Solutions of Some Unsolved Problems on Hypoenergetic Unicyclic, Bicyclic and Tricyclic Graphs ${ }^{\dagger}$

Hui Xiao and Hanyuan Deng ${ }^{\ddagger}$

College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China
(Received November 15, 2009)

Abstract

The energy E of a graph is defined as the sum of the absolute values of its eigenvalues. A graph with n vertices is said to be hypoenergetic if $E<n$. Li and Ma $[\mathrm{X} . \mathrm{Li}, \mathrm{H}$. Ma, Hypoenergetic and strongly hypoenergetic k-cyclic graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 41-60] studied hypoenergetic k-cyclic graphs. They showed that there exist hypoenergetic unicyclic, bicyclic, and tricyclic graphs for all n and the maximum degree $\Delta \geq 4$, except in the following cases of $\Delta=4$, for which they did not determine whether or not there exist hypoenergetic graphs: (i) $n=13$ for unicyclic graphs; (ii) $n=8,10,11,12,14,15$ for bicyclic graphs and (iii) $n=8,9,11,12,15$ for tricyclic graphs. In this paper, we complete the solution of these problems, and show that there are no hypoenergetic graphs for all these cases.

[^0]Let G be a simple graph with n vertices, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of its adjacency matrix. The energy of a graph G is defined as $E(G)=\left|\lambda_{1}\right|+\left|\lambda_{2}\right|+$ $\cdots+\left|\lambda_{n}\right|$. For more information on the energy of graphs, we refer to [1]. Recently, it has been demonstrated [2] that the energy exceeds the number of vertices for several classes of graphs, and a result of Nikiforov [3] showed that the number of graphs satisfying the condition $E<n$ is relatively small. Thus it is feasible to find them. In [4] a hypoenergetic graph is defined to be a graph satisfying $E<n$. Some results on hypoenergetic graphs were studied in [4-9].

In [9] Li and Ma showed that there exist hypoenergetic unicyclic, bicyclic, and tricyclic graphs for all n and the maximum vertex degree $\Delta \geq 4$, except in the following cases of $\Delta=4$, for which they do not determine whether or not there exist hypoenergetic graphs: (i) $n=13$ for unicyclic graphs; (ii) $n=8,10,11,12,14,15$ for bicyclic graphs and (iii) $n=8,9,11,12,15$ for tricyclic graphs. In this note, we complete the solution of these problems, and show that there are no hypoenergetic graphs for all these cases.

Lemma [5]. Let G be a graph with n vertices and m edges, possessing q quadrangles, and let $d_{1}, d_{2}, \ldots, d_{n}$ be its vertex degrees. If

$$
\sqrt{\frac{8 m^{3}}{\sum_{i=1}^{n} d_{i}^{2}-2 m+8 q}} \geq n
$$

then G is non-hypoenergetic.
Theorem. A k-cyclic graph G with n vertices and maximum vertex degree $\Delta=4$, which satisfies one of the following conditions is non-hypoenergetic:
(I) $k=1$ and $n=13$;
(II) $k=2$ and $n=8,10,11,12,14,15$;
(III) $k=3$ and $n=8,9,11,12,15$.

Proof. Let $n_{1}, n_{2}, n_{3}, n_{4}$ be the number of vertices with degrees $1,2,3,4$ in G, respectively. $n_{4} \geq 1$ since $\Delta=4$. Let

$$
N=\sqrt{\frac{8 m^{3}}{\sum_{i=1}^{n} d_{i}^{2}-2 m+8 q}}
$$

where m is the number of edges, q is the number of quadrangles, and $d_{1}, d_{2}, \ldots, d_{n}$ are its vertex degrees.

By Lemma, we only need to prove that $N \geq n$ for the graph G.
(I) $k=1$. Note that $0 \leq q \leq 1$ in any unicyclic graph.

If $n=13$, then $m=n=13$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=13 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=26
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=13$, and $1 \leq n_{4} \leq 4$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 1.

Table 1.

n_{4}	1	1	1	1	1	1	2	2	2	2	3	3	3	4
n_{3}	0	1	2	3	4	5	0	1	2	3	0	1	2	0
n_{2}	10	8	6	4	2	0	7	5	3	1	4	2	0	1
n_{1}	2	3	4	5	6	7	4	5	6	7	6	7	8	8
$\sum_{i=1}^{n} d_{i}^{2}$	58	60	62	64	66	68	64	66	68	70	70	72	74	76

It follows that $N \geq \sqrt{\frac{8 m^{3}}{76-2 m+8}}>17>n$.
(II) $k=2$. Note that $0 \leq q \leq 3$ in any bicyclic graph.
(i) If $n=8$, then $m=n+1=9$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=8 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=18 .
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=10$, and $1 \leq n_{4} \leq 3$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 2.

Table 2.

n_{4}	1	1	1	1	2	2	2	3
n_{3}	0	1	2	3	0	1	2	0
n_{2}	7	5	3	1	4	2	0	1
n_{1}	0	0	2	3	2	3	4	4
$\sum_{i=1}^{n} d_{i}^{2}$	44	45	48	50	50	52	54	56

It follows that $N \geq \sqrt{\frac{8 m^{3}}{56-2 m+24}}>9>n$.
(ii) If $n=10$, then $m=n+1=11$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=10 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=22
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=12$, and $1 \leq n_{4} \leq 4$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 3.

Table 3.

n_{4}	1	1	1	1	1	2	2	2	2	3	3	4
n_{3}	0	1	2	3	4	0	1	2	3	0	1	0
n_{2}	9	7	5	3	1	6	4	2	0	3	1	0
n_{1}	0	1	2	3	4	2	3	4	5	4	5	6
$\sum_{i=1}^{n} d_{i}^{2}$	52	54	56	58	60	58	60	62	64	64	66	70

It follows that $N \geq \sqrt{\frac{8 m^{3}}{70-2 m+24}}>12>n$.
(iii) If $n=11$, then $m=n+1=12$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=11 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=24
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=13$, and $1 \leq n_{4} \leq 4$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 4.

Table 4.

n_{4}	1	1	1	1	1	1	2	2	2	2	3	3	3	4
n_{3}	0	1	2	3	4	5	0	1	2	3	0	1	2	0
n_{2}	5	8	6	4	2	0	7	5	3	1	4	2	0	1
n_{1}	5	1	2	3	4	5	2	3	4	5	4	5	6	6
$\sum_{i=1}^{n} d_{i}^{2}$	41	58	60	62	64	66	62	64	66	68	68	70	72	72

It follows that $N \geq \sqrt{\frac{8 m^{3}}{72-2 m+24}}>13>n$.
(iv) If $n=12$ and $k=2$, then $m=n+1=13,0 \leq q \leq 3$, and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=12 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=26
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=14$, and $1 \leq n_{4} \leq 4$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 5.

Table 5.

n_{4}	1	1	1	1	1	1	2	2	2	2	2	3	3	3	4	4
n_{3}	0	1	2	3	4	5	0	1	2	3	4	0	1	2	0	1
n_{2}	11	9	7	5	3	1	8	6	4	2	0	5	3	1	2	0
n_{1}	0	1	2	3	4	5	2	3	4	5	6	4	5	6	6	7
$\sum_{i=1}^{n} d_{i}^{2}$	60	62	64	66	68	70	66	68	70	72	74	72	74	76	78	80

It follows that $N \geq \sqrt{\frac{8 m^{3}}{80-2 m+24}}>15>n$.
(v) If $n=14$, then $m=n+1=15$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=14 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=30
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=16$, and $1 \leq n_{4} \leq 5$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 6.

Table 6.

n_{4}	1	1	1	1	1	1	1	2	2	2	2	2	2
n_{3}	0	1	2	3	4	5	6	0	1	2	3	4	5
n_{2}	13	11	9	7	5	3	1	10	8	6	4	2	0
n_{1}	0	1	2	3	4	5	6	2	3	4	5	6	7
$\sum_{i=1}^{n} d_{i}^{2}$	68	70	72	74	76	78	80	74	76	78	80	82	84
n_{4}	3	3	3	3	4	4	4	5					
n_{3}	0	1	2	3	0	1	2	0					
n_{2}	7	5	3	1	4	2	0	1					
n_{1}	4	5	6	7	6	7	8	8					
$\sum_{i=1}^{n} d_{i}^{2}$	80	82	84	86	86	88	90	92					

It follows that $N \geq \sqrt{\frac{8 m^{3}}{92-2 m+24}}>17>n$.
(vi) If $n=15$, then $m=n+1=16$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=15 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=32
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=15$, and $1 \leq n_{4} \leq 5$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 7.

Table 7.

n_{4}	1	1	1	1	1	1	1	1	2	2	2	2	2	2
n_{3}	0	1	2	3	4	5	6	7	0	1	2	3	4	5
n_{2}	14	12	10	8	6	4	2	0	11	9	7	5	3	1
n_{1}	0	1	2	3	4	5	6	7	2	3	4	5	6	7
$\sum_{i=1}^{n} d_{i}^{2}$	72	74	76	78	80	82	84	86	78	80	82	84	86	88
n_{4}	3	3	3	3	3	4	4	4	5	5				
n_{3}	0	1	2	3	4	0	1	2	0	1				
n_{2}	8	6	4	2	0	5	3	1	2	0				
n_{1}	4	5	6	7	8	6	7	8	8	9				
$\sum_{i=1}^{n} d_{i}^{2}$	84	86	88	90	92	90	92	94	96	98				

It follows that $N \geq \sqrt{\frac{8 m^{3}}{98-2 m+24}}>19>n$.
(III) $k=3$. Note that $0 \leq q \leq 6$ in any tricyclic graph.
(i)If $n=8$, then $m=n+2=10$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=8 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=20 .
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=12$, and $1 \leq n_{4} \leq 4$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 8.

Table 8.

n_{4}	1	1	1	2	2	2	2	3	3	4
n_{3}	2	3	4	0	1	2	3	0	1	0
n_{2}	5	3	1	6	4	2	0	3	1	0
n_{1}	0	1	2	0	1	2	3	2	3	4
$\sum_{i=1}^{n} d_{i}^{2}$	54	56	58	56	58	60	62	62	64	68

It follows that $N \geq \sqrt{\frac{8 m^{3}}{68-2 m+48}}>9>n$.
(ii) If $n=9$, then $m=n+2=11$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=9 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=22
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=13$, and $1 \leq n_{4} \leq 4$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 9.

Table 9.

n_{4}	1	1	1	1	2	2	2	2	3	3	3	4
n_{3}	2	3	4	5	0	1	2	3	0	1	2	0
n_{2}	6	4	2	0	7	5	3	1	4	2	0	1
n_{1}	0	1	2	3	0	1	2	3	2	3	4	7
$\sum_{i=1}^{n} d_{i}^{2}$	58	60	62	64	60	62	64	60	66	68	70	71

It follows that $N \geq \sqrt{\frac{8 m^{3}}{71-2 m+48}}>10>n$.
(iii) If $n=11$, then $m=n+2=13$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=11 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=26
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=15$, and $1 \leq n_{4} \leq 5$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 10.

Table 10.

n_{4}	1	1	1	1	1	2	2	2	2	2	3	3	3	3	4	4	5
n_{3}	2	3	4	5	6	0	1	2	3	4	0	1	2	3	0	1	0
n_{2}	8	6	4	2	0	9	7	5	3	1	6	4	2	0	3	1	0
n_{1}	0	1	2	3	4	0	1	2	3	4	2	3	4	5	4	5	6
$\sum_{i=1}^{n} d_{i}^{2}$	66	68	70	72	74	68	70	72	74	76	74	76	78	80	80	82	86

It follows that $N \geq \sqrt{\frac{8 m^{3}}{86-2 m+48}}>12>n$.
(iv) If $n=12$, then $m=n+2=14$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=12 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=28
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=16$, and $1 \leq n_{4} \leq 5$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 11.

Table 11.

n_{4}	1	1	1	1	1	2	2	2	2	2	2
n_{3}	2	3	4	5	6	0	1	2	3	4	5
n_{2}	9	7	5	3	1	10	8	6	4	2	0
n_{1}	0	1	2	3	4	0	1	2	3	4	5
$\sum_{i=1}^{n} d_{i}^{2}$	70	72	74	76	78	72	74	76	78	80	82
n_{4}	3	3	3	3	4	4	4	5			
n_{3}	0	1	2	3	0	1	2	0			
n_{2}	7	5	3	1	4	2	0	1			
n_{1}	2	3	4	5	4	5	6	6			
$\sum_{i=1}^{n} d_{i}^{2}$	78	80	82	84	84	86	88	90			

It follows that $N \geq \sqrt{\frac{8 m^{3}}{90-2 m+48}}>14>n$.
(v) If $n=15$, then $m=n+2=17$ and

$$
\left\{\begin{array}{l}
n_{1}+n_{2}+n_{3}+n_{4}=15 \\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4}=34
\end{array}\right.
$$

We have $n_{2}+2 n_{3}+3 n_{4}=19$, and $1 \leq n_{4} \leq 6$. All the solutions of $n_{1}, n_{2}, n_{3}, n_{4}$ are shown in Table 12.

Table 12.

| n_{4} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| n_{3} | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 3 | 4 | 5 | 6 | | | |
| n_{2} | 12 | 10 | 8 | 6 | 4 | 2 | 0 | 11 | 9 | 7 | 5 | 3 | 1 | | | |
| n_{1} | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | | | |
| $\sum_{i=1}^{n} d_{i}^{2}$ | 82 | 84 | 86 | 88 | 90 | 92 | 94 | 86 | 88 | 90 | 92 | 94 | 96 | | | |
| n_{4} | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | | |
| n_{3} | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 0 | | |
| n_{2} | 10 | 8 | 6 | 4 | 2 | 0 | 7 | 5 | 3 | 1 | 4 | 2 | 0 | 1 | | |
| n_{1} | 1 | 2 | 3 | 4 | 5 | 6 | 4 | 5 | 6 | 7 | 6 | 7 | 8 | 8 | | |
| $\sum_{i=1}^{n} d_{i}^{2}$ | 98 | 100 | 102 | 104 | 106 | 108 | 96 | 98 | 100 | 102 | 102 | 104 | 106 | 108 | | |

It follows that $N \geq \sqrt{\frac{8 m^{3}}{108-2 m+48}}>17>n$.

References

[1] I. Gutman, X. Li, J. B. Zhang, Graph energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH, Weinheim, 2009, pp. 145-174.
[2] I. Gutman, On graphs whose energy exceeds the number of vertices, Lin. Algebra Appl. 429 (2008) 2670-2677.
[3] V. Nikiforov, Graphs and matrices with maximal energy, J. Math. Anal. Appl. 327 (2007) 735-738.
[4] I. Gutman, S. Radenković, Hypoenergetic molecular graphs, Indian J. Chem. 46A (2007) 1733-1736.
[5] S. Majstorović, A. Klobučar, I. Gutman, Selected topics from the theory of graph energy: Hypoenergetic graphs, in: D. Cvetković, I. Gutman (Eds.), Applications of Graph Spectra, Mat. Inst., Belgrade, 2009, pp. 65-105.
[6] I. Gutman, X. Li, Y. Shi, J. Zhang, Hypoenergetic trees, MATCH Commun. Math. Comput. Chem. 60 (2009) 415-426.
[7] Z. You, B. Liu, On hypoenergetic unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 479-486.
[8] Z. You, B. Liu, I. Gutman, Note on hypoenergetic graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 491-498.
[9] X. Li, H. Ma, Hypoenergetic and strongly hypoenergetic k-cyclic graphs, MATCH Commun. Math. Comput. Chem. 62 (2010) 41-60.

[^0]: ${ }^{\dagger}$ Project supported by the Scientific Research Fund of Hunan Provincial Education Department (09A057) and the Hunan Provincial Natural Science Foundation of China (09JJ6009).
 ${ }^{\ddagger}$ Corresponding author; e-mail: hydeng@hunnu.edu.cn.

