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Abstract

In [6], Ivan Gutman et al. conjectured that the tree Pn(2, 6, n−9) of order n ≥ 14 has
the fourth greatest energy among all trees of order n . By using the method of “quasi-order
�”, two of the present authors [8] claimed to have proved this conjecture by showing that
T ≺ Pn(2, 6, n − 9) for all trees T of order n with T /∈ {Pn, Pn(2, 2, n − 5), Pn(2, 4, n −
7), Pn(2, 6, n−9)} , where Pn , Pn(2, 2, n−5) and Pn(2, 4, n−7) are known to be the trees of
order n with the first, second and third greatest energies. In this paper, we show that the
trees Tn(2, 2|2, 2) and Pn(2, 6, n− 9) are quasi-order incomparable, thus the above result
T ≺ Pn(2, 6, n−9) is not true for T = Tn(2, 2|2, 2) . In this sense, the conjecture proposed
in [6] has not been settled yet, and it cannot be settled by only using the quasi-order
method.

1 Introduction

Let T be a tree of order n with a unique vertex v of degree at least 3. Then it

can be easily seen that T must be a tree consisting of some internally disjoint pendent

∗Research supported by National Natural Science Foundation of China 10601038, 10731040, and
10671081

†Corresponding author. E-mail addresses: jyshao@sh163.net (Jia-Yu Shao)

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 64 (2010) 181-188  

                          
                                          ISSN 0340 - 6253  

 



paths starting from v . Suppose that the lengths of these pendent paths are positive

integers a1, . . . , ar , then we denote this tree T by Pn(a1, a2, . . . , ar) (or sometimes simply

P (a1, a2, . . . , ar)), where a1 + a2 + · · ·+ ar = n− 1 (see Fig 1.1(a) for Pn(2, 6, n− 9)).

Let Tn(a, b|c, d) be the tree of order n obtained by attaching two pendent paths of

lengths a and b to one end vertex of the path Pn−a−b−c−d and attaching two pendent

paths of lengths c and d to another end vertex of the path Pn−a−b−c−d , where a, b, c, d are

all positive integers (see Fig. 1.1(b)).

· · ·
Pn−9 (a)

··
·

· ·
·

· · ·
···

· · ·
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Fig. 1.1 Pn(2, 6, n− 9) and Tn(a, b|c, d)

Let G be a simple graph with n vertices and A be its adjacency matrix. The energy

of G , denoted by E(G) , is defined [3, 4] to be the sum of the absolute values of all the n

eigenvalues of A .

Let m(G, k) be the number of k-matchings of G [1]. For a forest T with n vertices,

its energy can be expressed by the following Coulson integral formula [5]:

E(T ) =
2

π

+∞∫
0

1

x2
ln

⎛⎝�n/2�∑
k=0

m(T, k )x2k

⎞⎠ dx . (1.1)

The fact that E(T ) is a strictly monotonically increasing function of all the matching

numbers m(T, k) (k = 0, 1, 2, . . . , �n/2�) is an obvious consequence of the formula (1.1).

This in turn provides a way of comparing the energies of a pair of forests, and yields the

following definition of the quasi-order relation � (Gutman [2]) on the set of all forests

(acyclic graphs) with n vertices.

Definition 1.1. Let T1 and T2 be two forests of order n . If m(T1, k) ≤ m(T2, k) for all

k = 0, 1, . . . , �n/2� , then we write that T1 � T2 .

Furthermore, if T1 � T2 and there exists at least one index j such that m(T1, j) <

m(T2, j) , then we write that T1 ≺ T2 .

If m(T1, k) = m(T2, k) for all k (i. e., if T1 � T2 � T1), then we write T1 ∼ T2 .
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According to the Coulson integral formula (1.1), we can easily see the following rela-

tions between � and the energies for two forests T1 and T2 of order n:

T1 
 T2 ⇒ E(T1) ≤ E(T2), and T1 ≺ T2 ⇒ E(T1) < E(T2)

Many results on the maximal energy have been obtained for trees. For example, In

[2], Gutman determined that the first and second maximal energy trees of order n are Pn

and Pn(2, 2, n− 5) , respectively. N. Li and S. Li [7] determined that the third maximal

energy tree is Pn(2, 4, n − 7) . Gutman et al. [6] also proposed the following conjecture

about the fourth maximal energy tree of order n (Here we only quote the conjecture for

the cases n ≥ 10):

Conjecture 1. For n = 11 , the fourth maximal energy tree is P11(2, 3, 5) ; For n = 13 ,

the fourth maximal energy tree is P13(4, 4, 4) ; For n = 10, 12 and n ≥ 14 , the fourth

maximal energy tree is Pn(2, 6, n− 9) .

The main result of [8] (Theorem 3.6 in [8]) is:

(∗) Let T be a tree of order n ≥ 14 , which is not in {Pn , Pn(2, 2,n− 5) ,

Pn(2, 4,n− 7) , Pn(2, 6,n− 9)} . Then T ≺ Pn(2, 6,n− 9) .

It is obvious that an affirmative answer to Conjecture 1 for n ≥ 14 would follow

directly from the above assertion (∗).

In this paper, we will show that the trees Tn(2, 2|2, 2) (which is not in {Pn, Pn(2, 2, n−

5), Pn(2, 4, n− 7), Pn(2, 6, n− 9)}) and Pn(2, 6, n− 9) are quasi-order incomparable, thus

the result T ≺ Pn(2, 6, n− 9) in assertion (∗) is not true for the tree T = Tn(2, 2|2, 2) . In

this sense, we think that the Conjecture 1 for the case n ≥ 14 has not been settled yet.

Up to now, the latest result about the Conjecture 1 is the following:

Theorem 1.1. [9] If n ≥ 14 , then the fourth maximal energy tree of order n is one of

the two trees Pn(2, 6, n− 9) and Tn(2, 2|2, 2) .
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2 Incomparability of Tn(2,2|2,2) and Pn(2,6,n− 9)

In this section, we show that the two tress Tn(2, 2|2, 2) and Pn(2, 6, n− 9) of order n

are quasi-order incomparable for all even n with n ≥ 10 , and all odd n with n ≥ 19 .

Let Pn be the path with n vertices and let m(n, k) = m(Pn, k) . Then the following

special values and recurrence relation for m(n, k) can be easily obtained:

m(n, 0) = 1

m(n, 1) = n− 1

m(2k, k) = 1 (2.1)

m(2k + 1, k) = k + 1 (2.2)

m(n, k) = 0 (if k < 0 or 2k > n) (2.3)

m(n, k) = m(n− 1, k) +m(n− 2, k − 1) (n ≥ 3) . (2.4)

Here we assume that m(G, k) = 0 for all negative integers k .

Lemma 2.1. [5] Let e = uv be an edge of a graph G . Then:

m(G, k) = m(G− e, k) +m(G− u− v, k − 1) .

By taking G = P2 ∪ Pr and e to be the edge in P2 , we can easily obtain from Lemma

2.1:

m(P2 ∪ Pr, k) = m(r, k) +m(r, k − 1) . (2.5)

Lemma 2.2. Let n ≥ 8, G = Pn(2, 2, n− 5) and G
′

= Pn(1, 2, n− 4) . Then:

m(G, k)−m(G
′

, k) = m(n− 7, k − 3) .

Proof. Take an edge e = uv in G and an edge e
′

= u
′

v
′

in G
′

as in Fig. 2.1.

u v
e

· · ·
Pn−5

u
′

e
′

v
′

· · ·
Pn−4

Fig. 2.1 G = Pn(2, 2, n− 5) and G
′

= Pn(1, 2, n− 4)
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Then we have G− e = G
′

− e
′

. Thus by Lemma 2.1 and the recurrence relation (2.4),

we have:

m(G, k)−m(G
′

, k) = m(G− u− v, k − 1)−m(G
′

− u
′

− v
′

, k − 1)

= m(P2 ∪ Pn−5, k − 1)−m(n− 4, k − 1)

= m(n− 5, k − 2) +m(n− 5, k − 1)−m(n− 4, k − 1)

= m(n− 5, k − 2)−m(n− 6, k − 2) = m(n− 7, k − 3) .

Lemma 2.3. Let n ≥ 12, G = Pn(2, 2, n− 5) and G
′

= Pn(2, 4, n− 7) . Then:

m(G, k)−m(G
′

, k) = m(n− 10, k − 4) .

Proof. Take an edge e = uv in G and an edge e
′

= u
′

v
′

in G
′

as in Fig 2.2.

e
· · ·

vu
e
′

· · ·
u

′

v
′

Pn−7

Fig. 2.2 G = Pn(2, 2, n− 5) and G
′

= Pn(2, 4, n− 7)

Then we have G− e = G
′

− e
′

. Thus by Lemma 2.1 and Lemma 2.2,

m(G, k)−m(G
′

, k) = m(G− u− v, k − 1)−m(G
′

− u
′

− v
′

, k − 1)

= m(Pn−3(2, 2, n− 8), k − 1)−m(Pn−3(1, 2, n− 7), k − 1)

= m(n− 10, k − 4) .

Here the last equation follows from Lemma 2.2.

Lemma 2.4. Let n ≥ 14 , T = Tn(2, 2|2, 2) and P = Pn(2, 6, n− 9) . Then:

m(T, k)−m(P, k) = m(n−12, k−4)+2m(n−12, k−5)−m(Pn−6(2, 2, n−11), k−2) . (2.6)

Proof. Take an edge e = uv in T and e
′

= u
′

v
′

in P as in Fig. 2.3.
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· · ·e v
u T

e
′

· · ·
u

′

v
′

Pn−9 P

Fig. 2.3 The edges e in T and e
′

in P

Then we have

T − e = P2 ∪ Pn−2(2, 2, n− 7) P − e
′

= P2 ∪ Pn−2(2, 4, n− 9)

T − u− v = P1 ∪ P2 ∪ Pn−5(2, 2, n− 10) P − u
′

− v
′

= P1 ∪ Pn−3(2, 3, n− 9) .

Now by (2.5) and Lemma 2.3,

m(T − e, k)−m(P − e
′

, k)

=

k∑
i=k−1

[m(Pn−2(2, 2, n− 7), i)−m(Pn−2(2, 4, n− 9), i)]

=
k∑

i=k−1

m(n− 12, i− 4) = m(n− 12, k − 4) +m(n− 12, k − 5) . (2.7)

By taking the pendant edge in a pendant path of length 3 in Pn−3(2, 3, n− 9) and using

Lemma 2.1, we obtain

m(Pn−3(2, 3, n− 9), k − 1) = m(Pn−4(2, 2, n− 9), k − 1) +m(Pn−5(1, 2, n− 9)) . (2.8)

By (2.5), (2.8), Lemma 2.2, and Lemma 2.1 we also have

m(T − u− v, k − 1)−m(P − u
′

− v
′

, k − 1)

=m(P2 ∪ Pn−5(2, 2, n− 10), k − 1)−m(Pn−3(2, 3, n− 9), k − 1)

=[m(Pn−5(2, 2, n− 10), k − 1) +m(Pn−5(2, 2, n− 10), k − 2)]

−[m(Pn−4(2, 2, n− 9), k − 1) +m(Pn−5(1, 2, n− 9), k − 2)]

=[m(Pn−5(2, 2, n− 10), k − 1)−m(Pn−4(2, 2, n− 9), k − 1)]

+[m(Pn−5(2, 2, n− 10), k − 2)−m(Pn−5(1, 2, n− 9), k − 2)]

=−m(Pn−6(2, 2, n− 11), k − 2) +m(n− 12, k − 5) .

(2.9)

Now adding (2.7), (2.9) and using Lemma 2.1 we obtain (2.6).
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Theorem 2.1. Let n ≥ 14 , T = Tn(2, 2|2, 2) and P = Pn(2, 6, n− 9) , as before. Then

(1). m(T, 2)−m(P, 2) = −1 .

(2). If n is even with n = 2k + 2 , then m(T, k)−m(P, k) = 1 .

(3). If n is odd with n = 2k + 3 , then m(T, k)−m(P, k) = n−17
2

.

Proof. (1). Take k = 2 in (2.6) and using (2.3), we obtain (1).

(2). Since n = 2k + 2 and Pn−6(2, 2, n− 11) has a (unique) perfect matching when n

is even, we have

m(Pn−6(2, 2, n− 11), k − 2) = m(P2k−4(2, 2, 2k − 9), k − 2) = 1 .

Thus by (2.6), (2.1) and (2.3),

m(T, k)−m(P, k) = m(2k − 10, k − 4) + 2m(2k − 10, k − 5)− 1 = 0 + 2− 1 = 1 .

(3). First note that when r is even, then Pr(1, 2, r − 4) has a perfect matching and

thus m(Pr(1, 2, r − 4), r/2) = 1 .

Now n = 2k+3 . Take the pendent edge in a pendent path of length 2 in Pn−6(2, 2, n−

11) and use Lemma 2.1 , we have by the above note and (2.2) that

m(Pn−6(2, 2, n− 11), k − 2) = m(Pn−7(1, 2, n− 11), k − 2) +m(n− 8, k − 3)

=1 +m(2k − 5, k − 3) = 1 + k − 2 = k − 1 .

So by (2.6), (2.3), and (2.2) we have:

m(T, k)−m(P, k) = m(2k − 9, k − 4) + 2m(2k − 9, k − 5)− (k − 1)

=0 + 2(k − 4)− (k − 1) = k − 7 =
n− 17

2
.

Remark: From results (1) and (2) we can see that T and P are quasi-order incomparable

when n is even with n ≥ 14 ;

From results (1) and (3) we can see that T and P are quasi-order incomparable when

n is odd with n ≥ 19 .

Finally, we propose the following conjecture:

Conjecture 2. E(Pn(2, 6, n− 9)) > E(Tn)(2, 2|2, 2) for all n ≥ 14

By Theorem 1.1 ([9]), we see that if this Conjecture 2 is true, then Conjecture 1 (on

the tree with the fourth greatest energy), proposed in [6] would also be true.
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