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Abstract

The main purposes of this paper are to introduce and investigate the Harary energy and Harary

Estrada index of a graph. In addition we establish upper and lower bounds for these new energy and

index separately.

1 Introduction and Preliminaries

Throughout this paper all graphs will be assumed simple that is without loops, mul-

tiple or directed edges. If G is such a graph with n-vertices and m-edges, then G will be

called (n,m)-graph.

Let the graph G be connected and let its vertices be labeled by v1, v2, . . . , vn. The

Harary matrix ([17]) of a graph G is defined as a square matrix H = H(G) =
[

1
dij

]
, where

dij is the distance (i.e. the length of the shortest path [1]) between the vertices vi and vj

in G. The eigenvalues of the Harary matrix H(G) are denoted by ρ1, ρ2, . . . , ρn and are
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said to be the H-eigenvalues of G. We note that since the Harary matrix is symmetric,

its eigenvalues are real and can be ordered as ρ1 ≥ ρ2 ≥ · · · ≥ ρn. We also note that the

lower and upper bounds for the maximum eigenvalue of Harary matrix of a graph G are

obtained in detail in [2, 24].

In [16], while the authors proved lower and upper bounds for the distance energy of

graphs whose diameter does not exceed two, in the paper [23], Ramane et. al. generalized

this result and obtained these lower and upper bounds for the distance energy of arbitrary

connected (n,m)-graphs. In the second section of this paper, by considering the papers

[13, 14, 16, 23], we will adapt the works on distance energy to introduce and study on

Harary energy. We recall that, in [13], the distance energy is defined similar to the graph

energy by

E = E(G) =

n∑
i=1

|λi|

where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix A(G) of a graph G. In

fact the reader can find so many works about E(G) in the literature. Therefore, by

considering this, we can define the Harary energy as

HE(G) =
n∑

i=1

|ρi| (1)

where ρ1, ρ2, . . . , ρn are eigenvalues of the Harary matrix.

In Section 3, a new index will be defined, namely Harary Estrada index and then will

be obtained lower and upper bounds for this new index.

Now let us present the following lemma as the first preliminary result.

Lemma 1.1 Let G be a connected (n,m)-graph and let ρ1, ρ2, . . ., ρn be its H-eigenvalues.

Then
n∑

i=1

ρi = 0

and
n∑

i=1

ρ2i = 2
∑

1≤i<j≤n

(
1

dij

)2

. (2)

Proof. We clearly have
n∑

i=1

ρi = trace[H(G)] =
n∑

i=1

1

dij
= 0 .
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Moreover, for i = 1, 2, . . . , n, the (i, i)-entry of [H(G)]2 is equal to

n∑
j=1

1

dij

1

dji
=

n∑
j=1

(
1

dij

)2

.

Hence
n∑

i=1

ρ2i = trace[H(G)]2 =
n∑

i=1

n∑
j=1

(
1

dij

)2

= 2
∑

1≤i<j≤n

(
1

dij

)2

as required.

We also have the following lemma that will be needed for obtaining the bounds of

Harary energy (in Section 2) and Harary Estrada index (in Section 3).

Lemma 1.2 Let G be a (n,m)-graph with diameter less than or equal to 2 and let its

eigenvalues be ρ1, ρ2, . . ., ρn. Then

n∑
i=1

ρ2i =
3m

2
+

n

4
(n− 1) .

Proof. In the Harary matrix H(G) of G, there are 2m elements equal to unit and

n(n− 1)− 2m elements equal to 1/2. Therefore

n∑
i=1

ρ2i =
n∑

i=1

(H(G)2)ii =
n∑

i=1

n∑
j=1

1

dij

1

dji

=
n∑

i=1

n∑
j=1

(
1

dij

)2

= (2m)12 + (n2 − n− 2m)

(
1

2

)2

and the lemma follows.

2 Bounds for the Harary energy

Let us consider the Harary energy HE(G) as defined in (1).

Theorem 2.1 If G is a connected (n,m)-graph, then√√√√2
∑

1≤i<j≤n

(
1

dij

)2

≤ HE(G) ≤
√√√√2n

∑
1≤i<j≤n

(
1

dij

)2

. (3)

Proof. In the Cauchy–Schwartz inequality(
n∑

i=1

aibi

)2

≤
(

n∑
i=1

a2i

)(
n∑

i=1

b2i

)
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if we choose ai = 1 and bi = |ρi|, then we get(
n∑

i=1

|ρi|
)2

≤ n

n∑
i=1

ρ2i

from which

HE(G)2 ≤ 2n
∑

1≤i<j≤n

(
1

dij

)2

.

Therefore this gives the upper bound for HE(G).

Now for the lower bound of HE(G), we can easily obtain the inequality

HE(G)2 =

(
n∑

i=1

|ρi|
)2

≥
n∑

i=1

|ρi|2 = 2
∑

1≤i<j≤n

(
1

dij

)2

which gives directly the required lower bound.

We should note that the second proof for the upper bound can be given as follows:

Consider the sum

S =

n∑
i=1

n∑
j=1

(|ρi| − |ρj|)2 .

By a direct calculation, we obtain

S = 2n
n∑

i=1

|ρi|2 − 2

(
n∑

i=1

|ρi|
n∑

j=1

|ρj|
)
.

It follows from (2) and the definition of HE(G) that

S = 4n
∑

1≤i<j≤n

(
1

dij

)2

− 2HE(G)2 .

Since S ≥ 0, we have HE(G) ≤
√
2n

∑
1≤i<j≤n

(1/dij)2 . Hence the result.

Corollary 2.2 If G is a connected (n,m)-graph, then HE(G) ≤ n
√
n− 1 .

Proof. Since dij ≥ 1 for i �= j and there are n(n − 1)/2 pairs of vertices in G, by the

upper bound of Theorem 2.1, we get

HE(G) ≤
√√√√2n

∑
1≤i<j≤n

(
1

dij

)2

≤
√

2n
n(n− 1)

2
= n

√
n− 1 .
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In [15, Theorem 1, Theorem 2], as a generalization, Gutman et. al. showed lower and

upper bounds for an energy-like quantity, EX say, and defined this by

EX =
n∑

i=1

|xi − x|

where x1, x2, . . . , xn are real numbers, and x is their arithmetic mean. Clearly, graph

energy, Laplacian energy and distance energy are the special cases of EX . In the following

result, as another special case of EX , we state and prove a lower and an upper bound for

the Harary energy HE(G).

Theorem 2.3 Let G be a connected (n,m)-graph and let Δ be the absolute value of the

determinant of the Harary matrix H(G). Then√√√√2
∑

1≤i<j≤n

(
1

dij

)2

+ n(n− 1)Δ2/n ≤ HE(G) ≤
√√√√2n

∑
1≤i<j≤n

(
1

dij

)2

.

Proof. In the light of Theorem 2.1, if we show the validity of the lower bound, then this

will finish the proof. We note that a lower bound for the graph energy is analogously

deduced in [20].

By the definition of Harary energy given in (1) and Equation (2), we have

HE(G)2 =

(
n∑

i=1

|ρi|
)2

=
n∑

i=1

|ρi|2 + 2
∑

1≤i<j≤n

|ρi||ρj|

= 2
∑

1≤i<j≤n

(
1

dij

)2

+ 2
∑

1≤i<j≤n

|ρi||ρj|

= 2
∑

1≤i<j≤n

(
1

dij

)2

+
∑
i�=j

|ρi||ρj| . (4)

Since, for nonnegative numbers, the arithmetic mean is not smaller than the geometric

mean, we then have

1

n(n− 1)

∑
i �=j

|ρi||ρj| ≥
(∏

i �=j

|ρi||ρj|
)1/n(n−1)

=

(
n∏

i=1

|ρi|2(n−1)

)1/n(n−1)

=
n∏

i=1

|ρi|2/n = Δ2/n . (5)

After that, by combining Equations (4) and (5), we obtain the required lower bound,

as required.

-285-



By using Equation (2), Lemma 1.2 and Theorem 2.3, we obtain the following corollary

of Theorem 2.3.

Corollary 2.4 Let G be a (n,m)-graph with diameter less than or equal to 2 and let Δ

be the absolute value of the determinant of its Harary matrix. Then√
3m

2
+

n

4
(n− 1) + n(n− 1)Δ2/n ≤ HE(G) ≤

√
n

(
3m

2
+

n

4
(n− 1)

)
.

Theorem 2.5 If G is a connected (n,m)-graph, then

HE(G) ≤ 2

n

∑
1≤i<j≤n

(
1

dij

)2

+

√√√√√(n− 1)

⎡⎣2 ∑
1≤i<j≤n

(
1

dij

)2

−
(
2

n

∑
1≤i<j≤n

(
1

dij

)2
)2
⎤⎦ . (6)

Proof. As it seen in the literature (see, for instance, [18, 19]), the standard procedure

can be applied to obtain such upper bounds. So the proof can be done as in the following.

By applying the Cauchy–Schwartz inequality to the two (n − 1) vectors (1, 1, . . . , 1)

and (|ρ1|, |ρ2|, . . . , |ρn|), we have(
n∑

i=2

|ρi|
)2

≤ (n− 1)

(
n∑

i=2

ρ2i

)

(HE(G)− ρ1)
2 ≤ (n− 1)

(
2

∑
1≤i<j≤n

(
1

dij

)2

− ρ21

)

HE(G) ≤ ρ1 +

√√√√(n− 1)

(
2

∑
1≤i<j≤n

(
1

dij

)2

− ρ21

)
.

Now let us define a function

f(x) = x+

√√√√(n− 1)

(
2

∑
1≤i<j≤n

(
1

dij

)2

− x2

)
.

In fact, by keeping in mind ρ1 ≥ 1, we set ρ1 = x. Using

n∑
i=2

ρ2i = 2
∑

1≤i<j≤n

(
1

dij

)2
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we get that

x2 = ρ21 ≤ 2
∑

1≤i<j≤n

(
1

dij

)2

.

In other words,

x ≤
√√√√2

∑
1≤i<j≤n

(
1

dij

)2

.

Meanwhile f ′(x) = 0 implies that

x =

√√√√ 2

n

∑
1≤i<j≤n

(
1

dij

)2

.

Therefore f is a decreasing function in the interval√√√√ 2

n

∑
1≤i<j≤n

(
1

dij

)2

≤ x ≤ 2

√√√√ ∑
1≤i<j≤n

(
1

dij

)2

and √√√√ 2

n

∑
1≤i<j≤n

(
1

dij

)2

≤ 2

n

∑
1≤i<j≤n

(
1

dij

)2

≤ ρ1 .

Hence

f(ρ1) ≤ f

(
2

n

∑
1≤i<j≤n

(
1

dij

)2
)

and so the inequality in (6) holds.

By Equation (2), Lemma 1.2 and Theorem 2.5, one can obtain the following conse-

quence result on Harary energy HE(G).

Corollary 2.6 Let G be a connected (n,m)-graph with diameter less than or equal to 2.

Then

HE(G) ≤ 1

n

[
3m

2
+

n

4
(n− 1)

]
+

√√√√(n− 1)

{
3m

2
+

n

4
(n− 1)−

[
1

n

(
3m

2
+

n

4
(n− 1)

)]2}
.

3 Harary Estrada index of graphs

As a new direction for the studying on indexes and their bounds, we will introduce

and investigate Harary Estrada index and its bounds. Moreover we will obtain upper
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bounds for the Harary Estrada index involving the Harary energy of graphs. Hence this

section will be devoted in two subsections.

We first recall that the Estrada index of a graph G is defined by

EE = EE(G) =
n∑

i=1

eλi

where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of the adjacency matrix A(G) of G (see

[7, 8, 9, 10, 11, 12]). Denoting by Mk = Mk(G) to the k-th moment of the graph G, we

get

Mk = Mk(G) =
n∑

i=1

(λi)
k

and recalling the power-series expansion of ex, we have

EE =
∞∑
k=0

Mk

k!
. (7)

It is well known that ([10]) Mk(G) is equal to the number of closed walks of length k

of the graph G. In fact Estrada index of graphs has an important role in Chemistry

and Physics and there exists a vast literature that studies this special index. In addition

to the Estrada’s papers depicted above, we may also refer [5, 6] to the reader for detail

information such as lower and upper bounds for EE in terms of the number of vertices

and edges, and some inequalities between EE and the energy of G.

Our second reminder will be about Harary index He(G) for a graph G. In fact the

Harary index of a graph G on n vertices was first defined by Plavšic et al. ([22]) as

He(G) =
1

2

n∑
i=1

n∑
j=1

(H(G))ij =
∑

1≤i<j≤n

(H(G))ij (8)

where

(H(G))ij =

⎧⎪⎪⎨⎪⎪⎩
1

dij
if i �= j

0 if i = j

(see also [3, 4, 25]). We should note that some authors include the leading factor of 1/2

(e.g., [21, 22]) others omit it (e.g., [4, pp. 111, 112]). We also note that Harary index also

plays an important role in the molecular) chemistry and, in [3, 25], it has been recently

given a well organized introduction and references about Harary index, and, additionally,

depicted some connections and bounds on the Harary index.
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3.1 Bounds for the Harary Estrada index

In this subsection we will mainly introduce the Harary Estrada index of a graph G,

and also present upper and lower bounds for it.

Definition 3.1 If G is an (n,m)-graph, then the Harary Estrada index of G, denoted by

HEE(G), is equal to

HEE = HEE(G) =
n∑

i=1

eρi (9)

where ρ1 ≥ ρ2 ≥ · · · ≥ ρn are the H-eigenvalues of G.

Let

Nk =
n∑

i=1

(ρi)
k .

Then

HEE(G) =
∞∑
k=0

Nk

k!
. (10)

The main result of this section is the following.

Theorem 3.2 Let G be a connected (n,m)-graph with diameter less than or equal to 2.

Then the Harary Estrada index is bounded as√
n2 + 2

(
3m

2
+

n(n− 1)

4

)
≤ HEE(G) ≤ n− 1 + e

√
3m
2

+
n(n−1)

4 . (11)

Equality holds in both sides if and only if G � K1 .

Proof. Lower bound: Directly from Equation (9), we get

HEE2(G) =
n∑

i=1

e2ρi + 2
∑

1≤i<j≤n

eρieρj . (12)

By the Arithmetic-Geometric Mean Inequality, shortly AGMI say, we also get

2
∑

1≤i<j≤n

eρieρj ≥ n(n− 1)

( ∏
1≤i<j≤n

eρieρj

) 2
n(n−1)

(13)

= n(n− 1)

⎡⎣( n∏
i=1

eρi

)n−1
⎤⎦ 2

n(n−1)

= n(n− 1)(eN1)
2
n

= n(n− 1) .
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By means of a power-series expansion and N0 = n; N1 = 0 and N2 = 2
∑

1≤i<j≤n

(
1

dij

)2

,

we clearly obtain

n∑
i=1

e2ρi =
n∑

i=1

∑
k≥0

(2ρi)
k

k!
= n+ 4

∑
1≤i<j≤n

(
1

dij

)2

+
n∑

i=1

∑
k≥3

(2ρi)
k

k!
.

Since we require a lower bound as good as possible, it looks reasonable to replace∑
k≥3

(2ρi)
k

k!
by 4

∑
k≥3

(ρi)
k

k!
. Furthermore we use a multiplier t ∈ [0, 4] instead of 4 = 22, so

as to arrive at

n∑
i=1

e2ρi ≥ n+ 4
∑

1≤i<j≤n

(
1

dij

)2

+ t

n∑
i=1

∑
k≥3

(ρi)
k

k!

= n+ 4
∑

1≤i<j≤n

(
1

dij

)2

− tn− t
∑

1≤i<j≤n

(
1

dij

)2

+ t
n∑

i=1

∑
k≥0

(ρi)
k

k!

= n(1− t) + (4− t)
∑

1≤i<j≤n

(
1

dij

)2

+ t ·HEE(G) .

By Lemma 1.2, we have

n∑
i=1

e2ρi ≥ n(1− t) + (4− t)
1

2

(
3m

2
+

n(n− 1)

4

)
+ t ·HEE(G) . (14)

Also, by substituting (13) and (14) back into (12), and then solving for HEE(G), we get

HEE(G) ≥ t

2
+

√(
n− t

2

)2

+ (4− t)
1

2

(
3m

2
+

n(n− 1)

4

)
.

Now, for n ≥ 2 and m ≥ 1, it is easy to see that the function

f(x) :=
x

2
+

√(
n− x

2

)2

+ (4− x)
1

2

(
3m

2
+

n(n− 1)

4

)
monotonically increases in the interval [0, 4]. As a result, the best lower bound for

HEE(G) is attained for t = 0. This gives us the first part of the theorem.

Upper bound. Starting from the following inequality, we get

HEE(G) = n+
n∑

i=1

∑
k≥1

(ρi)
k

k!

= n+
n∑

i=1

∑
k≥1

|ρi|k
k!

= n+
∑
k≥1

1

k!

n∑
i=1

(ρ2i )
k
2
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and then

n+
∑
k≥1

1

k!

n∑
i=1

(ρ2i )
k
2 ≤ n+

∑
k≥1

1

k!

[
n∑

i=1

(ρ2i )

] k
2

= n+
∑
k≥1

1

k!

[
2

∑
1≤i<j≤n

(
1

dij

)2
] k

2

= n− 1 +
∑
k≥0

⎛⎝√√√√2
∑

1≤i<j≤n

(
1

dij

)2
⎞⎠k

k!

= n− 1 + e

√√√√√√2

∑
1≤i<j≤n

(
1

dij

)2

.

By Lemma 1.2, we obtain

HEE(G) ≤ n− 1 + e

√
3m
2

+
n(n−1)

4 .

Hence we get the right-hand side of the inequality given in (11).

In addition to the above progress, it is clear that Equality (11) holds if and only if

the graph G has all zero H-eigenvalues. Since G is a connected graph, this only happens

when G � K1 .

Hence the result.

In the following, we present another lower bound for the Harary Estrada index

HEE(G).

In [24], Zhou et al. gave the following lower bound for ρ1(G) in terms of the sum of

i-th row of Harary matrix H(G) and for n.

Lemma 3.3 [24] Let G be a connected graph with n ≥ 2 vertices. Then√∑n
i=1 H

2
i

n
≤ ρ1(G)

where Hi is the sum of the i-th row of H(G).

Equality holds if and only if H1 = H2 = · · · = Hn.

Now we obtain the lower bound on the Harary Estrada index of graph G as follows.
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Theorem 3.4 Let G be a connected (n,m)-graph with n ≥ 2. Then we have

HEE(G) ≥ e

√√√√
∑n

i=1 H
2
i

n +
n− 1

e
1

n−1

√√√√
∑n

i=1 H
2
i

n

. (15)

Proof. If G is equal to null graph Nn, then for each 1 ≤ i ≤ n, Hi = 0 and ρ1 =

ρ2 = · · · = ρn = 0. Then HEE(G) = n, and equality holds in Equation (15). When

HEE(G) = n, by AGMI, one can see easily that ρ1 = ρ2 = · · · = ρn = 0 and hence

G = Nn. Otherwise, G �= Nn and hence ρ1 > 0. Now,

HEE(G) = eρ1 + eρ2 + · · ·+ eρn

≥ eρ1 + (n− 1)

(
n∏

i=2

eρ1

) 1
n−1

, by AGMI (16)

≥ eρ1 + (n− 1)
(
e−ρ1

) 1
n−1 , as

n∑
i=1

ρi = 0 . (17)

Now let us consider a function

f(x) = ex +
n− 1

e
x

n−1

, for x > 0 .

We have

f ′(x) = ex − e−
x

n−1 , for x > 0 .

Therefore f is an increasing function for x > 0. From (16), we get

HEE(G) ≥ e

√√√√
∑n

i=1 H
2
i

n +
n− 1

e
1

n−1

√√√√
∑n

i=1 H
2
i

n

by Lemma 3.3. (18)

This completes of the proof of (15).

Now suppose that equality holds in (15). Then equality holds throughout (16) - (18).

From equality in (16) and by AGMI, we obtain ρ2 = ρ3 = · · · = ρn = 0. Since ρ1 > 0

and
∑n

i=1 ρi = 0, we must have ρ2 < 0. Thus G is a connected graph. From equality in

(18), we have ρ1 = H1 = H2 = · · · = Hn. Since ρ2 = ρ3 = · · · = ρn = 0 and ρ1 = Hi, by

Lemma 3.3, G is a complete graph Kn.

Conversely, one can easily see that the equality holds in (15) for the complete graph

Kn.
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Hence the result.

We can present the following two consequences of the above result.

Corollary 3.5 Let G be a connected (n,m)-graph with diameter less than or equal to 2.

Then

e

√
1
n(

3m
2

+n
4
(n−1)) +

n− 1

e
1

n−1

√
1
n(

3m
2

+n
4
(n−1))

≤ HEE(G) .

Proof. Since
n∑

i=1

H2
i ≥ 2

∑
1≤i<j≤n

(
1

dij

)2

the result is obvious from Lemma 1.2.

The following corollary states a lower bound for the Harary Estrada index involving

Harary index.

Corollary 3.6 Let G be a connected graph with n ≥ 2 vertices. Then

e
2He(G)

n +
n− 1

e
2He(G)
n(n−1)

≤ HEE(G)

where He(G) denotes the Harary index of graph G, as defined in (8). Moreover, in the

above, equality holds if and only if H1 = H2 = · · · = Hn.

Proof. By Theorem 3.4 and using Cauchy–Schwartz inequality, we have√∑n
i=1 H

2
i

n
≥
∑n

i=1 Hi

n
=

2He(G)

n

with the equality holds if and only if H1 = H2 = · · · = Hn.

3.2 An upper bound for the Harary Estrada index involving the

Harary energy

In the following result, the main aim is to show that there exist two upper bounds

for the Harary Estrada index HEE(G) where G is a connected graph of diameter not

greater than 2.

Theorem 3.7 Let G be as above. Then

HEE(G)−HE(G) ≤ n− 1−
√

3m

2
+

n(n− 1)

4
+ e

√
3m
2

+
n(n−1)

4 (19)
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and

HEE(G) ≤ n− 1 + eHE(G) . (20)

Equality holds in (19) or (20) if and only if G � K1.

Proof. By considering the proof of Theorem 3.2, we have

HEE(G) = n+
n∑

i=1

∑
k≥1

(ρi)
k

k!
≤ n+

n∑
i=1

∑
k≥1

|ρi|k
k!

.

Moreover, by considering Harary energy defined in (1), we get

HEE(G) ≤ n+HE(G) +
n∑

i=1

∑
k≥2

|ρi|k
k!

which leads to (as in Theorem 3.2)

HEE(G)−HE(G) ≤ n+
n∑

i=1

∑
k≥2

|ρi|k
k!

≤ n− 1−
√√√√2

∑
1≤i<j≤n

(
1

dij

)2

+ e

√√√√√√2

∑
1≤i<j≤n

(
1

dij

)2

. (21)

Hence we obtain Equation (19).

Another approximation to connect HEE(G) and HE(G) can be seen as follows:

HEE(G) ≤ n+
n∑

i=1

∑
k≥1

|ρi|k
k!

≤ n+
∑
k≥1

1

k!

(
n∑

i=1

|ρi|k
)

= n+
∑
k≥1

(HE(G))k

k!

= n− 1 +
∑
k≥0

(HE(G))k

k!

which implies

HEE(G) ≤ n− 1 + eHE(G)

as depicted in (20).

Moreover the equality holds in (19) or (20) if and only if G � K1 .
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