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Abstract

The energy of a graph is defined as the sum of the absolute values of all eigenvalues

of the graph. In this paper, we present some sharp lower bounds on the energy of

trees involving the domination number, and we also determine all extreme trees which

attain these lower bounds.

1 Introduction

Let G = (V,E) be a simple connected graph with vertex set V = {v1, v2, · · · , vn} and

edge set E. The adjacency matrix of G, A = [aij], is an n×n matrix, where aij = 1 if

vi and vj are adjacent and aij = 0, otherwise. Thus A is a real symmetric matrix with

zeros on the diagonal, and all eigenvalues of A are real. The characteristic polynomial

of G is just det(xI − A), denoted by Φ(G, x) or Φ(G). The eigenvalues of graph G,

are the eigenvalues of A.

We denote the path on n vertices by Pn. A pendent vertex of G is a vertex of

degree 1. A pendent path is a path whose inner vertices all have degree 2 and one

of its endvertices is a pendent vertex. A subdivision of an edge uv is obtained by
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removing edge uv, and adding a new vertex w, and adding edges uw and vw. A

matching of G is a set of mutually non-incident edges. k- matching is a matching of

order k. For a graph G = (V, E), we use N(u) to denote the set of vertices adjacent

to vertex u, and call a set U ⊆ V a vertex cover of E if every edge of G is incident

with a vertex in U . A dominating set of G is a set U ⊆ V such that U ∪N(U) = V ,

where N(U) = ∪u∈UN(u). The domination number is the smallest cardinality among

all dominating sets of G, denoted by γ(G). If G has no isolate vertex, then γ(G) ≤ n
2
.

A dominating set U of a graph G with |U | = γ(G) is called a γ- set.

It is useful to partition the vertices of G into three sets according to how their

removal affects γ(G). Let V (G) = V +(G) ∪̇ V 0(G) ∪̇ V −(G), for

V +(G) = {v ∈ V (G) : γ(G− v) > γ(G)},

V 0(G) = {v ∈ V (G) : γ(G− v) = γ(G)},

V −(G) = {v ∈ V (G) : γ(G− v) < γ(G)},

where G− v is the graph obtained from G by deleting the vertex v and all the edges

incident with v.

Note that removing a vertex can increase the domination number by more than

one, but can decrease it by at most one. For example, removing the center vertex of

the star K1,n−1 increase the domination number by n−2; and removing an endvertex

of the path P3k+1 (k ≥ 1) decrease the domination number by one.

Chemists have known that the experimental heats of formation of conjugated

hydrocarbons are closely related to the total π-electron energy. And the calculation

of the total energy of all π-electrons in a conjugated hydrocarbon can be reduced

(within the framework of the HMO approximation [5]) to E(G) = |λ1(G)|+ |λ2(G)|+
· · · + |λn(G)|, where λi(G) are the eigenvalues of the corresponding graph. For an

acyclic graph (or a tree) T this energy is also expressible in terms of the Coulson

integral formula (in [5]) as

E(T ) =
2

π

+∞∫
0

x−2 ln

⎡⎣1 + �n
2
	∑

k=1

m(T, k)x2k

⎤⎦ dx

where m(T, k) is the number of k-matchings of T .
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The fact that E(T ) is a strictly monotonically increasing function of all matching

numbers m(T, k) , k = 0, 1, . . . , �n/2� , provides us with a way of comparing the

energies of trees.

There are numerous bounds on the energy of a graph [7]–[10]. Most of them only

involve the number of vertices and edges of graphs. Very little is known about bounds

for energy of a graph with domination number. However, the relationship between

the domination number and adjacency spectral radius or Laplacian spectral radius

are described in [11], [12].
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Fig. 1. T (n, γ)

Motivated by all these works, in the present paper, we are devoted to find some

sharp lower bounds for the energy of trees involving the domination number. In

order to formulate our main results, we need to define a tree T (n, γ) (where n ≥ 2γ)

which was named (in [4]) wounded spider. T (n, γ) is the tree obtained by subdividing

exactly γ − 1 edges of the edges of the star K1,n−γ (as shown in Fig. 1.). We now

consider the following set of trees:

Tn,γ = {T : |V (T )| = n, γ(T ) = γ}.

It is easy to see that the following are equivalent:

(1) Tn,γ �= ∅,
(2) n ≥ 2γ,

(3) T (n, γ) is definable.

A natural question to ask is : How do we determine the trees in Tn,γ that have the

minimal energy? In Section 2, we mainly discuss this question and give the following

result.

Theorem 1.1 For any T ∈ Tn,γ,

E(T ) ≥ E(T (n, γ)).

Equality holds if and only if T = T (n, γ).
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In Section 3, we calculate the value of the energy of T (n, γ). Consequently, we

describe a sharp lower bound of the energy of a tree as a function of its order and

domination number as follows.

Theorem 1.2 Let T be a tree of order n, and γ be the domination number of T , then

E(T ) ≥ 2γ − 4 + 2

√
n− γ + 1 + 2

√
n− 2γ + 1.

Equality holds if and only if T = T (n, γ).

In Section 4, we give a more general form of Theorem 1.1.

2 The tree with minimum energy among all trees

in Tn,γ
We start this section with a quasi-ordering relation ”�” which was introduced by

Gutman in [6].

Definition 2.1 [6] Let G and G′ be two forests of order n, G � G′, if and only if

m(G, k) ≥ m(G′, k) for k = 1, 2, · · · , �n
2
�; G � G′ if and only if G � G′ and there is

a k(1 ≤ k ≤ �n
2
�) such that m(G, k) > m(G′, k).

Observation 2.1 Let G and G′ be two forests of order n, if G � G′, then E(G) ≥
E(G′); if G � G′, then E(G) > E(G′).

This observation follows from the Coulson integer formula definition for energy of

forests, and provides us with a way of comparing the energies of trees.

Lemma 2.1 [1] The maximum cardinality of a matching in a bipartite graph is equal

to the minimum cardinality of a vertex cover.

As a simple application of the above lemma, the assertion of the following lemma

holds.

Lemma 2.2 Let G be a bipartite graph without isolate vertex, and γ be the domina-

tion number of G, then G has a γ- matching.
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Lemma 2.3 [2] Let G be a forest of order n (n > 1) and G′ be a spanning subgraph

(respectively a proper spanning subgraph) of G. Then G′ � G (respectively G′ ≺ G).

Lemma 2.4 [2] Let T and T ′ be two trees. Suppose that uv(respectively u′v′ ) is a

pendent edge of T (respectively T ′ ) and u (respectively u′ ) is a pendent vertex of T

(respectively T ′ ). Let T1 = T−u, T2 = T−{u, v}, T ′
1 = T ′−u′ and T ′

2 = T ′−{u′, v′}.
If T ′

1 � T1 and T ′
2 ≺ T2 , or T ′

1 ≺ T1 and T ′
2 � T2 , then T ′ ≺ T .

Lemma 2.5 [3] Let e = uv be an edge of graph G of order n. The number m(G, k)

of k- matchings of G is determined by

m(G, k) = m(G− uv, k) +m(G− u− v, k − 1) for k = 1, 2, . . . ,
⌊n
2

⌋
where m(T, 0) = 1.

Lemma 2.6 [4] A vertex v ∈ V +(G) if and only if

(a) v is not an isolate vertex and is in every γ- set of G,

(b) no subset S ⊆ V − (N(v) ∪ {v}) with cardinality γ(G) dominates G− v.

We use P(G) to denote the set of all pendent vertices of G. The following is a

simple application of the above lemma.

Lemma 2.7 Let G be a connected graph, then P(G) ⊆ V 0(G) ∪ V −(G).

Proof. Since V (G) = V +(G) ∪̇ V 0(G) ∪̇ V −(G), we only need to show that for

any u ∈ P(G), u �∈ V +(G). By Lemma 2.6, it suffices to find a γ- set which does not

contain u.

If u is not in any γ- set, then we are done. If u is in some γ- set of G, write S.

Let v be the unique vertex adjacent to u in G, then (S − {u}) ∪ {v} is the γ- set as

required. �

Lemma 2.8 Let T be a tree, and P(T ) ⊆ V −(T ), then T has a pendent path of order

3.

Proof. Let P = uvw · · · s be a longest path of T , where u, s ∈ P(T ). For

P(T ) ⊆ V −(T ), γ(T − u) = γ − 1, and u is the unique pendent vertex in N(v).
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We now shall show that d(v) = 2. Otherwise, let x �∈ {u, w} be a neighbor of v,

by the preceding argument, x �∈ P(T ). Thus, x has a neighbor different from v, say

y. Note that T is a tree, y is not in the path P . Thus yxvPw is a path with longer

length, which contradicts the choice of P .

Therefore uvw is a pendent path of order 3. �

Now we are ready to prove the key lemma of this section.

Lemma 2.9 For any T ∈ Tn,γ (where n ≥ 2γ), we have T � T (n, γ), and equality

holds if and only if T = T (n, γ).

Proof. The proof is induction on n, the order of T .

When n = 2, then for γ ≤ n
2
= 1, the assertion is trivial. We now assume that

n ≥ 3 and the assertion holds for smaller values of n and all γ ≤ n
2
.

For |T | = n, when γ = 1, there is nothing to prove since T is a star K1,n−1. Now

we assume our result holds for trees with order n and domination number less than

γ.

According to Lemma 2.7, we distinguish between the following two cases.

Case 1. If P(T ) ∩ V 0(T ) �= ∅.
Let u ∈ P(T ) ∩ V 0(T ). Since γ(T − u) = γ, T − u ∈ Tn−1,γ, and Tn−1,γ �= ∅. By

induction hypothesis,

T − u � T (n− 1, γ) = T (n, γ)− u0 (1),

where u0 is a pendent vertex of T (n, γ) as shown in Fig. 1.

Let v be the unique vertex adjacent to u in T . By Lemma 2.2, T has a γ- matching,

thus T has a (γ − 1)- matching which does not contain v. Therefore, it follows that

T−u−v has a (γ−1)- matching, which implies T (n, γ)−u0−v0 = (γ−1)K2∪(n−2γ)K1

is a spanning subgraph of T − u− v. By Lemma 2.3, T − u− v � T (n, γ)− u0 − v0.

Combining the above with Lemma 2.4, we can get our result T � T (n, γ). If

the equality holds, then in (1), T − u = T (n − 1, γ). Suppose T �= T (n, γ), then

T (n, γ)−u0−v0 = (γ−1)K2∪(n−2γ)K1 is a proper spanning subgraph of T −u−v,

which implies that T � T (n, γ), a contradiction. Hence T = T (n, γ).

Case 2. If P(T ) ∩ V 0(T ) = ∅, i.e., P(T ) ⊆ V −(T ).
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By Lemma 2.8, T has a pendent path of order 3, write xyz, where x is a pendent

vertex. Then T − x− y is a tree, and for obvious reasons γ(T − x− y) = γ − 1. So

Tn−1,γ−1 �= ∅ and Tn−2,γ−1 �= ∅.
Now we use Lemma 2.5 by taking G = T , uv = xy, then

m(T, k) = m(T − xy, k) +m(T − x− y, k − 1)

= m(T − x, k) +m(T − x− y, k − 1)

≥ m(T (n− 1, γ − 1), k) +m(T (n− 2, γ − 1), k − 1) (2)

= m(T (n, γ), k).

Hence T � T (n, γ) as desired. Equality attained if and only if the equality in (2)

holds for every integer k , that is T −x = T (n−1, γ−1), T −x−y = T (n−2, γ−1).

Thus T = T (n, γ). �

Now we come to our main result in this section.

Theorem 2.1 For any T ∈ Tn,γ,

E(T ) ≥ E(T (n, γ)).

Equality holds if and only if T = T (n, γ).

Lemma 2.10 E(T (n, γ)) > E(T (n− 1, γ)).

Proof. T (n − 1, γ) ∪K1 is a proper spanning subgraph of T (n, γ), by Lemma 2.3,

E(T (n, γ)) > E(T (n− 1, γ) ∪K1) = E(T (n− 1, γ)). �

That is to say, E(T (n, γ)) is a strictly monotonically increasing function in the

variable n. Let Tγ be the set of trees with given domination number γ. Then for

any T ∈ Tγ, the number of the vertices of T is at least 2γ. These facts suggest us to

obtain the following result.

Corollary 2.1 Let T ∈ Tγ, then E(T ) ≥ E(T (2γ, γ)), and equality holds if and only

if T = T (2γ, γ).
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3 Some sharp lower bounds of energy of trees

based on the domination number

In this section, we give some sharp lower bounds for energy of trees based on the

domination number.

Lemma 3.1 [3] Let v be a pendent vertex of G and u be the vertex adjacent to v.

Then Φ(G, x) = xΦ(G− v, x)− Φ(G− u− v, x).

Lemma 3.2

E(T (n, γ)) = 2γ − 4 + 2

√
n− γ + 1 + 2

√
n− 2γ + 1 .

Proof. By Lemma 3.1, the characteristic polynomial of T (n, γ) is

Φ(T (n, γ)) = xn−2γ(x2 − 1)γ−2[x4 − (n− γ + 1)x2 + n− 2γ + 1].

Let x1 > 0, x2 > 0, −x1, −x2 be the roots of the equation of

x4 − (n− γ + 1)x2 + n− 2γ + 1 = 0.

By the relation between the roots and equation,

(x1 + x2)
2 = n− γ + 1 + 2

√
n− 2γ + 1

⇒ x1 + x2 =

√
n− γ + 1 + 2

√
n− 2γ + 1.

So we have E(T (n, γ)) = 2γ − 4 + 2
√
n− γ + 1 + 2

√
n− 2γ + 1. �

Combining Theorem 2.1 and Lemma 3.2, we can get a lower bound for the energy

of a tree according to its domination number and order.

Theorem 3.1 Let T be a tree of order n, and γ be the domination number of T , then

E(T ) ≥ 2γ − 4 + 2

√
n− γ + 1 + 2

√
n− 2γ + 1.

Equality holds if and only if T = T (n, γ).
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Observation 3.1 From the formula for the energy of T (n, γ), we can get the follow-

ing results:

(1). E(T (n, γ)) > E(T (n, γ − 1)), for all γ ≥ 2.

(2). E(T (n1, γ1)) > E(T (n2, γ2)), if n1 ≥ n2 and γ1 > γ2 ( or n1 > n2 and γ1 ≥ γ2).

(3). Let T be a tree of order n, then

E(T ) ≥ 2
√
n− 1.

Equality holds if and only if T = T (n, 1), i.e., T = K1,n−1.

(4). Let T be a non-star tree of order n, then

E(T ) ≥ 2

√
n− 1 + 2

√
n− 3.

Equality holds if and only if T = T (n, 2).

(5). Let T be a tree with domination number γ, then

E(T ) ≥ 2γ − 4 + 2
√

γ + 3.

Equality holds if and only if T = T (2γ, γ).

4 A more general form of Theorem 2.1

In this section, we turn to a general form of Theorem 2.1.

Definition 4.1 We define a tree HT (w) which consists of two trees H and T , where

H and T have a unique common vertex w.

Lemma 4.1 Let H be a tree with at least one edge, w ∈ V (H), and T be a tree

of order n. Hn(w) be the tree obtained from H by attaching n − 1 distinct pendent

edges (not in H) to w. Then HT (w) � Hn(w), and equality holds if and only if

HT (w) = Hn(w).

Proof. We proceed by induction on n, the order of T .

If n = 1, there is nothing to prove. Now we assume our result holds for smaller

values of n.
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Let u �∈ V (H) be a pendent vertex attached to w in Hn(w), x be a pendent vertex

of T , and y be the unique vertex adjacent to x in T . By induction hypothesis,

HT (w)− x � Hn−1(w) = Hn(w)− u. (3)

Since Hn(w)−u−w = (H−w)∪ (n−2)K1 is a spanning subgraph of HT (w)−x−y,

by Lemma 2.3, HT (w)− x− y � Hn(w)− u−w. Thus HT (w) � Hn(w) follows from

Lemma 2.4.

If the equality of the result holds, in (3), HT (w)−x = Hn−1(w). Suppose HT (w) �=
Hn(w), then y �= w. Since H has at least one edge, Hn(w)−u−w is a proper spanning

subgraph of HT (w)−x− y, and HT (w) � Hn(w), which yields a contradiction. Thus

HT (w) = Hn(w). �

Lemma 4.2 Let T ∈ Tn,γ (where n ≥ 2γ), and H be a tree with at least one edge.

Hn,γ(w) be the tree formed from H by attaching n−2γ+1 distinct pendent edges and

γ − 1 new pendent paths of length 2 to the vertex w of the tree H. Then HT (w) �
Hn,γ(w), and equality holds if and only if HT (w) = Hn,γ(w).

The proof of the above lemma is similar to that of Lemma 2.9. Only one step is

different: For |T | = n, when γ = 1, the result of the above lemma is not obvious, but

it could follow from Lemma 4.1.

Theorem 4.1 Let T ∈ Tn,γ (where n ≥ 2γ), and H be a tree with at least one edge.

Hn,γ(w) be the tree formed from H by attaching n−2γ+1 distinct pendent edges and

γ − 1 new pendent paths of length 2 to the vertex w of the tree H. Then

E(HT (w)) ≥ E(Hn,γ(w)),

and equality holds if and only if HT (w) = Hn,γ(w).

By Theorem 4.1, we can get a simple proof of Theorem 2.1, the details are left to the

reader. The following is a general form of Corollary 2.1.

Corollary 4.1 Let T ∈ Tγ, and H be a tree with at least one edge. H2γ,γ(w) be the

tree formed from H by attaching one pendent edge and γ − 1 new pendent paths of

length 2 to the vertex w of the tree H. Then

E(HT (w)) ≥ E(H2γ,γ(w)),
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and equality holds if and only if HT (w) = H2γ,γ(w).

Acknowledgment The authors are grateful to Professor Jia-Yu Shao for help-

ful discussions when this work was in the early stages of development. We also thank

the referee for his many valuable suggestions towards improving this paper.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory and Its Applications, MacMillan,

New York, 1976.

[2] W. G. Yan, L. Z. Ye, On the maximal energy and the Hosoya index of a type of

trees with many pendent vertices, MATCH Commun. Math. Comput. Chem. 53

(2005) 449–459.
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