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Abstract

In [6], Ivan Gutman et al. conjectured that the tree P,(2,6,n—9) of order n > 14 has
the fourth greatest energy among all trees of order n. By using the method of “quasi-order
<", two of the present authors [8] claimed to have proved this conjecture by showing that
T < P,(2,6,n —9) for all trees T of order n with T" ¢ {P,, P,(2,2,n — 5), P,(2,4,n —
7), Pu(2,6,n—9)}, where P, , P,(2,2,n—5) and P,(2,4,n—7) are known to be the trees of
order n with the first, second and third greatest energies. In this paper, we show that the
trees T,,(2,2]2,2) and P,(2,6,n — 9) are quasi-order incomparable, thus the above result
T < P,(2,6,n—9) is not true for ' = T,,(2,2|2,2) . In this sense, the conjecture proposed
in [6] has not been settled yet, and it cannot be settled by only using the quasi-order
method.

1 Introduction

Let T be a tree of order n with a unique vertex v of degree at least 3. Then it

can be easily seen that 7" must be a tree consisting of some internally disjoint pendent
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paths starting from v. Suppose that the lengths of these pendent paths are positive
integers ai, ..., a, , then we denote this tree T by P, (a1, as,...,a,) (or sometimes simply
P(ay,as,...,a,)), where a; +as + -+ -+ a, =n — 1 (see Fig 1.1(a) for P,(2,6,n — 9)).
Let Ty(a,blc,d) be the tree of order n obtained by attaching two pendent paths of
lengths @ and b to one end vertex of the path P, , , . 4 and attaching two pendent
paths of lengths ¢ and d to another end vertex of the path P, _,_y_._q, where a, b, ¢, d are

all positive integers (see Fig. 1.1(b)).

Fig. 1.1 P,(2,6,n —9) and T,(a,b|c, d)

Let G be a simple graph with n vertices and A be its adjacency matrix. The energy
of G, denoted by E(G), is defined [3, 4] to be the sum of the absolute values of all the n
eigenvalues of A.

Let m(G, k) be the number of k-matchings of G [1]. For a forest 7" with n vertices,

its energy can be expressed by the following Coulson integral formula [5]:

e [n/2]

E(T) = % / % In Z m(T, k)z* | dx . (1.1)

The fact that E(T) is a strictly monotonically increasing function of all the matching
numbers m(T, k) (k= 0,1,2,...,|n/2]) is an obvious consequence of the formula (1.1).
This in turn provides a way of comparing the energies of a pair of forests, and yields the
following definition of the quasi-order relation < (Gutman [2]) on the set of all forests

(acyclic graphs) with n vertices.

Definition 1.1. Let T} and T be two forests of order n. If m(Ti, k) < m(T», k) for all
kE=0,1,...,|[n/2], then we write that T} < T5.

Furthermore, if T} < Ty and there exists at least one index j such that m(73,7j) <

m(Ty,7), then we write that Ty < Ty .

If m(Ty, k) = m(Ta, k) for all k (i. e., if T) < Ts < T1), then we write T} ~ Ty
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According to the Coulson integral formula (1.1), we can easily see the following rela-

tions between < and the energies for two forests 7} and 75 of order n:
T1 =< TQ = E(Tl) < E(T2)7 and T1 < T2 = E(Tl) < E(Tg)

Many results on the maximal energy have been obtained for trees. For example, In
[2], Gutman determined that the first and second maximal energy trees of order n are P,
and P,(2,2,n — 5), respectively. N. Li and S. Li [7] determined that the third maximal
energy tree is P,(2,4,n — 7). Gutman et al. [6] also proposed the following conjecture
about the fourth maximal energy tree of order n (Here we only quote the conjecture for

the cases n > 10):

Conjecture 1. Forn = 11, the fourth mazimal energy tree is Pi1(2,3,5); For n = 13,
the fourth mazimal energy tree is Py3(4,4,4); For n = 10,12 and n > 14, the fourth

mazimal energy tree is P,(2,6,n —9).

The main result of [8] (Theorem 3.6 in [8]) is:

(x) Let T be a tree of order n > 14, which is not in {P,, P,(2,2,n—-5),
P,(2,4n—-7), P,(2,6,n—9)}. Then T < P,(2,6,n—-9).

It is obvious that an affirmative answer to Conjecture 1 for n > 14 would follow
directly from the above assertion (x).

In this paper, we will show that the trees 7,,(2, 2|2, 2) (which is not in {P,, P,(2,2,n—
5), Pu(2,4,n —T), P,(2,6,n —9)}) and P,(2,6,n —9) are quasi-order incomparable, thus
the result T' < P,(2,6,n —9) in assertion (*) is not true for the tree T'=T,(2,2(2,2). In
this sense, we think that the Conjecture 1 for the case n > 14 has not been settled yet.

Up to now, the latest result about the Conjecture 1 is the following:

Theorem 1.1. [9] If n > 14, then the fourth mazimal energy tree of order n is one of
the two trees P,(2,6,n —9) and T,(2,2(2,2).
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2 Incomparability of T,(2,2|2,2) and P,(2,6,n —9)

In this section, we show that the two tress T,(2,2|2,2) and P,(2,6,n — 9) of order n
are quasi-order incomparable for all even n with n > 10, and all odd n with n > 19.
Let P, be the path with n vertices and let m(n, k) = m(P,, k). Then the following

special values and recurrence relation for m(n, k) can be easily obtained:

m(n,0) =1

m(n,1)=n—1

m(2k, k) =1 (2.1)

m(2k+1,k)=k+1 (2.2)

m(n,k) =0 (@(ifk <0or 2k >n) (2.3)

m(n, k) =m(n —1,k) +m(n—2,k—1) (n>3). (2.4)
Here we assume that m(G, k) = 0 for all negative integers k .
Lemma 2.1. [5] Let e = uv be an edge of a graph G . Then:

m(G, k) =m(G —e, k) + m(G—u—v,k—1).
O

By taking G = P, U P, and e to be the edge in P, we can easily obtain from Lemma
2.1:
m(Py U P, k) =m(r, k) +m(r,k—1) . (2.5)

Lemma 2.2. Letn > 8, G = P,(2,2,n —5) and G = P,(1,2,n —4). Then:
m(G, k) —m(G k) =m(n—T7,k—3) .

Proof. Take an edge ¢ = uv in G and an edge ¢’ = u'v" in G as in Fig. 2.1.

Fig. 2.1 G = P,(2,2,n —5) and G’ = P,(1,2,n — 4)
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Then we have G —e = G' — ¢ . Thus by Lemma 2.1 and the recurrence relation (2.4),

we have:

m(G k) —m(G k) =m(G—u—v.k—1)—m(G —u —v k—1)
=m(P,UP, 5, k—1)—m(n—4,k—1)
=m(n—>5k—2)+m(n—5k—1)—m(n—4,k—1)
=m(n—>5k—2)—m(n—06,k—2)=m(n—"7,k—3).

Lemma 2.3. Let n > 12, G = P,(2,2,n—5) and G' = P,(2,4,n — 7). Then:
m(G, k) —m(G', k) = m(n — 10,k —4) .

Proof. Take an edge e = uv in G and an edge ¢ = u'v" in G as in Fig 2.2.

Po_» u v
Fig. 2.2 G = P,(2,2,n —5) and G' = P,(2,4,n —7)
Then we have G — e = G’ —¢'. Thus by Lemma 2.1 and Lemma 2.2,

m(G, k) —m(G k) =m(G—u—v,k—1)—m(G —u —v', k—1)
=m(P, 3(2,2,n—8),k—1)—m(P, 3(1,2,n—7),k—1)
=m(n—10,k—4) .

Here the last equation follows from Lemma 2.2. |
Lemma 2.4. Letn > 14, T =T,(2,2/2,2) and P = P,(2,6,n —9). Then:
m(T, k)—m(P, k) = m(n—12, k—4)+2m(n—12, k—5)—m(P,—6(2,2,n—11), k—2) . (2.6)

Proof. Take an edge e = wv in T and ¢ = u'v' in P as in Fig. 2.3.
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) e
[ ’ ’
7 it P, P u v
Fig. 2.3 The edges e in 7" and €' in P
Then we have
T—e=P,UP, »(2,2,n—17) P—¢ =P UP, 52,4,n—9)
T—u—v=P UPUP, 5(2,2,n— 10) P—u —v =P UP, 5(2,3,n—9).
Now by (2.5) and Lemma 2.3,
m(T — e, k) —m(P —¢€ k)
k
Z [m(P,—2(2,2,n—7),i) — m(P,_2(2,4,n — 9),1)]
i=k—1
k
= m(n—12,i —4) =m(n — 12,k —4) + m(n — 12,k - 5) . (2.7)

i=k—1
By taking the pendant edge in a pendant path of length 3 in P, 3(2,3,n — 9) and using
Lemma 2.1, we obtain

m(P,—3(2,3,n—9),k — 1) = m(P_4(2,2,n = 9),k — 1) + m(P,_5(1,2,n = 9)) . (2.8)

By (2.5), (2.8), Lemma 2.2, and Lemma 2.1 we also have
m(T —u—vk—1)—m(P—u —v k—1)

=m(Py U Py_5(2,2,n — 10), k — 1) — m(Pp_s(2,3,n — 9), k — 1)
=[m(P,-5(2,2,n —10),k — 1) + m(P,_5(2,2,n — 10), k — 2)]
—[m(P,—4(2,2,n —9),k — 1) + m(P,_5(1,2,n — 9), k — 2)] (2.9)
=[m(P,—5(2,2,n —10),k — 1) = m(P,_4(2,2,n — 9), k — 1)]
+[m(Po-5(2,2,n —10), k — 2) — m(P,—5(1,2,n — 9), k — 2)]
=—m(P,—(2,2,n —11),k — 2) + m(n — 12,k — 5) .

Now adding (2.7), (2.9) and using Lemma 2.1 we obtain (2.6). |
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Theorem 2.1. Let n > 14, T =1T,(2,2(2,2) and P = P,(2,6,n—9), as before. Then
(1). m(T,2) —m(P,2) = —1.
(2). If n is even with n = 2k + 2, then m(T, k) — m(P, k) = 1.
(3). If n is odd with n =2k + 3, then m(T, k) — m(P, k) = "7 .
Proof. (1). Take k =2 in (2.6) and using (2.3), we obtain (1).

(2). Since n = 2k + 2 and P, _¢(2,2,n — 11) has a (unique) perfect matching when n
is even, we have

m(P,_¢(2,2,n — 11),k — 2) = m(Pay,—4(2,2,2k — 9),k —2) =1 .

Thus by (2.6), (2.1) and (2.3),

m(T, k) — m(P, k) = m(2k — 10,k —4) + 2m(2k — 10,k —5) —1=0+2—1=1.

(3). First note that when r is even, then P,(1,2,7 —4) has a perfect matching and
thus m(P.(1,2,7 —4),r/2) =1.

Now n = 2k+3. Take the pendent edge in a pendent path of length 2 in P, _4(2,2,n—
11) and use Lemma 2.1 , we have by the above note and (2.2) that

m(P,_¢(2,2,n —11),k — 2) = m(P,_7(1,2,n — 11),k — 2) + m(n — 8,k — 3)
=1+m(2k—-5k-3)=14+k—-2=k—1.

So by (2.6), (2.3), and (2.2) we have:

m(T, k) —m(P, k) =m(2k — 9,k —4) +2m(2k — 9,k — 5) — (k — 1)
:0+2(k:—4)—(k—1):k—?:n;N.

O

Remark: From results (1) and (2) we can see that T and P are quasi-order incomparable
when n is even with n > 14;

From results (1) and (3) we can see that T and P are quasi-order incomparable when
n is odd with n > 19.

Finally, we propose the following conjecture:
Conjecture 2. E(P,(2,6,n—9)) > E(T,)(2,2]2,2) for alln > 14

By Theorem 1.1 ([9]), we see that if this Conjecture 2 is true, then Conjecture 1 (on

the tree with the fourth greatest energy), proposed in [6] would also be true.
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