Hypoenergetic and Strongly Hypoenergetic k-Cyclic Graphs

Xueliang Li^{1}, Hongping Ma^{2}
Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, P.R. China.
Email: lxl@nankai.edu.cn; mhp@cfc.nankai.edu.cn

(Received May 12, 2009)

Abstract

The energy $E(G)$ of a graph G is defined as the sum of the absolute values of its eigenvalues. An n-vertex graph G is said to be hypoenergetic if $E(G)<n$ and strongly hypoenergetic if $E(G)<n-1$. A connected graph with cyclomatic number k is called a k-cyclic graph. In this paper, we consider hypoenergetic and strongly hypoenergetic k-cyclic graphs. We first show that there exist hypoenergetic and strongly hypoenergetic k-cyclic graphs of order n and maximum degree Δ for all (suitable large) n and Δ. Then we show that for $\Delta \geq 4$ there exist hypoenergetic unicyclic, bicyclic and tricyclic graphs for all n except very few small values of n. For $\Delta \leq 3$ we show that $K_{2,3}$ is the unique hypoenergetic graph among all unicyclic and bicyclic graphs.

1 Introduction

Let G be a simple graph with n vertices and m edges. The cyclomatic number of a connected graph is defined as $c(G)=m-n+1$. A graph G with $c(G)=k$ is called a k-cyclic graph. Denote by Δ the maximum degree of a graph. The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of the adjacency matrix $A(G)$ of G are said to be the eigenvalues of the

[^0]graph G. The nullity of G, denoted by $n_{0}(G)$ (or simply n_{0}), is the multiplicity of zero in the eigenvalues of G. The energy of G is defined as
$$
E=E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

For several classes of graphs it has been demonstrated that the energy exceeds the number of vertices (see, [8]). In 2007, Nikiforov [11] showed that for almost all graphs,

$$
E=\left(\frac{4}{3 \pi}+o(1)\right) n^{3 / 2}
$$

Thus the number of graphs satisfying the condition $E<n$ is relatively small. In [10], a hypoenergetic graph is defined to be a graph satisfying $E<n$. In [13], a strongly hypoenergetic graph is defined to be a graph satisfying $E<n-1$. For hypoenergetic trees, Gutman et al. [9] obtained the following results.

Lemma 1.1. [9] (a) There exist hypoenergetic trees of order n with maximum degree $\Delta \leq 3$ only for $n=1,3,4,7$ (a single such tree for each value of n, see Figure 1); (b) If $\Delta=4$, then there exist hypoenergetic trees for all $n \geq 5$, such that $n \equiv k(\bmod 4)$, $k=0,1,3$; (c) If $\Delta \geq 5$, then there exist hypoenergetic trees for all $n \geq \Delta+1$.

Figure 1: The hypoenergetic trees with maximum degree at most 3.

And the authors [9] proposed the following conjecture.
Conjecture 1.2. [9] There exist hypoenergetic trees of order n with $\Delta=4$ for any $n \equiv 2(\bmod 4), n>2$. Consequently, there exist hypoenergetic trees of order n with $\Delta=4$ for all $n \geq 5$.

We will give a very simple proof to this conjecture later, and therefore, Lemma 1.1 is extended to the following result.

Lemma 1.3. (a) There exist hypoenergetic trees of order n with maximum degree $\Delta \leq 3$ only for $n=1,3,4,7$ (a single such tree for each value of n, see Figure 1); (b) If $\Delta \geq 4$, then there exist hypoenergetic trees for all $n \geq \Delta+1$.

For hypoenergetic unicyclic and bicyclic graphs, You and Liu [14] obtained the following results.

Lemma 1.4. [14] (1) There exist hypoenergetic unicyclic graphs for all $n \geq 7$; (2) If n is even and $\Delta \in\left[\frac{n}{2}, n-1\right]$ or n is odd and $\Delta \in\left[\frac{n+1}{2}, n-1\right]$, then there exist hypoenergetic unicyclic graphs with maximum degree Δ for all $n \geq 9$.

Lemma 1.5. [14] (1) There exist hypoenergetic bicyclic graphs for all $n \geq 8$; (2) If n is even and $\Delta \in\left[\frac{n}{2}+1, n-1\right]$ or n is odd and $\Delta \in\left[\frac{n+1}{2}, n-1\right]$, then there exist hypoenergetic bicyclic graphs with maximum degree Δ for all $n \geq 9$.

Recently, You, Liu and Gutman [15] considered hypoenergetic tricyclic and k cyclic graphs, they obtained the following results.

Lemma 1.6. [15] (1) There exist hypoenergetic tricyclic graphs for all $n \geq 8$; (2) If n is even and $\Delta \in\left[\frac{n}{2}+1, n-1\right]$ or n is odd and $\Delta \in\left[\frac{n+3}{2}, n-1\right]$, then there exist hypoenergetic tricyclic graphs with maximum degree Δ for all $n \geq 10$.

Lemma 1.7. [15] There exist hypoenergetic k-cyclic graphs for any k.
In this paper, we consider hypoenergetic and strongly hypoenergetic k-cyclic graphs with order n and maximum degree Δ. In Section 2, we will show that for any given k three exist hypoenergetic and strongly hypoenergetic k-cyclic graphs of order n and maximum degree Δ for all (suitable large) n and Δ. In Sections 3-5, we consider hypoenergetic unicyclic, bicyclic and tricyclic graphs, respectively. We obtain that for $\Delta \geq 4$ there exist hypoenergetic unicyclic, bicyclic and tricyclic graphs for all n except very few small values of n. For $\Delta \leq 3$ we show that $K_{2,3}$ is the unique hypoenergetic graph among all unicyclic and bicyclic graphs. These results greatly extend the results in Lemmas 1.4-1.6.

2 Hypoenergetic and strongly hypoenergetic k-cyclic graphs

The following results are need in the sequel.
Lemma 2.1. [7] Let G be a graph with n vertices and m edges. If the nullity of G is n_{0}, then $E(G) \leq \sqrt{2 m\left(n-n_{0}\right)}$.

Lemma 2.2. [1] Suppose that G is a simple graph on n vertices without isolated vertex. Then
(1) $n_{0}(G)=n-2$ if and only if G is isomorphic to a complete bipartite graph $K_{n_{1}, n_{2}}$, where $n_{1}+n_{2}=n, n_{1}, n_{2}>0$.
(2) $n_{0}(G)=n-3$ if and only if G is isomorphic to a complete tripartite graph $K_{n_{1}, n_{2}, n_{3}}$, where $n_{1}+n_{2}+n_{3}=n, n_{1}, n_{2}, n_{3}>0$.

Lemma 2.3. [4] Let v be a pendent vertex of a graph G and u be the vertex in G adjacent to v. Then $n_{0}(G)=n_{0}(G-u-v)$, where $G-u-v$ is the induced subgraph of G obtained by deleting u and v.

Figure 2: The Graphs $H_{1}\left(k, n_{1}, n_{2}\right)$ and $H_{2}\left(k, n_{1}, n_{2}\right)$.

Let $H_{i}\left(k, n_{1}, n_{2}\right)(i=1,2)$ (or simply $\left.H_{i}\right)$ be the graph of order n given in Figure 2 , where $k \geq 1, n_{1} \geq 0, n_{2} \geq 0$. Obviously, H_{1} and H_{2} are k-cyclic graphs, and $\left|V\left(H_{1}\right)\right| \geq k+2,\left|V\left(H_{2}\right)\right| \geq k+3$. If $n_{1}=n_{2}=0$, then $n_{0}\left(H_{1}\right)=n-3, n_{0}\left(H_{2}\right)=n-2$ by Lemma 2.2; otherwise $n_{0}\left(H_{1}\right)=n_{0}\left(H_{2}\right)=n-4$ by Lemma 2.3. Hence we have $n_{0}\left(H_{1}\right) \geq n-4$ and $n_{0}\left(H_{2}\right) \geq n-4$.

By Lemma 2.1, we have

$$
E\left(H_{i}\right) \leq \sqrt{2 m\left(n-n_{0}\right)}=\sqrt{2(n+k-1)\left(n-n_{0}\right)} \leq \sqrt{8(n+k-1)}
$$

If

$$
\begin{equation*}
\sqrt{8(n+k-1)}<n, \tag{1}
\end{equation*}
$$

then H_{i} is hypoenergetic. Inequality (1) can be transformed into $(n-4)^{2}-8 k-8>0$, which are obeyed by all $n>4+\sqrt{8(k+1)}$. It is easy to check that

$$
\max \{k+1,4+\sqrt{8(k+1)}\}= \begin{cases}4+\sqrt{8(k+1)}, & \text { if } 1 \leq k \leq 13 \\ k+1, & \text { if } k \geq 14\end{cases}
$$

and

$$
\max \{k+2,4+\sqrt{8(k+1)}\}=\left\{\begin{array}{ll}
4+\sqrt{8(k+1)}, & \text { if } 1 \leq k \leq 12 \\
k+2, & \text { if } k \geq 13
\end{array} .\right.
$$

Hence we have the following
Lemma 2.4. (1) If $n>\max \{k+1,4+\sqrt{8(k+1)}\}= \begin{cases}4+\sqrt{8(k+1)}, & \text { if } 1 \leq k \leq 13 \\ k+1, & \text { if } k \geq 14\end{cases}$ then H_{1} is hypoenergetic.
(2) If $n>\max \{k+2,4+\sqrt{8(k+1)}\}=\left\{\begin{array}{ll}4+\sqrt{8(k+1)}, & \text { if } 1 \leq k \leq 12 \\ k+2, & \text { if } k \geq 13\end{array}\right.$, then H_{2} is hypoenergetic.

Notice that the inequality $\sqrt{8(k+1)} \leq k+3$ holds for any $k \geq 1$, so we have the following

Theorem 2.5. There exist hypoenergetic k-cyclic graphs for all $n \geq k+8$.
If

$$
\begin{equation*}
\sqrt{8(n+k-1)}<n-1 \tag{2}
\end{equation*}
$$

then H_{i} is strongly hypoenergetic. Inequality (2) can be transformed into $(n-5)^{2}-$ $8 k-16>0$, which are obeyed by all $n>5+\sqrt{8(k+2)}$. It is easy to check that

$$
\max \{k+1,5+\sqrt{8(k+2)}\}= \begin{cases}5+\sqrt{8(k+2)}, & \text { if } 1 \leq k \leq 15 \\ k+1, & \text { if } k \geq 16\end{cases}
$$

and

$$
\max \{k+2,5+\sqrt{8(k+2)}\}=\left\{\begin{array}{ll}
5+\sqrt{8(k+2)}, & \text { if } 1 \leq k \leq 14 \\
k+2, & \text { if } k \geq 15
\end{array} .\right.
$$

Hence we have the following
Lemma 2.6. (1) If $n>\max \{k+1,5+\sqrt{8(k+2)}\}= \begin{cases}5+\sqrt{8(k+2)}, & \text { if } 1 \leq k \leq 15 \\ k+1, & \text { if } k \geq 16\end{cases}$ then H_{1} is strongly hypoenergetic.
(2) If $n>\max \{k+2,5+\sqrt{8(k+2)}\}=\left\{\begin{array}{ll}5+\sqrt{8(k+2)}, & \text { if } 1 \leq k \leq 14 \\ k+2, & \text { if } k \geq 15\end{array}\right.$, then H_{2} is strongly hypoenergetic.

In the following, we consider hypoenergetic and strongly hypoenergetic k-cyclic graphs with order n and maximum degree Δ.

Theorem 2.7. (1) If $n-k$ is even and $\Delta \in\left[\frac{n+k}{2}, n-1\right]$ or $n-k$ is odd and $\Delta=n-1$, then there exist hypoenergetic k-cyclic graphs of order n with maximum degree Δ for all $n>\max \{k+1,4+\sqrt{8(k+1)}\}$.
(2) If $n-k$ is odd and $\Delta \in\left[\frac{n+k-1}{2}, n-2\right]$, then there exist hypoenergetic k-cyclic graphs of order n with maximum degree Δ for all $n>\max \{k+2,4+\sqrt{8(k+1)}\}$.

Proof. Suppose $n-k$ is even and $\Delta \in\left[\frac{n+k}{2}, n-1\right]$ or $n-k$ is odd and $\Delta=n-1$. Let $G=H_{1}(k, \Delta-k-1, n-\Delta-1)$, then by Lemma $2.4, G$ is hypoenergetic when $n>\max \{k+1,4+\sqrt{8(k+1)}\}$.

Suppose $n-k$ is odd and $\Delta \in\left[\frac{n+k-1}{2}, n-2\right]$. Let $G=H_{2}(k, \Delta-k-1, n-\Delta-2)$, then by Lemma 2.4, G is hypoenergetic when $n>\max \{k+2,4+\sqrt{8(k+1)}\}$. The proof is then complete.

By Lemma 2.6, similar to the proof of Theorem 2.7, we can obtain
Theorem 2.8. (1) If $n-k$ is even and $\Delta \in\left[\frac{n+k}{2}, n-1\right]$ or $n-k$ is odd and $\Delta=n-1$, then there exist strongly hypoenergetic k-cyclic graphs of order n with maximum degree Δ for all $n>\max \{k+1,5+\sqrt{8(k+2)}\}$.
(2) If $n-k$ is odd and $\Delta \in\left[\frac{n+k-1}{2}, n-2\right]$, then there exist strongly hypoenergetic k cyclic graphs of order n with maximum degree Δ for all $n>\max \{k+2,5+\sqrt{8(k+2)}\}$.

In order to prove Conjecture 1.2 and extend the interval for Δ in Theorem 2.7, we need the following notations and preliminary results, which can be found in [13]. Let G and H be two graphs with disjoint vertex sets, and let $u \in V(G)$ and $v \in V(H)$. Construct a new graph $G \circ H$ from copies of G and H, by identifying the vertices u and v. Thus $|V(G \circ H)|=|V(G)|+|V(H)|-1$. The graph $G \circ H$ is known as the coalescence of G and H with respect to u and v.

Lemma 2.9. [13] Let G, H and $G \circ H$ be graphs as specified above. Then $E(G \circ H) \leq$ $E(G)+E(H)$. Equality is attained if and only if either u is an isolated vertex of G or v is an isolated vertex of H or both.

Lemma 2.10. [13] Let G, H and $G \circ H$ be graphs as specified above. If G is strongly hypoenergetic and H is hypoenergetic (or vice versa), then $G \circ H$ is hypoenergetic.

Proof of Conjecture 1.2. Suppose $n \equiv 2(\bmod 4)$, $n>2$. If $n=6$, then by [3] (Table 2), there exists a unique tree T_{6} of order 6 with $\Delta=4$, and $E\left(T_{6}\right)=5.818<6$, i.e., T_{6} is hypoenergetic. Let S_{5} be the 5-vertex star, then $\Delta\left(S_{5}\right)=4$ and $E\left(S_{5}\right)=4$. Let u be a leaf vertex in T_{6} and v be a leaf vertex in S_{5}. Then by Lemma 2.9, for the
coalescence $T_{10}=T_{6} \circ S_{5}$ of T_{6} and S_{5} with respect to u and v, we have $E\left(T_{10}\right)<10$. Obviously, T_{10} is a tree of order 10 with $\Delta=4$. By consecutively doing the coalescence operations $\left(\cdots\left(\left(T_{6} \circ S_{5}\right) \circ S_{5}\right) \cdots\right) \circ S_{5}$, we can construct hypoenergetic trees with $\Delta=4$ for any $n \geq 10$ such that $n \equiv 2(\bmod 4)$. The proof is thus complete.

Theorem 2.11. (1) If $n-k$ is even and $\max \left\{\frac{2 k+1}{2}, \frac{5+k+\sqrt{8(k+2)}}{2}\right\}<\Delta \leq n-1$, then there exist hypoenergetic k-cyclic graphs of order n with maximum degree Δ for all $n>\max \{k+3,7+\sqrt{8(k+2)}\}$.
(2) If $n-k$ is odd and $\max \left\{\frac{2 k+1}{2}, \frac{4+k+\sqrt{8(k+2)}}{2}\right\}<\Delta \leq n-1$, then there exist hypoenergetic k-cyclic graphs of order n with maximum degree Δ for all $n>\max \{k+$ $4,7+\sqrt{8(k+2)}\}$.

Proof. (1) Suppose $n-k$ is even. By Theorem 2.7, we may assume that $\Delta \leq \frac{n+k}{2}-1$. Let $G=H_{1}(k, \Delta-k-1, \Delta-k-1)$, then $|V(G)|=2 \Delta-k \leq n-2$. Since $|V(G)|=2 \Delta-k>\max \{k+1,5+\sqrt{8(k+2)}\}, G$ is strongly hypoenergetic by Lemma 2.6.

Let H be a hypoenergetic tree of order $n-2 \Delta+k+1$ with $\Delta=4$ if $n-2 \Delta+k+1 \geq 5$ and S_{3} if $n-2 \Delta+k+1=3$ (Such an H does exist by Lemma 1.3). Let u be a vertex of degree 2 in G, v a leaf vertex in H and $G \circ H$ be the coalescence of G and H with respect to u and v. Since $\Delta>\max \left\{\frac{2 k+1}{2}, \frac{5+k+\sqrt{8(k+2)}}{2}\right\}$, we have $\Delta \geq 4$. Hence $G \circ H$ is a k-cyclic graph of order n with maximum degree Δ. By Lemma 2.10, $G \circ H$ is hypoenergetic.
(2) Suppose $n-k$ is odd. By Theorem 2.7, we may assume that $\Delta \leq \frac{n+k-1}{2}-1$. Let $G=H_{2}(k, \Delta-k-1, \Delta-k-1)$, then $|V(G)|=2 \Delta-k+1 \leq n-2$. Since $|V(G)|=2 \Delta-k+1>\max \{k+2,5+\sqrt{8(k+2)}\}, G$ is strongly hypoenergetic by Lemma 2.6.

Let H be a hypoenergetic tree of order $n-2 \Delta+k$ with $\Delta=4$ if $n-2 \Delta+k \geq 5$ and S_{3} if $n-2 \Delta+k=3$. Let u be a vertex of degree 2 in G, v a leaf vertex in H and $G \circ H$ be the coalescence of G and H with respect to u and v. Since $\Delta>\max \left\{\frac{2 k+1}{2}, \frac{4+k+\sqrt{8(k+2)}}{2}\right\}$, we have $\Delta \geq 4$. Hence $G \circ H$ is a k-cyclic graph of order n with maximum degree Δ. By Lemma $2.10, G \circ H$ is hypoenergetic.

Similar to the proof of Conjecture 1.2, we can obtain the following result, which provides a useful method to construct more hypoenergetic k-cyclic graphs.

Theorem 2.12. If there exist a t-vertex hypoenergetic k-cyclic graph with $\Delta \geq 4$ and at least a vertex of degree at most $\Delta-1$, then there exist hypoenergetic k-cyclic graphs with Δ for all $n \geq t$, such that $n \equiv t(\bmod 4)$.

3 Hypoenergetic unicyclic graphs

This section is devoted to finding more hypoenergetic unicyclic graphs, greatly extending the results in [14].

Lemma 3.1. [14] If $n \leq 6$, then there do not exist any hypoenergetic unicyclic graphs.
Lemma 3.2. If n is even and $\Delta \in[5, n-1]$ or n is odd and $\Delta \in[6, n-1]$, then there exist hypoenergetic unicyclic graphs of order n with maximum degree Δ for all $n \geq 9$.

Proof. Notice that when $k=1$, we have that $n>\max \{k+2,4+\sqrt{8(k+1)}\}$ implies $n \geq 9, n>\max \{k+4,7+\sqrt{8(k+2)}\}$ implies $n \geq 12, \Delta>\max \left\{\frac{2 k+1}{2}, \frac{5+k+\sqrt{8(k+2)}}{2}\right\}$ implies $\Delta \geq 6$ and $\Delta>\max \left\{\frac{2 k+1}{2}, \frac{4+k+\sqrt{8(k+2)}}{2}\right\}$ implies $\Delta \geq 5$. Hence the result follows from Theorem 2.7 for $9 \leq n \leq 11$ and from Theorem 2.11 for $n \geq 12$.

$U_{11,4}$

$U_{17,4}$

Figure 3: Graphs $U_{11,5}, U_{11,4}, U_{14,4}$ and $U_{17,4}$.
Table 1

n	Δ	$E\left(U_{n, \Delta}\right)$	n	Δ	$E\left(U_{n, \Delta}\right)$	n	Δ	$E\left(U_{n, \Delta}\right)$
7	5	6.89898	8	6	7.39104	11	5	10.58501
7	6	6.64681	8	7	7.07326	14	4	13.90827
8	4	7.72741	9	5	8.24621	17	4	16.96885
8	5	7.65069	11	4	10.87716			

In the following, we consider the case $4 \leq \Delta \leq 7$. Let $U_{7,5}=H_{2}(1,3,0), U_{7,6}=$ $H_{1}(1,4,0), U_{8,4}=H_{2}(1,2,2), U_{8,5}=H_{2}(1,3,1), U_{8,6}=H_{2}(1,4,0), U_{8,7}=H_{1}(1,5,0)$ and $U_{9,5}=H_{2}(1,3,2)$. Let $U_{11,5}, U_{11,4}, U_{14,4}$ and $U_{17,4}$ be the graphs given in Figure 3. Obviously, these graphs $U_{n, l}$ are hypoenergetic unicyclic graphs of order n with
$\Delta=l$ by Table 1. Since $U_{8,4}, U_{11,4}, U_{14,4}, U_{17,4}, U_{9,5}$ and $U_{11,5}$ are hypoenergetic, by Theorem 2.12, we can obtain

Lemma 3.3. (1) If $\Delta=4$, then there exist hypoenergetic unicyclic graphs of order n for all $n=8,11,12$ and $n \geq 14$; (2) If $\Delta=5$, then there exist hypoenergetic unicyclic graphs of order n for all odd $n \geq 9$.

Combining Lemmas 3.2, 3.3 and Table 1, we can obtain
Theorem 3.4. If (a) $n=8,11,12$ or $n \geq 14$ and $\Delta=4$ or (b) $n \geq 7$ and $\Delta \in$ $[5, n-1]$, then there exist hypoenergetic unicyclic graphs with order n and maximum degree Δ.

When $n \leq 6$, by Lemma 3.1, there exist no hypoenergetic unicyclic graphs. By [2], there are 12 unicyclic graphs with $n=7$ and $\Delta=4$. In these graphs, the minimal energy is $E=7.1153>n=7$, and the extremal graph is $H_{2}(1,1,2)$. We can also show that there are no hypoenergetic unicyclic graphs with $n=9$ or 10 and $\Delta=4$. Thus, $n=13$ is the only case for which we can not determine whether or not there exist hypoenergetic unicyclic graphs of order $n=13$ and $\Delta=4$. But we can show that there are no hypoenergetic unicyclic graphs with $n=13, \Delta=4$ and girth $g \geq 7$. The details are tedious and hence omitted.

In the end of this section, we consider the remaining case $\Delta \leq 3$. The following results are needed.

Lemma 3.5. [12] Let G be a graph of order n with at least n edges and with no isolated vertices. If G is quadrangle-free and $\Delta(G) \leq 3$, then $E(G)>n$.

Lemma 3.6. [6] If F is an edge cut of a simple graph G, then $E(G-F) \leq E(G)$, where $G-F$ is the subgraph obtained from G by deleting the edges in F.

Lemma 3.7. If there exists an edge cut F of a connected graph G such that $G-F$ has two components G_{1} and G_{2}, and both G_{1} and G_{2} are non-hypoenergetic, then G is non-hypoenergetic.

Proof. It follows from Lemma 3.6 that

$$
E(G) \geq E(G-F)=E\left(G_{1}\right)+E\left(G_{2}\right) \geq\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|=n
$$

which completes the proof.

Theorem 3.8. There does not exist any hypoenergetic unicyclic graph with $\Delta \leq 3$.
Proof. Let G be an n-vertex unicyclic graph with $\Delta \leq 3$. We will show that G is non-hypoerergetic. If $n \leq 6$, then G is non-hypoenergetic by Lemma 3.1. If G is quadrangle-free, then G is non-hypoenergetic by Lemma 3.5. So in the following we assume that $n \geq 7$ and G contains a quadrangle $C=x_{1} x_{2} x_{3} x_{4} x_{1}$. We only need to consider the following four cases:

Case 1. There exists an edge e on C such that the end vertices of e are of degree 2.

Without loss of generality, we assume that $d\left(x_{1}\right)=d\left(x_{4}\right)=2$. Let $F=\left\{x_{1} x_{2}, x_{4} x_{3}\right\}$, then $G-F$ has two components, say G_{1} and G_{2}, where G_{1} is the tree of order 2 with $x_{1} \in V\left(G_{1}\right)$ and G_{2} is a tree of order at least 5 since $n \geq 7$. Since $\Delta(G) \leq 3, G_{2}$ can not be isomorphic to W. Therefore G_{1}, G_{2} are non-hypoenergetic by Lemma 1.1 (a). The result follows from Lemma 3.7.

Case 2. There exist exactly two nonadjacent vertices x_{i} and x_{j} on C such that $d\left(x_{i}\right)=d\left(x_{j}\right)=2$.

Without loss of generality, we assume that $d\left(x_{2}\right)=d\left(x_{4}\right)=2, d\left(x_{1}\right)=d\left(x_{3}\right)=3$. Let y_{3} be the adjacent vertex outside C of x_{3}. Then $G-x_{3} y_{3}$ has two components, say G_{1} and G_{2}, where G_{1} is a unicyclic graph and G_{2} is a tree. Notice that G_{1} is non-hypoenergetic by Case 1 . If $G_{2} \neq S_{1}, S_{3}, S_{4}, W$, then we are finished by Lemmas 1.1 (a) and 3.7. So we only need to consider the following four cases.

Subcase 2.1. $G_{2} \cong S_{1}$.
Let $F=\left\{x_{2} x_{3}, x_{3} x_{4}\right\}$, then $G-F$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{1}^{\prime} is a tree of order at least 4 and G_{2}^{\prime} is a tree of order 2. If $G_{1}^{\prime} \not \not S_{4}, W$, then we are finished by Lemmas 1.1 (a) and 3.7. If $G_{1}^{\prime} \cong S_{4}$, then $n=6$, a contradiction. If $G_{1}^{\prime} \cong W$, then G must be the graph as given in Figure 4 (a), by direct computing, we have $E(G)=9.78866>9=n$.

Subcase 2.2. $G_{2} \cong S_{3}$.
Then G must have the structure as given in Figure 4 (b) or (c). In the former case, $G-y_{3} z$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{1}^{\prime} is a unicyclic graph and G_{2}^{\prime} is a tree of order 2. It follows from Subcase 2.1 that G_{1}^{\prime} is non-hypoenergetic. Therefore we are finished by Lemmas 1.1 (a) and 3.7. In the latter case, $G-\left\{x_{1} x_{2}, x_{4} x_{3}\right\}$ has

Figure 4: The graphs in the proof of Theorem 3.8.
two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{1}^{\prime} is a tree of order at least 3 and G_{2}^{\prime} is a tree of order 5 . If $G_{1}^{\prime} \not \not S_{3}, S_{4}, W$, then we are finished by Lemmas 1.1 (a) and 3.7. Since $\Delta(G) \leq 3, G_{1}^{\prime}$ can not be isomorphic to S_{4} or W. If $G_{1}^{\prime} \cong S_{3}$, then G must be the graph as given in Figure 4 (d), by direct computing, we have $E(G)=8.81463>8=n$.

Subcase 2.3. $G_{2} \cong S_{4}$.
Then G must have the structure as given in Figure $4(\mathrm{e})$. Let $F=\left\{x_{2} x_{3}, x_{3} x_{4}\right\}$, then $G-F$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{1}^{\prime} is a tree of order at least 4 and G_{2}^{\prime} is a tree of order 5. If $G_{1}^{\prime} \not \approx S_{4}, W$, then we are finished by Lemmas 1.1 (a) and 3.7. If $G_{1}^{\prime} \cong S_{4}$, then G must be the graph as given in Figure 4 (f), by direct computing, we have $E(G)=9.78866>9=n$. If $G_{1}^{\prime} \cong W$, then G must be the graph as given in Figure 4 (g). Now, $G-\left\{x_{1} x_{2}, x_{3} x_{4}\right\}$ has two components, say $G_{1}^{\prime \prime}$ and $G_{2}^{\prime \prime}$,
where $G_{i}^{\prime \prime}$ is a tree of order $6, i=1,2$. Therefore we are finished by Lemmas 1.1 (a) and 3.7.

Subcase 2.4. $G_{2} \cong W$.
Then G must have the structure as given in Figure 4 (h) or (i). In the former case, $G-y_{3} z$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{1}^{\prime} is a unicyclic graph and G_{2}^{\prime} is a tree of order 6. It follows from Subcase 2.1 that G_{1}^{\prime} is non-hypoenergetic. Therefore we are finished by Lemmas 1.1 (a) and 3.7. In the latter case, $G-\left\{x_{2} x_{3}, x_{3} x_{4}\right\}$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{1}^{\prime} is a tree of order at least 4 and G_{2}^{\prime} is a tree of order 8. If $G_{1}^{\prime} \neq S_{4}, W$, then we are finished by Lemmas 1.1 (a) and 3.7. If $G_{1}^{\prime} \cong S_{4}$, then G must be the graph as given in Figure $4(\mathrm{j})$, by direct computing, we have $E(G)=13.05749>12=n$. If $G_{1}^{\prime} \cong W$, then G must be the graph as given in Figure $4(\mathrm{k})$. Now, $G-\left\{x_{1} x_{2}, x_{3} x_{4}\right\}$ has two components, say $G_{1}^{\prime \prime}$ and $G_{2}^{\prime \prime}$, where $G_{1}^{\prime \prime}$ is a tree of order 6 and $G_{2}^{\prime \prime}$ is a tree of order 9 . Therefore we are finished by Lemmas 1.1 (a) and 3.7.

Case 3. There exists exactly one vertices x_{i} on C such that $d\left(x_{i}\right)=2$.
Without loss of generality, we assume that $d\left(x_{1}\right)=2$. Let $F=\left\{x_{1} x_{4}, x_{2} x_{3}\right\}$, then $G-F$ has two components, say G_{1} and G_{2}, where G_{1} is the tree of order at least 3 with $x_{1} \in V\left(G_{1}\right)$ and G_{2} is a tree of order at least 4. Since $\Delta(G) \leq 3, G_{1}, G_{2}$ can not be isomorphic to S_{4} or W. So if $G_{1} \not \approx S_{3}$, then we are finished by Lemmas 1.1 (a) and 3.7. If $G_{1} \cong S_{3}$, then $G-\left\{x_{1} x_{2}, x_{2} x_{3}\right\}$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{1}^{\prime} is the tree of order at least 5 with $x_{1} \in V\left(G_{1}^{\prime}\right)$ and G_{2}^{\prime} is a tree of order 2. If $G_{1}^{\prime} \not \neq W$, then we are finished by Lemmas 1.1 (a) and 3.7. If $G_{1}^{\prime} \cong W$, then G must be the graph as given in Figure 4 (l), by direct computing, we have $E(G)=9.80028>9=n$.

Case 4. $d\left(x_{1}\right)=d\left(x_{2}\right)=d\left(x_{3}\right)=d\left(x_{4}\right)=3$.
Let $F=\left\{x_{1} x_{4}, x_{2} x_{3}\right\}$, then $G-F$ has two components, say G_{1} and G_{2}, where G_{1} and G_{2} are trees of order at least 4 and it is easy to check that G_{1}, G_{2} can not be isomorphic to S_{4} or W. Therefore we are finished by Lemmas 1.1 (a) and 3.7. The proof is thus complete.

4 Hypoenergetic bicyclic graphs

This section is devoted to finding more hypoenergetic bicyclic graphs, also greatly extending corresponding results in [14].

Lemma 4.1. [14] If $n=4,6,7$, then there do not exist any hypoenergetic bicyclic graphs.

Lemma 4.2. If n is even and $\Delta \in[7, n-1]$ or n is odd and $\Delta \in[6, n-1]$, then there exist hypoenergetic bicyclic graphs of order n with maximum degree Δ for all $n \geq 9$.

Proof. Notice that when $k=2$, we have that $n>\max \{k+2,4+\sqrt{8(k+1)}\}$ implies $n \geq 9, n>\max \{k+4,7+\sqrt{8(k+2)}\}$ implies $n \geq 13, \Delta>\max \left\{\frac{2 k+1}{2}, \frac{5+k+\sqrt{8(k+2)}}{2}\right\}$ implies $\Delta \geq 7$ and $\Delta>\max \left\{\frac{2 k+1}{2}, \frac{4+k+\sqrt{8(k+2)}}{2}\right\}$ implies $\Delta \geq 6$. Hence the result follows from Theorem 2.7 for $9 \leq n \leq 12$ and from Theorem 2.11 for $n \geq 13$.

Figure 5: Graphs $B_{9,4}, B_{10,5}, B_{11,5}, B_{16,4}, B_{18,4}$ and $B_{19,4}$.

Table 2

n	Δ	$E\left(B_{n, \Delta}\right)$	n	Δ	$E\left(B_{n, \Delta}\right)$	n	Δ	$E\left(B_{n, \Delta}\right)$
8	5	7.90778	9	5	8.48528	16	4	15.77861
8	6	7.74597	10	5	9.25036	18	4	17.94188
8	7	7.68165	10	6	8.98112	19	4	18.87354
9	4	8.75560	11	5	10.74799			

In the following, we consider the case $4 \leq \Delta \leq 7$. Let $B_{8,5}=H_{2}(2,1,2), B_{8,6}=$ $H_{2}(2,0,3), B_{8,7}=H_{1}(2,0,4), B_{9,5}=H_{2}(2,2,2)$ and $B_{10,6}=H_{2}(2,2,3)$. Let $B_{10,5}$, $B_{11,5}, B_{9,4}, B_{16,4}, B_{18,4}$ and $B_{19,4}$ be the graphs given in Figure 5. Obviously, these graphs $B_{n, l}$ are hypoenergetic bicyclic graphs of order n with $\Delta=l$ by Table 2. By Theorem 2.12, we can obtain

Lemma 4.3. (1) If $\Delta=4$, then there exist hypoenergetic bicyclic graphs of order n for all $n=9,13$ and $n \geq 16$; (2) If $\Delta=5$, then there exist hypoenergetic bicyclic graphs of order n for all $n \geq 8$; (3) If $\Delta=6$, then there exist hypoenergetic bicyclic graphs of order n for all even $n \geq 8$.

Combining Lemmas 4.2, 4.3 and Table 2, we can obtain
Theorem 4.4. If (a) $n=9,13$ or $n \geq 16$ and $\Delta=4$ or (b) $n \geq 8$ and $\Delta \in[5, n-1]$, then there exist hypoenergetic bicyclic graphs with order n and maximum degree Δ.

When $n=4,6,7$, by Lemma 4.1, there exist no hypoenergetic bicyclic graphs. By [3] (Table 1), there are two bicyclic graphs with $n=5$ and $\Delta=4$, and the minimal energy is $E=6.04090>n=5$, and the extremal graph is $H_{1}(2,0,1)$. Thus, for $\Delta=4, n=8,10,11,12,14,15$ are the only few cases for which we can not determine whether or not there exist hypoenergetic bicyclic graphs. One can employ a computer to determine them easily.

In the end of this section, we consider the remaining case $\Delta \leq 3$.
Theorem 4.5. Complete bipartite graph $K_{2,3}$ is the only hypoenergetic bicyclic graphs with $\Delta \leq 3$.

Proof. Let G be an n-vertex bicyclic graphs with $\Delta \leq 3$. If $n=4,6,7$, then G is nonhypoenergetic by Lemma 4.1. If $n=5$, by [3] (Table 1), there are three bicyclic graphs with $\Delta \leq 3$, and $K_{2,3}$ is the only hypoenergetic graph with $E\left(K_{2,3}\right)=4.8990$. If G is quadrangle-free, then G is non-hypoenergetic by Lemma 3.5. So in the following we assume that G contains a quadrangle, $G \not \not K_{2,3}$ and $n \geq 8$. We will show that G is non-hypoenergetic.

If the cycles in G are disjoint, then it is clear that there exists a path P connecting the two cycles in G. Obviously, for any edge e on $P, G-e$ has two components which are unicyclic graphs. Thus G is non-hypoenergetic by Lemma 3.7 and Theorem 3.8.

Otherwise, the cycles in G have two or more common vertices. Then we can assume that G contains a subgraph as given in Figure 6 (a), where P_{1}, P_{2}, P_{3} are paths in G.

Figure 6: The graphs in the proof of Theorem 4.5.

We distinguish the following three cases:
Case 1. At least one of P_{1}, P_{2} and P_{3}, say P_{2} has length not less than 3.
Let e_{1} and e_{2} be the edges on P_{2} incident with u and v, respectively. Then $G-\left\{e_{1}, e_{2}\right\}$ has two components, say G_{1} and G_{2}, where G_{1} is a unicyclic graph and G_{2} is a tree of order at least 2. It follows from Theorem 3.8 that G_{1} is nonhypoenergetic. If $G_{2} \not \neq S_{3}, S_{4}, W$, then we are finished by Lemmas 1.1 (a) and 3.7. So we only need to consider the following three cases:

Subcase 1.1. $G_{2} \cong S_{3}$.

Then G must have the structure as given in Figure 6 (b) or (c). In either case, $G-\left\{e_{2}, e_{3}\right\}$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{1}^{\prime} is a unicyclic graph and G_{2}^{\prime} is a tree of order 2. By Theorem 3.8, G_{1}^{\prime} is non-hypoenergetic. Therefore the result follows from Lemmas 1.1 (a) and 3.7.

Subcase 1.2. $G_{2} \cong S_{4}$.
Then G must have the structure as given in Figure 6 (d). Obviously, $G-\left\{e_{3}, e_{4}\right\}$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{1}^{\prime} is a unicyclic graph and G_{2}^{\prime} is a tree of order 2. Therefore the result follows from Theorem 3.8, Lemmas 1.1 (a) and 3.7.

Subcase 1.3. $G_{2} \cong W$.
Then G must have the structure as given in Figure 6 (e), (f) or (g). Obviously, $G-\{x y, y z\}$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{1}^{\prime} is a unicyclic graph and G_{2}^{\prime} is a tree of order 5 or 2 . Therefore the result follows from Theorem 3.8, Lemmas 1.1 (a) and 3.7.

Case 2. All the paths P_{1}, P_{2} and P_{3} have length 2.
We assume that $P_{1}=u x v, P=u z v$ and $P_{2}=u y v$. Let $F=\{u y, v y\}$, then $G-F$ has two components, say G_{1} and G_{2}, where G_{1} is a unicyclic graph and G_{2} is a tree. It follows from Theorem 3.8 that G_{1} is non-hypoenergetic. If $G_{2} \not \neq S_{1}, S_{3}, S_{4}, W$, then we are finished by Lemmas 1.1 (a) and 3.7. So we only need to consider the following four cases.

Subcase 2.1. $G_{2} \cong S_{1}$.
Let $F^{\prime}=\{u y, z v, x v\}$, then $G-F^{\prime}$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{2}^{\prime} is the tree of order 2 with $y \in V\left(G_{2}^{\prime}\right), G_{1}^{\prime}$ is a tree of order at least 6 since $n \geq 8$. Since $\Delta(G) \leq 3, G_{1}^{\prime}$ can not be isomorphic to W. Therefore $G_{1}^{\prime}, G_{2}^{\prime}$ are non-hypoenergetic by Lemma 1.1 (a). The result follows from Lemma 3.7.

Subcase 2.2. $G_{2} \cong S_{3}$.
Then G must have the structure as given in Figure 6 (h). Let $F^{\prime}=\{u y, z v, x v\}$, then $G-F^{\prime}$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{2}^{\prime} is the path of order 4 with $y \in V\left(G_{2}^{\prime}\right), G_{1}^{\prime}$ is a tree of order at least 4 since $n \geq 8$. Since $\Delta(G) \leq 3, G_{1}^{\prime}$ can not be isomorphic to S_{4} or W. Therefore $G_{1}^{\prime}, G_{2}^{\prime}$ are non-hypoenergetic by Lemma 1.1 (a). The result follows from Lemma 3.7.

Subcase 2.3. $G_{2} \cong S_{4}$.

Then G must have the structure as given in Figure 6 (i). Let $F^{\prime}=\{u y, z v, x v\}$, then $G-F^{\prime}$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{2}^{\prime} is the tree of order 5 with $y \in V\left(G_{2}^{\prime}\right), G_{1}^{\prime}$ is a tree of order at least 3. Since $\Delta(G) \leq 3, G_{1}^{\prime}$ can not be isomorphic to S_{4} or W. If $G_{1}^{\prime} \neq S_{3}$, then we are finished by Lemmas 1.1 (a) and 3.7. If $G_{1}^{\prime} \cong S_{3}$, then G must be the graph as given in Figure $6(\mathrm{j})$, by direct computing, we have $E(G)=8.24621>8=n$.

Subcase 2.4. $G_{2} \cong W$.
Then G must have the structure as given in Figure $6(\mathrm{k})$. Let $F^{\prime}=\{u y, z v, x v\}$, then $G-F^{\prime}$ has two components, say G_{1}^{\prime} and G_{2}^{\prime}, where G_{2}^{\prime} is the tree of order 8 with $y \in V\left(G_{2}^{\prime}\right), G_{1}^{\prime}$ is a tree of order at least 3 . Since $\Delta(G) \leq 3, G_{1}^{\prime}$ can not be isomorphic to S_{4} or W. If $G_{1}^{\prime} \not \not S_{3}$, then we are finished by Lemmas 1.1 (a) and 3.7. If $G_{1}^{\prime} \cong S_{3}$, then G must be the graph as given in Figure 6 (l), by direct computing, we have $E(G)=11.60185>11=n$.

Case 3. One of the paths P_{1}, P_{2} and P_{3} has length 1 , and the other two paths have length 2.

Without loss of generality, we assume that $P_{1}=u x v, P=u v$ and $P_{2}=u y v$. Then similar to the proof of Case 2 , we can show that G is non-hypoenergetic. The proof is thus complete.

5 Hypoenergetic tricyclic graphs

This section is devoted to finding more hypoenergetic tricyclic graphs, greatly extending corresponding results in [15].

Lemma 5.1. [15] If $n=4,5,7$, then there do not exist any hypoenergetic tricyclic graphs.

Lemma 5.2. If n is even and $\Delta \in[7, n-1]$ or n is odd and $\Delta \in[8, n-1]$, then there exist hypoenergetic tricyclic graphs of order n with maximum degree Δ for all $n \geq 10$.

Proof. Notice that when $k=3$, we have that $n>\max \{k+2,4+\sqrt{8(k+1)}\}$ implies $n \geq 10, n>\max \{k+4,7+\sqrt{8(k+2)}\}$ implies $n \geq 14, \Delta>\max \left\{\frac{2 k+1}{2}, \frac{5+k+\sqrt{8(k+2)}}{2}\right\}$ implies $\Delta \geq 8$ and $\Delta>\max \left\{\frac{2 k+1}{2}, \frac{4+k+\sqrt{8(k+2)}}{2}\right\}$ implies $\Delta \geq 7$. Hence the result follows from Theorem 2.7 for $10 \leq n \leq 13$ and from Theorem 2.11 for $n \geq 14$.

Figure 7: Graphs $T_{9,5}, T_{10,5}, T_{11,5}, T_{12,5}, T_{11,6}, T_{13,4}, T_{16,4}$ and $T_{19,4}$.

Table 3

n	Δ	$E\left(T_{n, \Delta}\right)$	n	Δ	$E\left(T_{n, \Delta}\right)$	n	Δ	$E\left(T_{n, \Delta}\right)$
6	4	5.65685	9	8	8.50189	11	7	9.63287
8	6	7.91375	10	5	9.50432	12	5	11.50305
9	5	8.93180	10	6	9.15298	13	4	12.78001
9	6	8.59845	11	5	10.00000	16	4	15.90909
9	7	8.46834	11	6	10.94832	19	4	18.88809

In the following, we consider hypoenergetic tricyclic graphs with $4 \leq \Delta \leq 8$. Let $T_{6,4}=H_{2}(3,0,0), T_{8,6}=H_{2}(3,0,2), T_{9,6}=H_{2}(3,1,2), T_{9,7}=H_{2}(3,0,3), T_{9,8}=$ $H_{1}(3,0,4), T_{10,6}=H_{2}(3,2,2)$ and $T_{11,7}=H_{2}(3,2,3)$. Let $T_{9,5}, T_{10,5}, T_{11,5}, T_{12,5}, T_{11,6}$, $T_{13,4}, T_{16,4}$ and $T_{19,4}$ be the graphs given in Figure 7. Obviously, these graphs $T_{n, l}$ are hypoenergetic tricyclic graphs of order n with $\Delta=l$ by Table 3. By Theorem 2.12, we can obtain

Lemma 5.3. (1) If $\Delta=4$, then there exist hypoenergetic tricyclic graphs of order n for all $n=6,10,13,14$ and $n \geq 16$; (2) If $\Delta=5$, then there exist hypoenergetic tricyclic graphs of order n for all $n \geq 9$; (3) If $\Delta=6$, then there exist hypoenergetic tricyclic graphs of order n for all $n \geq 8$; (4) If $\Delta=7$, then there exist hypoenergetic tricyclic graphs of order n for all odd $n \geq 9$.

Combining Lemmas 5.2, 5.3 and Table 3, we can obtain

Theorem 5.4. If (a) $n=6,10,13,14$ or $n \geq 16$ and $\Delta=4$ or (b) $n \geq 8$ and $\Delta=6$ or (c) $n \geq 9$ and $\Delta=5$ or 7 or (d) $n \geq 9$ and $\Delta \in[8, n-1]$, then there exist hypoenergetic tricyclic graphs with order n and maximum degree Δ.

When $n=4,5,7$, by Lemma 5.1, there exist no hypoenergetic tricyclic graphs. By [5] (Table 1), there are four tricyclic graphs with $n=6$ and $\Delta=5$. In these graphs, the minimal energy is $E=6.89260>n=6$, and the extremal graph is $H_{1}(3,0,1)$. When $n=8$ and $\Delta=7$, it is easy to check that there are five tricyclic graphs, and the minimal energy is $E=8.04552>n=8$, the extremal graph is $H_{1}(3,0,3)$. We also can obtain that the minimal energy among all tricyclic graphs with $n=8$ and $\Delta=5$ is $E=8=n$, and the extremal graph is $H_{2}(3,1,1)$. Thus, for $\Delta=4$, $n=8,9,11,12,15$ are the only few cases for which we can not determine whether or not there exist hypoenergetic tricyclic graphs. One can employ a computer to determine them.

References

[1] B. Cheng, B. Liu, On the nullity of graphs, Electron. J. Lin. Algebra 16 (2007) 60-67.
[2] D. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam, 1988.
[3] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[4] D. Cvetković, I. Gutman, The algebraic multiplicity of the number zero in the spectrum of a bipartite graph, Mat. Vesnik 9 (1972) 141-150.
[5] D. Cvetković, M. Petrić, A table of connected graphs on six vertices, Discrete Math. 50 (1984) 37-49.
[6] J. Day, W. So, Graph energy change due to edge deletion, Lin. Algebra Appl. 428 (2008) 2070-2078.
[7] I. Gutman, Bounds for total π-electron energy of conjugated hydrocarbons, Z. Phys. Chem. (Leipzig) 266 (1985) 59-64.
[8] I. Gutman, On graphs whose energy exceeds the number of vertices, Lin. Algebra Appl. 429 (2008) 2670-2677.
[9] I. Gutman, X. Li, Y. Shi, J. Zhang, Hypoenergetic trees, MATCH Commun. Math. Comput. Chem. 60 (2009) 415-426.
[10] I. Gutman, S. Radenković, Hypoenergetic molecular graphs, Indian J. Chem. 46A (2007) 1733-1736.
[11] V. Nikiforov, Graphs and matrices with maximal energy, J. Math. Anal. Appl. 327 (2007) 735-738.
[12] V. Nikiforov, The energy of C_{4}-free graphs of bounded degree, Lin. Algebra Appl. 428 (2008) 2569-2573.
[13] W. So, M. Robbiano, N.M.M. de Abreu, I. Gutman, Applications of a theorem by Ky Fan in the theory of graph energy, Lin. Algebra Appl. (2009), doi:10.1016/j.laa.2009.01.006.
[14] Z. You, B. Liu, On hypoenergetic unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 479-486.
[15] Z. You, B. Liu, I. Gutman, Note on hypoenergetic graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 491-498.

[^0]: ${ }^{1}$ Supported by NSFC No.10831001, PCSIRT and the "973" program.
 ${ }^{2}$ Supported by NSFC No.10871166, NSFJS and NSFUJS.

