On a Conjecture on the Tree with Fourth Greatest Energy*

Hai-Ying Shan ${ }^{a}$, Jia-Yu Shao ${ }^{a \dagger}$, Shuchao Li ${ }^{b}$, Xuechao Li^{c}
${ }^{a}$ Department of Applied Mathematics, Tongji University, Shanghai, 200092, P. R. China
${ }^{b}$ Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
${ }^{c}$ Division of Academic Enhancement, The University of Georgia, Athens, GA 306023 USA

(Received October 2, 2009)

Abstract

In [6], Ivan Gutman et al. conjectured that the tree $P_{n}(2,6, n-9)$ of order $n \geq 14$ has the fourth greatest energy among all trees of order n. By using the method of "quasi-order $\preccurlyeq "$, two of the present authors [8] claimed to have proved this conjecture by showing that $T \prec P_{n}(2,6, n-9)$ for all trees T of order n with $T \notin\left\{P_{n}, P_{n}(2,2, n-5), P_{n}(2,4, n-\right.$ 7), $\left.P_{n}(2,6, n-9)\right\}$, where $P_{n}, P_{n}(2,2, n-5)$ and $P_{n}(2,4, n-7)$ are known to be the trees of order n with the first, second and third greatest energies. In this paper, we show that the trees $T_{n}(2,2 \mid 2,2)$ and $P_{n}(2,6, n-9)$ are quasi-order incomparable, thus the above result $T \prec P_{n}(2,6, n-9)$ is not true for $T=T_{n}(2,2 \mid 2,2)$. In this sense, the conjecture proposed in [6] has not been settled yet, and it cannot be settled by only using the quasi-order method.

1 Introduction

Let T be a tree of order n with a unique vertex v of degree at least 3. Then it can be easily seen that T must be a tree consisting of some internally disjoint pendent

[^0]paths starting from v. Suppose that the lengths of these pendent paths are positive integers a_{1}, \ldots, a_{r}, then we denote this tree T by $P_{n}\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ (or sometimes simply $\left.P\left(a_{1}, a_{2}, \ldots, a_{r}\right)\right)$, where $a_{1}+a_{2}+\cdots+a_{r}=n-1\left(\right.$ see Fig 1.1(a) for $\left.P_{n}(2,6, n-9)\right)$.

Let $T_{n}(a, b \mid c, d)$ be the tree of order n obtained by attaching two pendent paths of lengths a and b to one end vertex of the path $P_{n-a-b-c-d}$ and attaching two pendent paths of lengths c and d to another end vertex of the path $P_{n-a-b-c-d}$, where a, b, c, d are all positive integers (see Fig. 1.1(b)).

Fig. 1.1 $P_{n}(2,6, n-9)$ and $T_{n}(a, b \mid c, d)$

Let G be a simple graph with n vertices and A be its adjacency matrix. The energy of G, denoted by $E(G)$, is defined $[3,4]$ to be the sum of the absolute values of all the n eigenvalues of A.

Let $m(G, k)$ be the number of k-matchings of G [1]. For a forest T with n vertices, its energy can be expressed by the following Coulson integral formula [5]:

$$
\begin{equation*}
E(T)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \ln \left(\sum_{k=0}^{\lfloor n / 2\rfloor} m(T, k) x^{2 k}\right) d x . \tag{1.1}
\end{equation*}
$$

The fact that $E(T)$ is a strictly monotonically increasing function of all the matching numbers $m(T, k)(k=0,1,2, \ldots,\lfloor n / 2\rfloor)$ is an obvious consequence of the formula (1.1). This in turn provides a way of comparing the energies of a pair of forests, and yields the following definition of the quasi-order relation \preccurlyeq (Gutman [2]) on the set of all forests (acyclic graphs) with n vertices.

Definition 1.1. Let T_{1} and T_{2} be two forests of order n. If $m\left(T_{1}, k\right) \leq m\left(T_{2}, k\right)$ for all $k=0,1, \ldots,\lfloor n / 2\rfloor$, then we write that $T_{1} \preccurlyeq T_{2}$.

Furthermore, if $T_{1} \preccurlyeq T_{2}$ and there exists at least one index j such that $m\left(T_{1}, j\right)<$ $m\left(T_{2}, j\right)$, then we write that $T_{1} \prec T_{2}$.

If $m\left(T_{1}, k\right)=m\left(T_{2}, k\right)$ for all k (i. e., if $\left.T_{1} \preccurlyeq T_{2} \preccurlyeq T_{1}\right)$, then we write $T_{1} \sim T_{2}$.

According to the Coulson integral formula (1.1), we can easily see the following relations between \preccurlyeq and the energies for two forests T_{1} and T_{2} of order n :

$$
T_{1} \preceq T_{2} \Rightarrow E\left(T_{1}\right) \leq E\left(T_{2}\right), \quad \text { and } \quad T_{1} \prec T_{2} \Rightarrow E\left(T_{1}\right)<E\left(T_{2}\right)
$$

Many results on the maximal energy have been obtained for trees. For example, In [2], Gutman determined that the first and second maximal energy trees of order n are P_{n} and $P_{n}(2,2, n-5)$, respectively. N. Li and $\mathrm{S} . \mathrm{Li}[7]$ determined that the third maximal energy tree is $P_{n}(2,4, n-7)$. Gutman et al. [6] also proposed the following conjecture about the fourth maximal energy tree of order n (Here we only quote the conjecture for the cases $n \geq 10$):

Conjecture 1. For $n=11$, the fourth maximal energy tree is $P_{11}(2,3,5)$; For $n=13$, the fourth maximal energy tree is $P_{13}(4,4,4)$; For $n=10,12$ and $n \geq 14$, the fourth maximal energy tree is $P_{n}(2,6, n-9)$.

The main result of [8] (Theorem 3.6 in [8]) is:
(*) Let T be a tree of order $\mathrm{n} \geq 14$, which is not in $\left\{\mathrm{P}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}(2,2, \mathrm{n}-5)\right.$, $\left.\mathrm{P}_{\mathrm{n}}(2,4, \mathrm{n}-7), \mathrm{P}_{\mathrm{n}}(2,6, \mathrm{n}-9)\right\}$. Then $\mathrm{T} \prec \mathrm{P}_{\mathrm{n}}(2,6, \mathrm{n}-9)$.

It is obvious that an affirmative answer to Conjecture 1 for $n \geq 14$ would follow directly from the above assertion (*).

In this paper, we will show that the trees $T_{n}(2,2 \mid 2,2)$ (which is not in $\left\{P_{n}, P_{n}(2,2, n-\right.$ 5), $\left.\left.P_{n}(2,4, n-7), P_{n}(2,6, n-9)\right\}\right)$ and $P_{n}(2,6, n-9)$ are quasi-order incomparable, thus the result $T \prec P_{n}(2,6, n-9)$ in assertion $(*)$ is not true for the tree $T=T_{n}(2,2 \mid 2,2)$. In this sense, we think that the Conjecture 1 for the case $n \geq 14$ has not been settled yet.

Up to now, the latest result about the Conjecture 1 is the following:
Theorem 1.1. [9] If $n \geq 14$, then the fourth maximal energy tree of order n is one of the two trees $P_{n}(2,6, n-9)$ and $T_{n}(2,2 \mid 2,2)$.

2 Incomparability of $\mathrm{T}_{\mathrm{n}}(2,2 \mid 2,2)$ and $\mathrm{P}_{\mathrm{n}}(2,6, \mathrm{n}-9)$

In this section, we show that the two tress $T_{n}(2,2 \mid 2,2)$ and $P_{n}(2,6, n-9)$ of order n are quasi-order incomparable for all even n with $n \geq 10$, and all odd n with $n \geq 19$.

Let P_{n} be the path with n vertices and let $m(n, k)=m\left(P_{n}, k\right)$. Then the following special values and recurrence relation for $m(n, k)$ can be easily obtained:

$$
\begin{align*}
& m(n, 0)=1 \\
& m(n, 1)=n-1 \\
& m(2 k, k)=1 \tag{2.1}\\
& m(2 k+1, k)=k+1 \tag{2.2}\\
& m(n, k)=0 \quad(\text { if } k<0 \text { or } 2 k>n) \tag{2.3}\\
& m(n, k)=m(n-1, k)+m(n-2, k-1) \quad(n \geq 3) . \tag{2.4}
\end{align*}
$$

Here we assume that $m(G, k)=0$ for all negative integers k.
Lemma 2.1. [5] Let $e=u v$ be an edge of a graph G. Then:

$$
m(G, k)=m(G-e, k)+m(G-u-v, k-1) .
$$

By taking $G=P_{2} \cup P_{r}$ and e to be the edge in P_{2}, we can easily obtain from Lemma 2.1:

$$
\begin{equation*}
m\left(P_{2} \cup P_{r}, k\right)=m(r, k)+m(r, k-1) . \tag{2.5}
\end{equation*}
$$

Lemma 2.2. Let $n \geq 8, G=P_{n}(2,2, n-5)$ and $G^{\prime}=P_{n}(1,2, n-4)$. Then:

$$
m(G, k)-m\left(G^{\prime}, k\right)=m(n-7, k-3) .
$$

Proof. Take an edge $e=u v$ in G and an edge $e^{\prime}=u^{\prime} v^{\prime}$ in G^{\prime} as in Fig. 2.1.

Fig. 2.1 $G=P_{n}(2,2, n-5)$ and $G^{\prime}=P_{n}(1,2, n-4)$

Then we have $G-e=G^{\prime}-e^{\prime}$. Thus by Lemma 2.1 and the recurrence relation (2.4), we have:

$$
\begin{aligned}
m(G, k)-m\left(G^{\prime}, k\right) & =m(G-u-v, k-1)-m\left(G^{\prime}-u^{\prime}-v^{\prime}, k-1\right) \\
& =m\left(P_{2} \cup P_{n-5}, k-1\right)-m(n-4, k-1) \\
& =m(n-5, k-2)+m(n-5, k-1)-m(n-4, k-1) \\
& =m(n-5, k-2)-m(n-6, k-2)=m(n-7, k-3) .
\end{aligned}
$$

Lemma 2.3. Let $n \geq 12, G=P_{n}(2,2, n-5)$ and $G^{\prime}=P_{n}(2,4, n-7)$. Then:

$$
m(G, k)-m\left(G^{\prime}, k\right)=m(n-10, k-4) .
$$

Proof. Take an edge $e=u v$ in G and an edge $e^{\prime}=u^{\prime} v^{\prime}$ in G^{\prime} as in Fig 2.2.

Fig. 2.2 $G=P_{n}(2,2, n-5)$ and $G^{\prime}=P_{n}(2,4, n-7)$
Then we have $G-e=G^{\prime}-e^{\prime}$. Thus by Lemma 2.1 and Lemma 2.2,

$$
\begin{aligned}
m(G, k)-m\left(G^{\prime}, k\right) & =m(G-u-v, k-1)-m\left(G^{\prime}-u^{\prime}-v^{\prime}, k-1\right) \\
& =m\left(P_{n-3}(2,2, n-8), k-1\right)-m\left(P_{n-3}(1,2, n-7), k-1\right) \\
& =m(n-10, k-4)
\end{aligned}
$$

Here the last equation follows from Lemma 2.2.
Lemma 2.4. Let $n \geq 14, T=T_{n}(2,2 \mid 2,2)$ and $P=P_{n}(2,6, n-9)$. Then:

$$
\begin{equation*}
m(T, k)-m(P, k)=m(n-12, k-4)+2 m(n-12, k-5)-m\left(P_{n-6}(2,2, n-11), k-2\right) . \tag{2.6}
\end{equation*}
$$

Proof. Take an edge $e=u v$ in T and $e^{\prime}=u^{\prime} v^{\prime}$ in P as in Fig. 2.3.

Fig. 2.3 The edges e in T and e^{\prime} in P

Then we have

$$
\begin{array}{ll}
T-e=P_{2} \cup P_{n-2}(2,2, n-7) & P-e^{\prime}=P_{2} \cup P_{n-2}(2,4, n-9) \\
T-u-v=P_{1} \cup P_{2} \cup P_{n-5}(2,2, n-10) & P-u^{\prime}-v^{\prime}=P_{1} \cup P_{n-3}(2,3, n-9) .
\end{array}
$$

Now by (2.5) and Lemma 2.3,

$$
\begin{align*}
& m(T-e, k)-m\left(P-e^{\prime}, k\right) \\
= & \sum_{i=k-1}^{k}\left[m\left(P_{n-2}(2,2, n-7), i\right)-m\left(P_{n-2}(2,4, n-9), i\right)\right] \\
= & \sum_{i=k-1}^{k} m(n-12, i-4)=m(n-12, k-4)+m(n-12, k-5) . \tag{2.7}
\end{align*}
$$

By taking the pendant edge in a pendant path of length 3 in $P_{n-3}(2,3, n-9)$ and using Lemma 2.1, we obtain

$$
\begin{equation*}
m\left(P_{n-3}(2,3, n-9), k-1\right)=m\left(P_{n-4}(2,2, n-9), k-1\right)+m\left(P_{n-5}(1,2, n-9)\right) . \tag{2.8}
\end{equation*}
$$

By (2.5), (2.8), Lemma 2.2, and Lemma 2.1 we also have

$$
\begin{align*}
& m(T-u-v, k-1)-m\left(P-u^{\prime}-v^{\prime}, k-1\right) \\
= & m\left(P_{2} \cup P_{n-5}(2,2, n-10), k-1\right)-m\left(P_{n-3}(2,3, n-9), k-1\right) \\
= & {\left[m\left(P_{n-5}(2,2, n-10), k-1\right)+m\left(P_{n-5}(2,2, n-10), k-2\right)\right] } \\
- & {\left[m\left(P_{n-4}(2,2, n-9), k-1\right)+m\left(P_{n-5}(1,2, n-9), k-2\right)\right] } \tag{2.9}\\
= & {\left[m\left(P_{n-5}(2,2, n-10), k-1\right)-m\left(P_{n-4}(2,2, n-9), k-1\right)\right] } \\
+ & {\left[m\left(P_{n-5}(2,2, n-10), k-2\right)-m\left(P_{n-5}(1,2, n-9), k-2\right)\right] } \\
= & -m\left(P_{n-6}(2,2, n-11), k-2\right)+m(n-12, k-5) .
\end{align*}
$$

Now adding (2.7), (2.9) and using Lemma 2.1 we obtain (2.6).

Theorem 2.1. Let $n \geq 14, T=T_{n}(2,2 \mid 2,2)$ and $P=P_{n}(2,6, n-9)$, as before. Then (1). $m(T, 2)-m(P, 2)=-1$.
(2). If n is even with $n=2 k+2$, then $m(T, k)-m(P, k)=1$.
(3). If n is odd with $n=2 k+3$, then $m(T, k)-m(P, k)=\frac{n-17}{2}$.

Proof. (1). Take $k=2$ in (2.6) and using (2.3), we obtain (1).
(2). Since $n=2 k+2$ and $P_{n-6}(2,2, n-11)$ has a (unique) perfect matching when n is even, we have

$$
m\left(P_{n-6}(2,2, n-11), k-2\right)=m\left(P_{2 k-4}(2,2,2 k-9), k-2\right)=1
$$

Thus by (2.6), (2.1) and (2.3),

$$
m(T, k)-m(P, k)=m(2 k-10, k-4)+2 m(2 k-10, k-5)-1=0+2-1=1
$$

(3). First note that when r is even, then $P_{r}(1,2, r-4)$ has a perfect matching and thus $m\left(P_{r}(1,2, r-4), r / 2\right)=1$.

Now $n=2 k+3$. Take the pendent edge in a pendent path of length 2 in $P_{n-6}(2,2, n-$ 11) and use Lemma 2.1, we have by the above note and (2.2) that

$$
\begin{aligned}
& m\left(P_{n-6}(2,2, n-11), k-2\right)=m\left(P_{n-7}(1,2, n-11), k-2\right)+m(n-8, k-3) \\
= & 1+m(2 k-5, k-3)=1+k-2=k-1 .
\end{aligned}
$$

So by (2.6), (2.3), and (2.2) we have:

$$
\begin{aligned}
& m(T, k)-m(P, k)=m(2 k-9, k-4)+2 m(2 k-9, k-5)-(k-1) \\
= & 0+2(k-4)-(k-1)=k-7=\frac{n-17}{2} .
\end{aligned}
$$

Remark: From results (1) and (2) we can see that T and P are quasi-order incomparable when n is even with $n \geq 14$;

From results (1) and (3) we can see that T and P are quasi-order incomparable when n is odd with $n \geq 19$.

Finally, we propose the following conjecture:
Conjecture 2. $E\left(P_{n}(2,6, n-9)\right)>E\left(T_{n}\right)(2,2 \mid 2,2)$ for all $n \geq 14$
By Theorem 1.1 ([9]), we see that if this Conjecture 2 is true, then Conjecture 1 (on the tree with the fourth greatest energy), proposed in [6] would also be true.

References

[1] C. D. Godsil, I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981) 137-144.
[2] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta 45 (1977) 79-87.
[3] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forsch. Graz 103 (1978) 1-22.
[4] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, SpringerVerlag, Berlin, 2001, pp. 196-211.
[5] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, SpringerVerlag, Berlin, 1986.
[6] I. Gutman, S. Radenković, N. Li, S. Li, Extremal energy trees, MATCH Commun. Math. Comput. Chem., 59 (2008) 315-320.
[7] N. Li, S. Li, On the extremal energies of trees, MATCH Commun. Math. Comput. Chem. 59 (2008) 291-314.
[8] S. Li, X. Li, The fourth maximal energy of acyclic graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 383-394.
[9] H. Y. Shan, J. Y. Shao, Graph energy change due to edge grafting operations and its applications, MATCH Commun. Math. Comput. Chem. 64 (2010) 25-40.

[^0]: *Research supported by National Natural Science Foundation of China 10601038, 10731040, and 10671081
 ${ }^{\dagger}$ Corresponding author. E-mail addresses: jyshao@sh163.net (Jia-Yu Shao)

