easy to check that

max{𝑘 + 1, 5 +
√
8(𝑘 + 2)} =

{
5 +

√
8(𝑘 + 2), if 1 ≤ 𝑘 ≤ 15

𝑘 + 1, if 𝑘 ≥ 16

and

max{𝑘 + 2, 5 +
√
8(𝑘 + 2)} =

{
5 +

√
8(𝑘 + 2), if 1 ≤ 𝑘 ≤ 14

𝑘 + 2, if 𝑘 ≥ 15
.

Hence we have the following

Lemma 2.6. (1) If 𝑛 > max{𝑘+1, 5+√8(𝑘 + 2)} =

{
5 +

√
8(𝑘 + 2), if 1 ≤ 𝑘 ≤ 15

𝑘 + 1, if 𝑘 ≥ 16

then 𝐻1 is strongly hypoenergetic.

(2) If 𝑛 > max{𝑘 + 2, 5 +
√
8(𝑘 + 2)} =

{
5 +

√
8(𝑘 + 2), if 1 ≤ 𝑘 ≤ 14

𝑘 + 2, if 𝑘 ≥ 15
, then

𝐻2 is strongly hypoenergetic.

In the following, we consider hypoenergetic and strongly hypoenergetic 𝑘-cyclic

graphs with order 𝑛 and maximum degree Δ.
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Theorem 2.7. (1) If 𝑛−𝑘 is even and Δ ∈ [𝑛+𝑘
2
, 𝑛−1] or 𝑛−𝑘 is odd and Δ = 𝑛−1,

then there exist hypoenergetic 𝑘-cyclic graphs of order 𝑛 with maximum degree Δ for

all 𝑛 > max{𝑘 + 1, 4 +
√
8(𝑘 + 1)}.

(2) If 𝑛− 𝑘 is odd and Δ ∈ [𝑛+𝑘−1
2

, 𝑛− 2], then there exist hypoenergetic 𝑘-cyclic

graphs of order 𝑛 with maximum degree Δ for all 𝑛 > max{𝑘 + 2, 4 +
√
8(𝑘 + 1)}.

Proof. Suppose 𝑛 − 𝑘 is even and Δ ∈ [𝑛+𝑘
2
, 𝑛 − 1] or 𝑛 − 𝑘 is odd and Δ = 𝑛 − 1.

Let 𝐺 = 𝐻1(𝑘,Δ− 𝑘 − 1, 𝑛−Δ− 1), then by Lemma 2.4, 𝐺 is hypoenergetic when

𝑛 > max{𝑘 + 1, 4 +
√
8(𝑘 + 1)}.

Suppose 𝑛−𝑘 is odd and Δ ∈ [𝑛+𝑘−1
2

, 𝑛−2]. Let 𝐺 = 𝐻2(𝑘,Δ−𝑘−1, 𝑛−Δ−2),

then by Lemma 2.4, 𝐺 is hypoenergetic when 𝑛 > max{𝑘 + 2, 4 +
√
8(𝑘 + 1)}. The

proof is then complete.

By Lemma 2.6, similar to the proof of Theorem 2.7, we can obtain

Theorem 2.8. (1) If 𝑛−𝑘 is even and Δ ∈ [𝑛+𝑘
2
, 𝑛−1] or 𝑛−𝑘 is odd and Δ = 𝑛−1,

then there exist strongly hypoenergetic 𝑘-cyclic graphs of order 𝑛 with maximum degree

Δ for all 𝑛 > max{𝑘 + 1, 5 +
√
8(𝑘 + 2)}.

(2) If 𝑛−𝑘 is odd and Δ ∈ [𝑛+𝑘−1
2

, 𝑛−2], then there exist strongly hypoenergetic 𝑘-

cyclic graphs of order 𝑛 with maximum degree Δ for all 𝑛 > max{𝑘+2, 5+√8(𝑘 + 2)}.

In order to prove Conjecture 1.2 and extend the interval for Δ in Theorem 2.7, we

need the following notations and preliminary results, which can be found in [13]. Let

𝐺 and 𝐻 be two graphs with disjoint vertex sets, and let 𝑢 ∈ 𝑉 (𝐺) and 𝑣 ∈ 𝑉 (𝐻).

Construct a new graph 𝐺 ∘𝐻 from copies of 𝐺 and 𝐻, by identifying the vertices 𝑢

and 𝑣. Thus ∣𝑉 (𝐺 ∘𝐻)∣ = ∣𝑉 (𝐺)∣ + ∣𝑉 (𝐻)∣ − 1. The graph 𝐺 ∘𝐻 is known as the

𝑐𝑜𝑎𝑙𝑒𝑠𝑐𝑒𝑛𝑐𝑒 of 𝐺 and 𝐻 with respect to 𝑢 and 𝑣.

Lemma 2.9. [13] Let 𝐺, 𝐻 and 𝐺∘𝐻 be graphs as specified above. Then 𝐸(𝐺∘𝐻) ≤
𝐸(𝐺) + 𝐸(𝐻). Equality is attained if and only if either 𝑢 is an isolated vertex of 𝐺

or 𝑣 is an isolated vertex of 𝐻 or both.

Lemma 2.10. [13] Let 𝐺, 𝐻 and 𝐺 ∘𝐻 be graphs as specified above. If 𝐺 is strongly

hypoenergetic and 𝐻 is hypoenergetic (or vice versa), then 𝐺 ∘𝐻 is hypoenergetic.

Proof of Conjecture 1.2. Suppose 𝑛 ≡ 2 (𝑚𝑜𝑑 4), 𝑛 > 2. If 𝑛 = 6, then by [3]

(Table 2), there exists a unique tree 𝑇6 of order 6 with Δ = 4, and 𝐸(𝑇6) = 5.818 < 6,

i.e., 𝑇6 is hypoenergetic. Let 𝑆5 be the 5-vertex star, then Δ(𝑆5) = 4 and 𝐸(𝑆5) = 4.

Let 𝑢 be a leaf vertex in 𝑇6 and 𝑣 be a leaf vertex in 𝑆5. Then by Lemma 2.9, for the
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coalescence 𝑇10 = 𝑇6 ∘ 𝑆5 of 𝑇6 and 𝑆5 with respect to 𝑢 and 𝑣, we have 𝐸(𝑇10) < 10.

Obviously, 𝑇10 is a tree of order 10 with Δ = 4. By consecutively doing the coalescence

operations (⋅ ⋅ ⋅ ((𝑇6 ∘ 𝑆5) ∘ 𝑆5) ⋅ ⋅ ⋅ ) ∘ 𝑆5, we can construct hypoenergetic trees with

Δ = 4 for any 𝑛 ≥ 10 such that 𝑛 ≡ 2 (𝑚𝑜𝑑 4). The proof is thus complete.

Theorem 2.11. (1) If 𝑛− 𝑘 is even and max{2𝑘+1
2

,
5+𝑘+

√
8(𝑘+2)

2
} < Δ ≤ 𝑛− 1, then

there exist hypoenergetic 𝑘-cyclic graphs of order 𝑛 with maximum degree Δ for all

𝑛 > max{𝑘 + 3, 7 +
√
8(𝑘 + 2)}.

(2) If 𝑛 − 𝑘 is odd and max{2𝑘+1
2

,
4+𝑘+

√
8(𝑘+2)

2
} < Δ ≤ 𝑛 − 1, then there exist

hypoenergetic 𝑘-cyclic graphs of order 𝑛 with maximum degree Δ for all 𝑛 > max{𝑘+
4, 7 +

√
8(𝑘 + 2)}.

Proof. (1) Suppose 𝑛−𝑘 is even. By Theorem 2.7, we may assume that Δ ≤ 𝑛+𝑘
2

−1.

Let 𝐺 = 𝐻1(𝑘,Δ − 𝑘 − 1,Δ − 𝑘 − 1), then ∣𝑉 (𝐺)∣ = 2Δ − 𝑘 ≤ 𝑛 − 2. Since

∣𝑉 (𝐺)∣ = 2Δ − 𝑘 > max{𝑘 + 1, 5 +
√
8(𝑘 + 2)}, 𝐺 is strongly hypoenergetic by

Lemma 2.6.

Let𝐻 be a hypoenergetic tree of order 𝑛−2Δ+𝑘+1 with Δ = 4 if 𝑛−2Δ+𝑘+1 ≥ 5

and 𝑆3 if 𝑛−2Δ+𝑘+1 = 3 (Such an 𝐻 does exist by Lemma 1.3). Let 𝑢 be a vertex

of degree 2 in 𝐺, 𝑣 a leaf vertex in 𝐻 and 𝐺 ∘𝐻 be the coalescence of 𝐺 and 𝐻 with

respect to 𝑢 and 𝑣. Since Δ > max{2𝑘+1
2

,
5+𝑘+

√
8(𝑘+2)

2
}, we have Δ ≥ 4. Hence 𝐺 ∘𝐻

is a 𝑘-cyclic graph of order 𝑛 with maximum degree Δ. By Lemma 2.10, 𝐺 ∘ 𝐻 is

hypoenergetic.

(2) Suppose 𝑛− 𝑘 is odd. By Theorem 2.7, we may assume that Δ ≤ 𝑛+𝑘−1
2

− 1.

Let 𝐺 = 𝐻2(𝑘,Δ − 𝑘 − 1,Δ − 𝑘 − 1), then ∣𝑉 (𝐺)∣ = 2Δ − 𝑘 + 1 ≤ 𝑛 − 2. Since

∣𝑉 (𝐺)∣ = 2Δ − 𝑘 + 1 > max{𝑘 + 2, 5 +
√
8(𝑘 + 2)}, 𝐺 is strongly hypoenergetic by

Lemma 2.6.

Let 𝐻 be a hypoenergetic tree of order 𝑛− 2Δ+ 𝑘 with Δ = 4 if 𝑛− 2Δ+ 𝑘 ≥ 5

and 𝑆3 if 𝑛 − 2Δ + 𝑘 = 3. Let 𝑢 be a vertex of degree 2 in 𝐺, 𝑣 a leaf vertex

in 𝐻 and 𝐺 ∘ 𝐻 be the coalescence of 𝐺 and 𝐻 with respect to 𝑢 and 𝑣. Since

Δ > max{2𝑘+1
2

,
4+𝑘+

√
8(𝑘+2)

2
}, we have Δ ≥ 4. Hence 𝐺 ∘ 𝐻 is a 𝑘-cyclic graph of

order 𝑛 with maximum degree Δ. By Lemma 2.10, 𝐺 ∘𝐻 is hypoenergetic.

Similar to the proof of Conjecture 1.2, we can obtain the following result, which

provides a useful method to construct more hypoenergetic 𝑘-cyclic graphs.

Theorem 2.12. If there exist a 𝑡-vertex hypoenergetic 𝑘-cyclic graph with Δ ≥ 4 and

at least a vertex of degree at most Δ−1, then there exist hypoenergetic 𝑘-cyclic graphs

with Δ for all 𝑛 ≥ 𝑡, such that 𝑛 ≡ 𝑡 (𝑚𝑜𝑑 4).
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3 Hypoenergetic unicyclic graphs

This section is devoted to finding more hypoenergetic unicyclic graphs, greatly ex-

tending the results in [14].

Lemma 3.1. [14] If 𝑛 ≤ 6, then there do not exist any hypoenergetic unicyclic graphs.

Lemma 3.2. If 𝑛 is even and Δ ∈ [5, 𝑛−1] or 𝑛 is odd and Δ ∈ [6, 𝑛−1], then there

exist hypoenergetic unicyclic graphs of order 𝑛 with maximum degree Δ for all 𝑛 ≥ 9.

Proof. Notice that when 𝑘 = 1, we have that 𝑛 > max{𝑘+2, 4+
√
8(𝑘 + 1)} implies

𝑛 ≥ 9, 𝑛 > max{𝑘 + 4, 7 +
√
8(𝑘 + 2)} implies 𝑛 ≥ 12, Δ > max{2𝑘+1

2
,
5+𝑘+

√
8(𝑘+2)

2
}

implies Δ ≥ 6 and Δ > max{2𝑘+1
2

,
4+𝑘+

√
8(𝑘+2)

2
} implies Δ ≥ 5. Hence the result

follows from Theorem 2.7 for 9 ≤ 𝑛 ≤ 11 and from Theorem 2.11 for 𝑛 ≥ 12.

𝑈11,5
𝑈11,4

𝑈14,4
𝑈17,4

Figure 3: Graphs 𝑈11,5, 𝑈11,4, 𝑈14,4 and 𝑈17,4.

Table 1

𝑛 Δ 𝐸(𝑈𝑛,Δ) 𝑛 Δ 𝐸(𝑈𝑛,Δ) 𝑛 Δ 𝐸(𝑈𝑛,Δ)
7 5 6.89898 8 6 7.39104 11 5 10.58501
7 6 6.64681 8 7 7.07326 14 4 13.90827
8 4 7.72741 9 5 8.24621 17 4 16.96885
8 5 7.65069 11 4 10.87716

In the following, we consider the case 4 ≤ Δ ≤ 7. Let 𝑈7,5 = 𝐻2(1, 3, 0), 𝑈7,6 =

𝐻1(1, 4, 0), 𝑈8,4 = 𝐻2(1, 2, 2), 𝑈8,5 = 𝐻2(1, 3, 1), 𝑈8,6 = 𝐻2(1, 4, 0), 𝑈8,7 = 𝐻1(1, 5, 0)

and 𝑈9,5 = 𝐻2(1, 3, 2). Let 𝑈11,5, 𝑈11,4, 𝑈14,4 and 𝑈17,4 be the graphs given in Figure

3. Obviously, these graphs 𝑈𝑛,𝑙 are hypoenergetic unicyclic graphs of order 𝑛 with
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Δ = 𝑙 by Table 1. Since 𝑈8,4, 𝑈11,4, 𝑈14,4, 𝑈17,4, 𝑈9,5 and 𝑈11,5 are hypoenergetic, by

Theorem 2.12, we can obtain

Lemma 3.3. (1) If Δ = 4, then there exist hypoenergetic unicyclic graphs of order 𝑛

for all 𝑛 = 8, 11, 12 and 𝑛 ≥ 14; (2) If Δ = 5, then there exist hypoenergetic unicyclic

graphs of order 𝑛 for all odd 𝑛 ≥ 9.

Combining Lemmas 3.2, 3.3 and Table 1, we can obtain

Theorem 3.4. If (a) 𝑛 = 8, 11, 12 or 𝑛 ≥ 14 and Δ = 4 or (b) 𝑛 ≥ 7 and Δ ∈
[5, 𝑛− 1], then there exist hypoenergetic unicyclic graphs with order 𝑛 and maximum

degree Δ.

When 𝑛 ≤ 6, by Lemma 3.1, there exist no hypoenergetic unicyclic graphs. By

[2], there are 12 unicyclic graphs with 𝑛 = 7 and Δ = 4. In these graphs, the minimal

energy is 𝐸 = 7.1153 > 𝑛 = 7, and the extremal graph is 𝐻2(1, 1, 2). We can also

show that there are no hypoenergetic unicyclic graphs with 𝑛 = 9 or 10 and Δ = 4.

Thus, 𝑛 = 13 is the only case for which we can not determine whether or not there

exist hypoenergetic unicyclic graphs of order 𝑛 = 13 and Δ = 4. But we can show

that there are no hypoenergetic unicyclic graphs with 𝑛 = 13, Δ = 4 and girth 𝑔 ≥ 7.

The details are tedious and hence omitted.

In the end of this section, we consider the remaining case Δ ≤ 3. The following

results are needed.

Lemma 3.5. [12] Let 𝐺 be a graph of order 𝑛 with at least 𝑛 edges and with no

isolated vertices. If 𝐺 is quadrangle-free and Δ(𝐺) ≤ 3, then 𝐸(𝐺) > 𝑛.

Lemma 3.6. [6] If 𝐹 is an edge cut of a simple graph 𝐺, then 𝐸(𝐺 − 𝐹 ) ≤ 𝐸(𝐺),

where 𝐺− 𝐹 is the subgraph obtained from 𝐺 by deleting the edges in 𝐹 .

Lemma 3.7. If there exists an edge cut 𝐹 of a connected graph 𝐺 such that 𝐺 − 𝐹

has two components 𝐺1 and 𝐺2, and both 𝐺1 and 𝐺2 are non-hypoenergetic, then 𝐺

is non-hypoenergetic.

Proof. It follows from Lemma 3.6 that

𝐸(𝐺) ≥ 𝐸(𝐺− 𝐹 ) = 𝐸(𝐺1) + 𝐸(𝐺2) ≥ ∣𝑉 (𝐺1)∣+ ∣𝑉 (𝐺2)∣ = 𝑛,

which completes the proof.
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Theorem 3.8. There does not exist any hypoenergetic unicyclic graph with Δ ≤ 3.

Proof. Let 𝐺 be an 𝑛-vertex unicyclic graph with Δ ≤ 3. We will show that 𝐺 is

non-hypoerergetic. If 𝑛 ≤ 6, then 𝐺 is non-hypoenergetic by Lemma 3.1. If 𝐺 is

quadrangle-free, then 𝐺 is non-hypoenergetic by Lemma 3.5. So in the following we

assume that 𝑛 ≥ 7 and 𝐺 contains a quadrangle 𝐶 = 𝑥1𝑥2𝑥3𝑥4𝑥1. We only need to

consider the following four cases:

Case 1. There exists an edge 𝑒 on 𝐶 such that the end vertices of 𝑒 are of degree

2.

Without loss of generality, we assume that 𝑑(𝑥1) = 𝑑(𝑥4) = 2. Let 𝐹 = {𝑥1𝑥2, 𝑥4𝑥3},
then 𝐺−𝐹 has two components, say 𝐺1 and 𝐺2, where 𝐺1 is the tree of order 2 with

𝑥1 ∈ 𝑉 (𝐺1) and 𝐺2 is a tree of order at least 5 since 𝑛 ≥ 7. Since Δ(𝐺) ≤ 3, 𝐺2 can

not be isomorphic to 𝑊 . Therefore 𝐺1, 𝐺2 are non-hypoenergetic by Lemma 1.1 (a).

The result follows from Lemma 3.7.

Case 2. There exist exactly two nonadjacent vertices 𝑥𝑖 and 𝑥𝑗 on 𝐶 such that

𝑑(𝑥𝑖) = 𝑑(𝑥𝑗) = 2.

Without loss of generality, we assume that 𝑑(𝑥2) = 𝑑(𝑥4) = 2, 𝑑(𝑥1) = 𝑑(𝑥3) = 3.

Let 𝑦3 be the adjacent vertex outside 𝐶 of 𝑥3. Then 𝐺 − 𝑥3𝑦3 has two components,

say 𝐺1 and 𝐺2, where 𝐺1 is a unicyclic graph and 𝐺2 is a tree. Notice that 𝐺1 is

non-hypoenergetic by Case 1. If 𝐺2 ∕∼= 𝑆1, 𝑆3, 𝑆4,𝑊 , then we are finished by Lemmas

1.1 (a) and 3.7. So we only need to consider the following four cases.

Subcase 2.1. 𝐺2
∼= 𝑆1.

Let 𝐹 = {𝑥2𝑥3, 𝑥3𝑥4}, then 𝐺 − 𝐹 has two components, say 𝐺′
1 and 𝐺′

2, where

𝐺′
1 is a tree of order at least 4 and 𝐺′

2 is a tree of order 2. If 𝐺′
1 ∕∼= 𝑆4,𝑊 , then we

are finished by Lemmas 1.1 (a) and 3.7. If 𝐺′
1
∼= 𝑆4, then 𝑛 = 6, a contradiction. If

𝐺′
1
∼= 𝑊 , then 𝐺 must be the graph as given in Figure 4 (a), by direct computing,

we have 𝐸(𝐺) = 9.78866 > 9 = 𝑛.

Subcase 2.2. 𝐺2
∼= 𝑆3.

Then 𝐺 must have the structure as given in Figure 4 (b) or (c). In the former case,

𝐺− 𝑦3𝑧 has two components, say 𝐺′
1 and 𝐺′

2, where 𝐺
′
1 is a unicyclic graph and 𝐺′

2 is

a tree of order 2. It follows from Subcase 2.1 that 𝐺′
1 is non-hypoenergetic. Therefore

we are finished by Lemmas 1.1 (a) and 3.7. In the latter case, 𝐺 − {𝑥1𝑥2, 𝑥4𝑥3} has
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𝑥2

𝑥4

𝑥1 𝑥3 𝑦3 𝑧

(b)
𝐺1

𝑥2

𝑥4

𝑥1
𝑥3 𝑦3

(c)
𝐺1

(d)
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𝑥1 𝑥3 𝑦3

𝑥2

𝑥4

𝑥1 𝑥3 𝑦3 𝑧

(h)
𝐺1

𝑥2

𝑥4

𝑥1 𝑥3 𝑦3

(i)
𝐺1

𝑥2

𝑥4

𝑥1 𝑥3 𝑦3

(j)

𝑥2

𝑥4

𝑥1 𝑥3 𝑦3

(k)

𝑥2

𝑥4

𝑥1
𝑥3 𝑦3

(e)
𝐺1

𝑥2

𝑥4

𝑥1 𝑥3 𝑦3

(f)

𝑥2

𝑥4

𝑥1 𝑥3 𝑦3

(g)

(l)

𝑥2

𝑥4

𝑥1 𝑥3

Figure 4: The graphs in the proof of Theorem 3.8.

two components, say 𝐺′
1 and 𝐺′

2, where 𝐺
′
1 is a tree of order at least 3 and 𝐺′

2 is a tree

of order 5. If 𝐺′
1 ∕∼= 𝑆3, 𝑆4,𝑊 , then we are finished by Lemmas 1.1 (a) and 3.7. Since

Δ(𝐺) ≤ 3, 𝐺′
1 can not be isomorphic to 𝑆4 or 𝑊 . If 𝐺′

1
∼= 𝑆3, then 𝐺 must be the

graph as given in Figure 4 (d), by direct computing, we have 𝐸(𝐺) = 8.81463 > 8 = 𝑛.

Subcase 2.3. 𝐺2
∼= 𝑆4.

Then 𝐺 must have the structure as given in Figure 4 (e). Let 𝐹 = {𝑥2𝑥3, 𝑥3𝑥4},
then 𝐺− 𝐹 has two components, say 𝐺′

1 and 𝐺′
2, where 𝐺

′
1 is a tree of order at least

4 and 𝐺′
2 is a tree of order 5. If 𝐺′

1 ∕∼= 𝑆4,𝑊 , then we are finished by Lemmas 1.1 (a)

and 3.7. If 𝐺′
1
∼= 𝑆4, then 𝐺 must be the graph as given in Figure 4 (f), by direct

computing, we have 𝐸(𝐺) = 9.78866 > 9 = 𝑛. If 𝐺′
1
∼= 𝑊 , then 𝐺 must be the graph

as given in Figure 4 (g). Now, 𝐺−{𝑥1𝑥2, 𝑥3𝑥4} has two components, say 𝐺′′
1 and 𝐺′′

2,
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where 𝐺′′
𝑖 is a tree of order 6, 𝑖 = 1, 2. Therefore we are finished by Lemmas 1.1 (a)

and 3.7.

Subcase 2.4. 𝐺2
∼= 𝑊 .

Then 𝐺 must have the structure as given in Figure 4 (h) or (i). In the former case,

𝐺− 𝑦3𝑧 has two components, say 𝐺′
1 and 𝐺′

2, where 𝐺
′
1 is a unicyclic graph and 𝐺′

2 is

a tree of order 6. It follows from Subcase 2.1 that 𝐺′
1 is non-hypoenergetic. Therefore

we are finished by Lemmas 1.1 (a) and 3.7. In the latter case, 𝐺 − {𝑥2𝑥3, 𝑥3𝑥4} has

two components, say 𝐺′
1 and 𝐺′

2, where 𝐺′
1 is a tree of order at least 4 and 𝐺′

2 is a

tree of order 8. If 𝐺′
1 ∕∼= 𝑆4,𝑊 , then we are finished by Lemmas 1.1 (a) and 3.7. If

𝐺′
1
∼= 𝑆4, then 𝐺 must be the graph as given in Figure 4 (j), by direct computing, we

have 𝐸(𝐺) = 13.05749 > 12 = 𝑛. If 𝐺′
1
∼= 𝑊 , then 𝐺 must be the graph as given in

Figure 4 (k). Now, 𝐺− {𝑥1𝑥2, 𝑥3𝑥4} has two components, say 𝐺′′
1 and 𝐺′′

2, where 𝐺
′′
1

is a tree of order 6 and 𝐺′′
2 is a tree of order 9. Therefore we are finished by Lemmas

1.1 (a) and 3.7.

Case 3. There exists exactly one vertices 𝑥𝑖 on 𝐶 such that 𝑑(𝑥𝑖) = 2.

Without loss of generality, we assume that 𝑑(𝑥1) = 2. Let 𝐹 = {𝑥1𝑥4, 𝑥2𝑥3}, then
𝐺 − 𝐹 has two components, say 𝐺1 and 𝐺2, where 𝐺1 is the tree of order at least 3

with 𝑥1 ∈ 𝑉 (𝐺1) and 𝐺2 is a tree of order at least 4. Since Δ(𝐺) ≤ 3, 𝐺1, 𝐺2 can

not be isomorphic to 𝑆4 or 𝑊 . So if 𝐺1 ∕∼= 𝑆3, then we are finished by Lemmas 1.1

(a) and 3.7. If 𝐺1
∼= 𝑆3, then 𝐺 − {𝑥1𝑥2, 𝑥2𝑥3} has two components, say 𝐺′

1 and

𝐺′
2, where 𝐺′

1 is the tree of order at least 5 with 𝑥1 ∈ 𝑉 (𝐺′
1) and 𝐺′

2 is a tree of

order 2. If 𝐺′
1 ∕∼= 𝑊 , then we are finished by Lemmas 1.1 (a) and 3.7. If 𝐺′

1
∼= 𝑊 ,

then 𝐺 must be the graph as given in Figure 4 (l), by direct computing, we have

𝐸(𝐺) = 9.80028 > 9 = 𝑛.

Case 4. 𝑑(𝑥1) = 𝑑(𝑥2) = 𝑑(𝑥3) = 𝑑(𝑥4) = 3.

Let 𝐹 = {𝑥1𝑥4, 𝑥2𝑥3}, then 𝐺 − 𝐹 has two components, say 𝐺1 and 𝐺2, where

𝐺1 and 𝐺2 are trees of order at least 4 and it is easy to check that 𝐺1, 𝐺2 can not be

isomorphic to 𝑆4 or 𝑊 . Therefore we are finished by Lemmas 1.1 (a) and 3.7. The

proof is thus complete.
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4 Hypoenergetic bicyclic graphs

This section is devoted to finding more hypoenergetic bicyclic graphs, also greatly

extending corresponding results in [14].

Lemma 4.1. [14] If 𝑛 = 4, 6, 7, then there do not exist any hypoenergetic bicyclic

graphs.

Lemma 4.2. If 𝑛 is even and Δ ∈ [7, 𝑛−1] or 𝑛 is odd and Δ ∈ [6, 𝑛−1], then there

exist hypoenergetic bicyclic graphs of order 𝑛 with maximum degree Δ for all 𝑛 ≥ 9.

Proof. Notice that when 𝑘 = 2, we have that 𝑛 > max{𝑘+2, 4+
√
8(𝑘 + 1)} implies

𝑛 ≥ 9, 𝑛 > max{𝑘 + 4, 7 +
√
8(𝑘 + 2)} implies 𝑛 ≥ 13, Δ > max{2𝑘+1

2
,
5+𝑘+

√
8(𝑘+2)

2
}

implies Δ ≥ 7 and Δ > max{2𝑘+1
2

,
4+𝑘+

√
8(𝑘+2)

2
} implies Δ ≥ 6. Hence the result

follows from Theorem 2.7 for 9 ≤ 𝑛 ≤ 12 and from Theorem 2.11 for 𝑛 ≥ 13.

𝐵9,4 𝐵10,5 𝐵11,5

𝐵16,4
𝐵18,4

𝐵19,4

Figure 5: Graphs 𝐵9,4, 𝐵10,5, 𝐵11,5, 𝐵16,4, 𝐵18,4 and 𝐵19,4.

Table 2

𝑛 Δ 𝐸(𝐵𝑛,Δ) 𝑛 Δ 𝐸(𝐵𝑛,Δ) 𝑛 Δ 𝐸(𝐵𝑛,Δ)
8 5 7.90778 9 5 8.48528 16 4 15.77861
8 6 7.74597 10 5 9.25036 18 4 17.94188
8 7 7.68165 10 6 8.98112 19 4 18.87354
9 4 8.75560 11 5 10.74799

-53-



In the following, we consider the case 4 ≤ Δ ≤ 7. Let 𝐵8,5 = 𝐻2(2, 1, 2), 𝐵8,6 =

𝐻2(2, 0, 3), 𝐵8,7 = 𝐻1(2, 0, 4), 𝐵9,5 = 𝐻2(2, 2, 2) and 𝐵10,6 = 𝐻2(2, 2, 3). Let 𝐵10,5,

𝐵11,5, 𝐵9,4, 𝐵16,4, 𝐵18,4 and 𝐵19,4 be the graphs given in Figure 5. Obviously, these

graphs 𝐵𝑛,𝑙 are hypoenergetic bicyclic graphs of order 𝑛 with Δ = 𝑙 by Table 2. By

Theorem 2.12, we can obtain

Lemma 4.3. (1) If Δ = 4, then there exist hypoenergetic bicyclic graphs of order 𝑛

for all 𝑛 = 9, 13 and 𝑛 ≥ 16; (2) If Δ = 5, then there exist hypoenergetic bicyclic

graphs of order 𝑛 for all 𝑛 ≥ 8; (3) If Δ = 6, then there exist hypoenergetic bicyclic

graphs of order 𝑛 for all even 𝑛 ≥ 8.

Combining Lemmas 4.2, 4.3 and Table 2, we can obtain

Theorem 4.4. If (a) 𝑛 = 9, 13 or 𝑛 ≥ 16 and Δ = 4 or (b) 𝑛 ≥ 8 and Δ ∈ [5, 𝑛−1],

then there exist hypoenergetic bicyclic graphs with order 𝑛 and maximum degree Δ.

When 𝑛 = 4, 6, 7, by Lemma 4.1, there exist no hypoenergetic bicyclic graphs. By

[3] (Table 1), there are two bicyclic graphs with 𝑛 = 5 and Δ = 4, and the minimal

energy is 𝐸 = 6.04090 > 𝑛 = 5, and the extremal graph is 𝐻1(2, 0, 1). Thus, for

Δ = 4, 𝑛 = 8, 10, 11, 12, 14, 15 are the only few cases for which we can not determine

whether or not there exist hypoenergetic bicyclic graphs. One can employ a computer

to determine them easily.

In the end of this section, we consider the remaining case Δ ≤ 3.

Theorem 4.5. Complete bipartite graph 𝐾2,3 is the only hypoenergetic bicyclic graphs

with Δ ≤ 3.

Proof. Let 𝐺 be an 𝑛-vertex bicyclic graphs with Δ ≤ 3. If 𝑛 = 4, 6, 7, then 𝐺 is non-

hypoenergetic by Lemma 4.1. If 𝑛 = 5, by [3] (Table 1), there are three bicyclic graphs

with Δ ≤ 3, and 𝐾2,3 is the only hypoenergetic graph with 𝐸(𝐾2,3) = 4.8990. If 𝐺 is

quadrangle-free, then 𝐺 is non-hypoenergetic by Lemma 3.5. So in the following we

assume that 𝐺 contains a quadrangle, 𝐺 ∕∼= 𝐾2,3 and 𝑛 ≥ 8. We will show that 𝐺 is

non-hypoenergetic.

If the cycles in 𝐺 are disjoint, then it is clear that there exists a path 𝑃 connecting

the two cycles in 𝐺. Obviously, for any edge 𝑒 on 𝑃 , 𝐺−𝑒 has two components which

are unicyclic graphs. Thus 𝐺 is non-hypoenergetic by Lemma 3.7 and Theorem 3.8.
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Otherwise, the cycles in 𝐺 have two or more common vertices. Then we can assume

that 𝐺 contains a subgraph as given in Figure 6 (a), where 𝑃1, 𝑃2, 𝑃3 are paths in 𝐺.

𝑃 𝑃2𝑃1

(a)
(b) (c)

(d) (e)

𝑒1

𝑒2

𝐺1

𝑥

(f)

𝑒1

𝑒2

𝐺1

(g)

𝑒1

𝑒2
𝐺1

𝑧
𝑦

𝑦
𝑥

𝑧

𝑦

𝑧𝑥

𝐺1

𝐺1 𝐺1

𝑒1

𝑒2

𝑒1

𝑒2

𝑒3
𝑒1

𝑒2

𝑒3

𝑒3

𝑒4

𝑢

𝑣

𝑢

𝑣

𝑥
𝑦

𝑧

(i)(h)
𝐺1

𝑢

𝑣

𝑥
𝑦

𝑧

𝐺1

(j)

𝑢

𝑣

𝑥
𝑦

𝑧

(k)
𝐺1 (l)

Figure 6: The graphs in the proof of Theorem 4.5.

We distinguish the following three cases:

Case 1. At least one of 𝑃1, 𝑃2 and 𝑃3, say 𝑃2 has length not less than 3.

Let 𝑒1 and 𝑒2 be the edges on 𝑃2 incident with 𝑢 and 𝑣, respectively. Then

𝐺 − {𝑒1, 𝑒2} has two components, say 𝐺1 and 𝐺2, where 𝐺1 is a unicyclic graph

and 𝐺2 is a tree of order at least 2. It follows from Theorem 3.8 that 𝐺1 is non-

hypoenergetic. If 𝐺2 ∕∼= 𝑆3, 𝑆4,𝑊 , then we are finished by Lemmas 1.1 (a) and 3.7.

So we only need to consider the following three cases:

Subcase 1.1. 𝐺2
∼= 𝑆3.
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Then 𝐺 must have the structure as given in Figure 6 (b) or (c). In either case,

𝐺− {𝑒2, 𝑒3} has two components, say 𝐺′
1 and 𝐺′

2, where 𝐺
′
1 is a unicyclic graph and

𝐺′
2 is a tree of order 2. By Theorem 3.8, 𝐺′

1 is non-hypoenergetic. Therefore the

result follows from Lemmas 1.1 (a) and 3.7.

Subcase 1.2. 𝐺2
∼= 𝑆4.

Then 𝐺 must have the structure as given in Figure 6 (d). Obviously, 𝐺−{𝑒3, 𝑒4}
has two components, say 𝐺′

1 and 𝐺′
2, where 𝐺′

1 is a unicyclic graph and 𝐺′
2 is a tree

of order 2. Therefore the result follows from Theorem 3.8, Lemmas 1.1 (a) and 3.7.

Subcase 1.3. 𝐺2
∼= 𝑊 .

Then 𝐺 must have the structure as given in Figure 6 (e), (f) or (g). Obviously,

𝐺−{𝑥𝑦, 𝑦𝑧} has two components, say 𝐺′
1 and 𝐺′

2, where 𝐺
′
1 is a unicyclic graph and

𝐺′
2 is a tree of order 5 or 2. Therefore the result follows from Theorem 3.8, Lemmas

1.1 (a) and 3.7.

Case 2. All the paths 𝑃1, 𝑃2 and 𝑃3 have length 2.

We assume that 𝑃1 = 𝑢𝑥𝑣, 𝑃 = 𝑢𝑧𝑣 and 𝑃2 = 𝑢𝑦𝑣. Let 𝐹 = {𝑢𝑦, 𝑣𝑦}, then 𝐺−𝐹

has two components, say 𝐺1 and 𝐺2, where 𝐺1 is a unicyclic graph and 𝐺2 is a tree.

It follows from Theorem 3.8 that 𝐺1 is non-hypoenergetic. If 𝐺2 ∕∼= 𝑆1, 𝑆3, 𝑆4,𝑊 , then

we are finished by Lemmas 1.1 (a) and 3.7. So we only need to consider the following

four cases.

Subcase 2.1. 𝐺2
∼= 𝑆1.

Let 𝐹 ′ = {𝑢𝑦, 𝑧𝑣, 𝑥𝑣}, then 𝐺−𝐹 ′ has two components, say 𝐺′
1 and 𝐺′

2, where 𝐺
′
2

is the tree of order 2 with 𝑦 ∈ 𝑉 (𝐺′
2), 𝐺

′
1 is a tree of order at least 6 since 𝑛 ≥ 8. Since

Δ(𝐺) ≤ 3, 𝐺′
1 can not be isomorphic to 𝑊 . Therefore 𝐺′

1, 𝐺
′
2 are non-hypoenergetic

by Lemma 1.1 (a). The result follows from Lemma 3.7.

Subcase 2.2. 𝐺2
∼= 𝑆3.

Then 𝐺 must have the structure as given in Figure 6 (h). Let 𝐹 ′ = {𝑢𝑦, 𝑧𝑣, 𝑥𝑣},
then 𝐺 − 𝐹 ′ has two components, say 𝐺′

1 and 𝐺′
2, where 𝐺′

2 is the path of order 4

with 𝑦 ∈ 𝑉 (𝐺′
2), 𝐺

′
1 is a tree of order at least 4 since 𝑛 ≥ 8. Since Δ(𝐺) ≤ 3, 𝐺′

1 can

not be isomorphic to 𝑆4 or 𝑊 . Therefore 𝐺′
1, 𝐺

′
2 are non-hypoenergetic by Lemma

1.1 (a). The result follows from Lemma 3.7.

Subcase 2.3. 𝐺2
∼= 𝑆4.
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Then 𝐺 must have the structure as given in Figure 6 (i). Let 𝐹 ′ = {𝑢𝑦, 𝑧𝑣, 𝑥𝑣},
then 𝐺 − 𝐹 ′ has two components, say 𝐺′

1 and 𝐺′
2, where 𝐺′

2 is the tree of order 5

with 𝑦 ∈ 𝑉 (𝐺′
2), 𝐺

′
1 is a tree of order at least 3. Since Δ(𝐺) ≤ 3, 𝐺′

1 can not be

isomorphic to 𝑆4 or 𝑊 . If 𝐺′
1 ∕∼= 𝑆3, then we are finished by Lemmas 1.1 (a) and 3.7.

If 𝐺′
1
∼= 𝑆3, then 𝐺 must be the graph as given in Figure 6 (j), by direct computing,

we have 𝐸(𝐺) = 8.24621 > 8 = 𝑛.

Subcase 2.4. 𝐺2
∼= 𝑊 .

Then 𝐺 must have the structure as given in Figure 6 (k). Let 𝐹 ′ = {𝑢𝑦, 𝑧𝑣, 𝑥𝑣},
then 𝐺 − 𝐹 ′ has two components, say 𝐺′

1 and 𝐺′
2, where 𝐺′

2 is the tree of order 8

with 𝑦 ∈ 𝑉 (𝐺′
2), 𝐺

′
1 is a tree of order at least 3. Since Δ(𝐺) ≤ 3, 𝐺′

1 can not be

isomorphic to 𝑆4 or 𝑊 . If 𝐺′
1 ∕∼= 𝑆3, then we are finished by Lemmas 1.1 (a) and 3.7.

If 𝐺′
1
∼= 𝑆3, then 𝐺 must be the graph as given in Figure 6 (l), by direct computing,

we have 𝐸(𝐺) = 11.60185 > 11 = 𝑛.

Case 3. One of the paths 𝑃1, 𝑃2 and 𝑃3 has length 1, and the other two paths

have length 2.

Without loss of generality, we assume that 𝑃1 = 𝑢𝑥𝑣, 𝑃 = 𝑢𝑣 and 𝑃2 = 𝑢𝑦𝑣.

Then similar to the proof of Case 2, we can show that 𝐺 is non-hypoenergetic. The

proof is thus complete.

5 Hypoenergetic tricyclic graphs

This section is devoted to finding more hypoenergetic tricyclic graphs, greatly ex-

tending corresponding results in [15].

Lemma 5.1. [15] If 𝑛 = 4, 5, 7, then there do not exist any hypoenergetic tricyclic

graphs.

Lemma 5.2. If 𝑛 is even and Δ ∈ [7, 𝑛 − 1] or 𝑛 is odd and Δ ∈ [8, 𝑛 − 1], then

there exist hypoenergetic tricyclic graphs of order 𝑛 with maximum degree Δ for all

𝑛 ≥ 10.

Proof. Notice that when 𝑘 = 3, we have that 𝑛 > max{𝑘+2, 4+
√
8(𝑘 + 1)} implies

𝑛 ≥ 10, 𝑛 > max{𝑘+4, 7+
√
8(𝑘 + 2)} implies 𝑛 ≥ 14, Δ > max{2𝑘+1

2
,
5+𝑘+

√
8(𝑘+2)

2
}

implies Δ ≥ 8 and Δ > max{2𝑘+1
2

,
4+𝑘+

√
8(𝑘+2)

2
} implies Δ ≥ 7. Hence the result

follows from Theorem 2.7 for 10 ≤ 𝑛 ≤ 13 and from Theorem 2.11 for 𝑛 ≥ 14.
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𝑇9,5 𝑇10,5 𝑇11,5

𝑇12,5 𝑇11,6 𝑇13,4

𝑇16,4 𝑇19,4

Figure 7: Graphs 𝑇9,5, 𝑇10,5, 𝑇11,5, 𝑇12,5, 𝑇11,6, 𝑇13,4, 𝑇16,4 and 𝑇19,4.

Table 3

𝑛 Δ 𝐸(𝑇𝑛,Δ) 𝑛 Δ 𝐸(𝑇𝑛,Δ) 𝑛 Δ 𝐸(𝑇𝑛,Δ)
6 4 5.65685 9 8 8.50189 11 7 9.63287
8 6 7.91375 10 5 9.50432 12 5 11.50305
9 5 8.93180 10 6 9.15298 13 4 12.78001
9 6 8.59845 11 5 10.00000 16 4 15.90909
9 7 8.46834 11 6 10.94832 19 4 18.88809

In the following, we consider hypoenergetic tricyclic graphs with 4 ≤ Δ ≤ 8.

Let 𝑇6,4 = 𝐻2(3, 0, 0), 𝑇8,6 = 𝐻2(3, 0, 2), 𝑇9,6 = 𝐻2(3, 1, 2), 𝑇9,7 = 𝐻2(3, 0, 3), 𝑇9,8 =

𝐻1(3, 0, 4), 𝑇10,6 = 𝐻2(3, 2, 2) and 𝑇11,7 = 𝐻2(3, 2, 3). Let 𝑇9,5, 𝑇10,5, 𝑇11,5, 𝑇12,5, 𝑇11,6,

𝑇13,4, 𝑇16,4 and 𝑇19,4 be the graphs given in Figure 7. Obviously, these graphs 𝑇𝑛,𝑙 are

hypoenergetic tricyclic graphs of order 𝑛 with Δ = 𝑙 by Table 3. By Theorem 2.12,

we can obtain

Lemma 5.3. (1) If Δ = 4, then there exist hypoenergetic tricyclic graphs of order

𝑛 for all 𝑛 = 6, 10, 13, 14 and 𝑛 ≥ 16; (2) If Δ = 5, then there exist hypoenergetic

tricyclic graphs of order 𝑛 for all 𝑛 ≥ 9; (3) If Δ = 6, then there exist hypoenergetic

tricyclic graphs of order 𝑛 for all 𝑛 ≥ 8; (4) If Δ = 7, then there exist hypoenergetic

tricyclic graphs of order 𝑛 for all odd 𝑛 ≥ 9.

Combining Lemmas 5.2, 5.3 and Table 3, we can obtain
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Theorem 5.4. If (a) 𝑛 = 6, 10, 13, 14 or 𝑛 ≥ 16 and Δ = 4 or (b) 𝑛 ≥ 8 and Δ = 6

or (c) 𝑛 ≥ 9 and Δ = 5 or 7 or (d) 𝑛 ≥ 9 and Δ ∈ [8, 𝑛 − 1], then there exist

hypoenergetic tricyclic graphs with order 𝑛 and maximum degree Δ.

When 𝑛 = 4, 5, 7, by Lemma 5.1, there exist no hypoenergetic tricyclic graphs. By

[5] (Table 1), there are four tricyclic graphs with 𝑛 = 6 and Δ = 5. In these graphs,

the minimal energy is 𝐸 = 6.89260 > 𝑛 = 6, and the extremal graph is 𝐻1(3, 0, 1).

When 𝑛 = 8 and Δ = 7, it is easy to check that there are five tricyclic graphs,

and the minimal energy is 𝐸 = 8.04552 > 𝑛 = 8, the extremal graph is 𝐻1(3, 0, 3).

We also can obtain that the minimal energy among all tricyclic graphs with 𝑛 = 8

and Δ = 5 is 𝐸 = 8 = 𝑛, and the extremal graph is 𝐻2(3, 1, 1). Thus, for Δ = 4,

𝑛 = 8, 9, 11, 12, 15 are the only few cases for which we can not determine whether

or not there exist hypoenergetic tricyclic graphs. One can employ a computer to

determine them.

References

[1] B. Cheng, B. Liu, On the nullity of graphs, Electron. J. Lin. Algebra 16 (2007)

60–67.
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