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Abstract Three graph-transformations are introduced for maximizing
the total number of matchings of a graph, by which chemical trees that
have maximal energy and any prescribed maximum vertex-degree are
characterized. Orderings of n-vertex chemical trees are presented accord-
ing to their energy, some of which contain approximate n trees. Finally,
acyclic graphs with maximal energy but without perfect matchings are
also characterized.

1 Introduction

Let G be a graph of order n (n-vertex graph). Gutman defined in [1] the sum of the

absolute values of all eigenvalues of graph G as its energy, written as E(G), namely

E(G) =
n∑

k=1

|λk|,

where λk is the eigenvalue of graphG, or the eigenvalue of its adjacency matrixA(G). This

energy can be expressed in terms of Coulson function, for acyclic graphs the expression

is reduced to

E(G) =
2

π

+∞∫
0

x−2 ln

⎛⎝1 +

�n/2	∑
k=1

m(G, k)x2k

⎞⎠ dx (1)

where �n/2� is the integer part of n/2 and m(G, k) is the number of k-matchings, or

set of independent edges of order k, of graph G. It is known that the experimental
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heats of formation of conjugated hydrocarbons have a close relationship with their total

π-electron energy, and the calculation of the total π-electron energy of these conjugated

hydrocarbons can be reduced (within the framework of the HMO approximation [2]) to

the energy of the corresponding graph G.

Hosoya index of a graph G, written as Z(G), is defined as the total number of its

matchings [3], namely

Z(G) =

�n/2	∑
k=0

m(G, k) (2)

As a chemical structure descriptor, Hosoya index plays an important role in the so-called

inverse structure-property relationship problems, refer to [4] for example. From formulas

(1) and (2) we see that if n-vertex trees G and H satisfy m(G, k) ≤ m(H, k) for every

nonnegative integer k, then H has greater energy as well as Hosoya index than G. Results

on various graphs with extremal energy or Hosoya index are obtained in many works,

refer to [4-11] for example.

For maximizing the number of matchings, we introduce three graph-transformations

and their properties in section two and five. In section three, these transformations help

to characterize trees with any given maximum degree that have most k-matchings for

every nonnegative integer k. An ordering of n-vertex molecular trees with maximum-

degree three is presented in section four according to their energy, which contains as

many as approximate n trees at the best case. Section five characterizes even-order trees

with maximal energy but without perfect matching.

For graph-theoretical symbols and terminologies not defined here, we follow that of

[13].

2 Graph transformations

Let G be a graph and w be one of its vertex. If w has degree d(w) ≥ 3 and G\w, the graph
obtained by deleting vertex w from G, contains two path-components (components that

are paths) Pn = u1u2..un and Pm = v1v2...vm such that u1 and v1 is the unique neighbor of

w in Pn and Pm respectively, then G is called transformable at vertex w and w is called a

transformable vertex of G. Paths Pn and Pm are both called branches of G corresponding

to vertex w. In this section we present two graph-transformations: DB-transformation

and GSP-transformation, aiming to decrease the number of branches of the corresponding
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graph and increase the number of its i-matchings, where i ≥ 2.

Definition 2.1 Let G be a graph and w be one of its transformable vertex. If Pm

and Pn are two branches corresponding to w, delete the edge between Pm and w from G

and then join by an edge one endpoint of Pm to the endpoint of Pn that has degree 1 in

G. We call such process a DB-transformation at vertex w, meaning transformation for

decreasing branches.

The following figure 1 shows an example of DB-transformation.

Figure 1. DB-transformation
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DB-transformation

Definition 2.2 GSP-transformation at vertex w: perform as many as possible DB-

transformations at a transformable vertex w.

From the following example of GSP-transformation, we see that a generalized star

(the graph obtained from a star by attaching a path to every 1-degree vertex of this

star) of the original graph has been transformed into a path after it being performed a

GSP-transformation (transformation of generalized star into path).

Figure 2. GSP-transformation
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Lemma 2.3 Let G be a graph and w be one of its transformable vertex. If H is the

graph obtained by performing a DB-transformation at w, then m(G, k) ≥ m(H, k) holds

for every nonnegative integer k and the inequality strictly holds for some integer k.

To prove Lemma 2.3 we need to introduce another observation. Let G and T be two

graphs of the same order. Graph G is called m-smaller than T , written as G � T or

T � G, if m(G, k) ≤ m(T, k) holds for every nonnegative integer k [7, 14].

Lemma 2.4 [15] Let Pn be a path of order n = 4s+ r, 0 ≤ r ≤ 3. Then

Pn � P2 ∪ Pn−2 � P4 ∪ Pn−4 � · · · � P2s ∪ P2s+r � P2s+1 ∪ P2s+r−1

� P2s−1 ∪ P2s+r+1 � · · · � P3 ∪ Pn−3 � P1 ∪ Pn−1
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Proof of Lemma 2.3. We shall prove this lemma by induction on the number n of

branches corresponding to w. When n = 2, letN(w) = {u1, u2, ...us} be the neighborhood
of w, among which ui is in branch Bi for i = 1, 2; let x be the other endpoint of B2 (if

any). Assume without loss of generality that after the DB-transformation performed at

w, we get graph H = G−wu1 + u1x. Note that the k-matchings of G can be partitioned

into two classes: those that contain some edge wui with i ≥ 3 and those not. Since

the component of H − w − ui, i ≥ 3, that contains vertices u1 and u2 is a path, but

u1 and u2 are contained in different components of G − w − ui, it follows from Lemma

2.4 that m(B1 ∪ B2, i) ≤ m(B1 ∪ B2 + u1x, i) for every nonnegative integer i. And

so m(G − w − ui, k) ≤ m(H − w − ui, k) holds for every nonnegative integer k. Let

S = {wui|i = 3, 4, ..., s}. Then

m(G, k) =
s∑

i=3

m(G− w − ui, k − 1) +m(G− S, k)

≤
s∑

i=3

m(H − w − ui, k − 1) +m(H − S, k)

= m(H, k). (3)

We note here that m(B1 ∪ B2, 1) < m(B1 ∪ B2 + u1x, 1). The combination of this

observation and formula (3) confirms the truth of Lemma 2.3 in the case when n = 2.

Now assume that n ≥ 3 and Bi, i = 1, ..., n, are all the branches corresponding to

w with ui in Bi. By the induction assumption we have m(G \ Bn, i) ≤ m(H \ Bn, i) for

every nonnegative integer i, where G \Bn denotes the graph obtained by deleting all the

vertices of Bn fromG. And som(G−wun, k) ≤ m(H−wun, k) holds for every nonnegative

integer k. On the other hand, recalling that m(B1∪B2, i) ≤ m(B1∪B2+xu1, i), we have

m(G− w − un, k − 1) ≤ m(H − w − un, k − 1). Hence

m(G, k) = m(G− wun, k) +m(G− w − un, k − 1)

≤ m(H − wun, k) +m(H − w − un, k − 1) = m(H, k).

Lemma 2.3 follows from the above formula and the observation that m(B1 ∪ B2, 1) <

m(B1 ∪ B2 + xu1, 1). �
As a direct observation we have the following result.
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Theorem 2.5 If H is obtained by performing GSP-transformation at a vertex w of

graph G, thenm(G, k) ≤ m(H, k) holds for every nonnegative integer k and the inequality

strictly holds for some integer k. �

3 Extremal chemical trees with maximal energy and

prescribed maximum valency

In this section we employ DB-transformation and GSP-transformation to determine ex-

tremal chemical trees with maximal energy and any given maximum valency (vertex

degree). Let Ωk
n denote the collective of n-vertex trees obtained by pasting one endpoint

of k paths to a same isolated vertex respectively. Let ωk
n stand for the tree of Ωk

n such that

when n ≥ 2k + 2 every path pasted but one is of order three; when k + 1 ≤ n ≤ 2k + 1,

n − k − 1 paths pasted are of order three and every other path (if any) is of order two.

For clarity, we depict ωk
n as follows.

Figure 3. Tree ωk
n

k + 1 ≤ n ≤ 2k + 1
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Lemma 3.1 Let T be an n-vertex tree of maximum degree k. Then there is a tree

G ∈ Ωk
n such that m(T, i) ≤ m(G, i) for every nonnegative integer i.

Proof If T /∈ Ωk
n, then T contains a vertex w of degree at least three such that

after performing a GSP-transformation at w one gets a new tree T1 with Δ(T ) = Δ(T1),

where Δ(T ) represents the maximum degree of T . By Theorem 2.5, for every nonnegative

integer i we have m(T, i) ≤ m(T1, i). The lemma follows from induction on the number

of vertices that have degree at least three. �
Theorem 3.2 Let T be an n-vertex tree of maximum degree k. Then m(T, i) ≤

m(ωk
n, i) for every nonnegative integer i.

Proof By Lemma 3.1, it suffices to show that m(T, i) ≤ m(ωk
n, i) holds for any tree

T ∈ Ωk
n and every nonnegative integer i. If T ∈ Ωk

n but T �= ωk
n, let w be the maximum-

degree vertex, then T contains a branch Ps with s ≥ 3 when k + 1 ≤ n ≤ 2k + 1, or T

contains either a 1-vertex branch or at least two branches Pr and Pt with r, t ≥ 3 when

n ≥ 2k + 2.
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Case 1. k + 1 ≤ n ≤ 2k + 1.

When n = k + 1 or k + 2, since T ∈ Ωk
n it is obviously that T = ωk

n. And so, assume

n ≥ k + 3 in what follows. Let u be the endpoint of the branch Ps that is not adjacent

to w and v be the unique neighbor of u. Since vertex u is at distance at least three from

w, it follows that T −u ∈ Ωk
n−1 and T −u− v ∈ Ωk

n−2. By induction on n we deduce that

m(T − u, i) ≤ m(ωk
n−1, i) (4)

Since T − u − v contains a 1-vertex branch, performing a DB-transformation at w to

delete one 1-vertex branch and increase the length of Ps − u − v, by induction on n we

have

m(T − u− v, i− 1) ≤ m(ωk−1
n−2, i− 1) (5)

Combining this observation with formula (4), we have

m(T, i) = m(T − u, i) +m(T − u− v, i− 1)

≤ m(ωk
n−1, i) +m(ωk−1

n−2, i− 1) = m(ωk
n, i) (6)

Noticing that T−u−v �= ωk−1
n−2, from Lemma 2.3 we deduce that the inequality in formula

(5) strictly holds for some nonnegative integer i− 1. Hence the inequality in formula (6)

strictly holds for some nonnegative integer i and the theorem follows in this case.

Case 2. n ≥ 2k + 2.

If T contains at least two branches Pr and Pt of order at least three, let u be the

vertex of Pr with degree 1 in T and v be its unique vertex, then either T − u �= ωk
n−1 or

T − u− v �= ωk
n−2. By induction on n we have

m(T, i) = m(T − u, i) +m(T − u− v, i− 1)

≤ m(ωk
n−1, i) +m(ωk

n−2, i− 1) = m(ωk
n, i).

If T contains only one branch of order at least three and at least one 1-vertex branch,

defining u, v as before and considering that n ≥ 2k + 2 we conclude that T − u �= ωk
n−1.

And so, by induction assumption we deduce that

m(T, i) = m(T − u, i) +m(T − u− v, i− 1)

≤ m(ωk
n−1, i) +m(ωk

n−2, i− 1) = m(ωk
n, i)
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holds for every nonnegative integer and the inequality strictly holds for some integer i.

Theorem 3.2 follows from the above discussion. �
As a direct result we have

Corollary 3.3 Let T be an acyclic graph of order n and maximum degree k. Then

E(T ) ≤ E(ωk
n), with equality holding if and only if T = ωk

n. �
Remark Let 2T 2 denote the tree obtained by pasting an endpoint of path Pn−4 to the

middle vertex of P5 (refer to Figure 4). The authors obtain the following observation in

[9], which is clearly a special case of corollary 3.3 when k = 3.

Proposition [9] Let T be an acyclic graph of order n and maximum degree 3. Then

E(T ) ≤ E(2T 2), with the equality holding if and only if T= 2T 2.

4 Ordering of molecular trees

According to Corollary 3.3, for any molecular tree T that has maximum-degree three

there is a tree T ′ ∈ Ω3
n with E(T ) ≤ E(T ′). In this section, we consider the ordering of

these molecular trees. Let r, s, t be three positive integers and rT s
t be the tree obtained

by pasting respectively an endpoint of Pr+1, Ps+1, Pt+1 to a same isolated vertex, refer to

the following figure 4 for clarity.

� � � � � � ��
�
�
�

. . . . . .

...

Figure 4. Tree rT s
t

1 12 2. . . . . .r s

t
...
2

1

Lemma 4.1 Let T be a tree in Ω3
n and r be the minimum order of its branches. If r

is odd, let n− r − 1 = 4k + s with s ∈ {0, 1, 2, 3}, then for every nonnegative integer i,

m(rT r+1
n−2r−2, i) ≥ m(rT r+3

n−2r−4, i) ≥ m(rT r+5
n−2r−6, i)

≥ ... ≥ m(rT 2k
2k+s, i) (7)

≥ m(rT 2k+1
2k+s−1, i) ≥ m(rT 2k+3

2k+s−3, i)

≥ ... ≥ m(rT n−2r−1
r , i) (8)
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Proof Let w be the maximum-degree vertex and u be its neighbor in the component

of T − w that has order r. By Lemma 2.4, for every nonnegative integer l such that

r + 2l + 1 ≤ 2k − 2 we have

m(rT r+2l+1
n−2r−2l−2, i) =

m(rT r+2l+1
n−2r−2l−2 − wu, i) +m(rT r+2l+1

n−2r−2l−2 − w − u, i− 1)

= m(Pr ∪ Pn−r, i) +m(Pr−1 ∪ Pr+2l+1 ∪ Pn−2r−2l−2, i− 1)

≥ m(Pr ∪ Pn−r, i) +m(Pr−1 ∪ Pr+2l+3 ∪ Pn−2r−2l−4, i− 1)

= m(rT r+2l+3
n−2r−2l−4, i).

Formula (7) follows from above formula. Formula (8) follows from a similar reasoning,

and so we leave its proof to the readers. �
With similar technique employed in the proof of Lemma 4.1, one can prove with ease

the following lemma. And so, we leave its proof to the readers.

Lemma 4.2 Let T be a tree in Ω3
n and r be the minimum order of its branches. If r

is even, let n− r − 1 = 4k + s with s ∈ {0, 1, 2, 3}, then for every nonnegative integer i

m(rT r
n−2r−1, i) ≥ m(rT r+2

n−2r−3, i) ≥ m(rT r+4
n−2r−5, i) ≥ ... ≥ m(rT 2k

2k+s, i)

≥ m(rT 2k+1
2k+s−1, i) ≥ m(rT 2k+3

2k+s−3, i) ≥ ... ≥ m(rT n−2r−2
r+1 , i).

Theorem 4.3 Let T be a tree in Ω3
n and r be the minimum order of its branches, let

n− r − 1 = 4k + s with s ∈ {0, 1, 2, 3}.
(1) If r is odd then

E(rT r+1
n−2r−2) ≥ E(rT r+3

n−2r−4) ≥ E(rT r+5
n−2r−6) ≥ ... ≥ E(rT 2k

2k+s)

≥ E(rT 2k+1
2k+s−1) ≥ E(rT 2k+3

2k+s−3) ≥ ... ≥ E(rT n−2r−1
r )

(2) If r is even then

E(rT r
n−2r−1) ≥ E(rT r+2

n−2r−3) ≥ E(rT r+4
n−2r−5) ≥ ... ≥ E(rT 2k

2k+s)

≥ E(rT 2k+1
2k+s−1) ≥ E(rT 2k+3

2k+s−3) ≥ ... ≥ E(rT n−2r−2
r+1 ).

Proof This theorem follows directly from Lemma 4.1 and 4.2. �
In next section we shall employ Theorem 4.3 and Lemma 2.3 to characterize even-order

molecular trees with maximal energy but without perfect matching.
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5 Trees with maximal energy but without perfect

matching

To present the main result of this section, we need introduce another graph transformation

and its property.

Definition 5.1 TTVOB-transformation: let w be a transformable vertex of graph G,

B1 and B2 be two branches corresponding to w. If B1 = P2r+1 and B2 = P2s+1 with r > s,

then substitute P2r−1 for B1 and P2s+3 for B2 in G, where r and s are two nonnegative

integers. This process is called a TTVOB-transformation of graph G at vertex w.

If we perform a TTVOB-transformation on graphG, a 1-degree vertex and its neighbor

of an odd-order branch are transferred to another odd-order branch corresponding to the

same transformable vertex. So this process results in a transfer of two vertices from

a longer odd-order branch to a shorter odd-order branch, for this reason this process

is called a TTVOB-transformation (transformation of transfer of two vertices between

odd-order branches).

Lemma 5.2 If G′ is obtained by performing a TTVOB-transformation at a vertex w

of graph G, then m(G′, k) ≥ m(G, k). The equality holds for every nonnegative integer

k if and only if G′ = G.

Proof Assume that after the TTVOB-transformation, B1 is replaced by path P2r−1

and B2 is replaced by P2s+3, where r ≥ s + 1. Let ui be the neighbor of vertex w in Bi,

i = 1, 2, and H = G \ (B1 ∪ B2). Notice that the matchings of G′ are partitioned in two

classes: those that contain wu1 or wu2 and those not. Denote by n the order of graph G.

From Lemma 2.4 we deduce that

m(G′, k) =
k∑

i=0

m(H, i)m(P2r−1 ∪ P2s+3, k − i) +
k−1∑
i=0

m(H \ w, i)×

(m(P2r−2 ∪ P2s+3, k − i− 1) +m(P2r−1 ∪ P2s+2, k − i− 1))

≥
k∑

i=0

m(H, i)m(P2r+1 ∪ P2s+1, k − i) +
k−1∑
i=0

m(H \ w, i)×

(m(P2r ∪ P2s+1, k − i− 1) +m(P2r+1 ∪ P2s, k − i− 1))

= m(G, k).

It follows from above formula and Lemma 2.4 that m(G′, k) = m(G, k) holds if and only
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if

m(P2r−1 ∪ P2s+3, k − i) = m(P2r+1 ∪ P2s+1, k − i) (9)

and

m(P2r−2 ∪ P2s+3, k − i− 1) +m(P2r−1 ∪ P2s+2, k − i− 1)

= m(P2r ∪ P2s+1, k − i− 1) +m(P2r+1 ∪ P2s, k − i− 1) (10)

holds for every nonnegative integer k− i and k− i− 1. Since m(Pn, k) =
(
n−k
k

)
, it follows

that

m(Pn ∪ Pm, k) =

(
n

j

)(
m

k − j

)
(11)

It is not difficult to see that for any given integer k and m+n, the value of the hand right

side of formula (11) increases as the absolute value of n−m decreases. This observation

implies that (9) and (10) hold if and only if P2r−1∪P2s+3 = P2r+1∪P2s+1, namely G′ = G

as is desired. �
It is known that Pn has maximal energy among n-vertex trees, which characterizes

odd-order trees without perfect matching that have maximal-energy. In what follows we

characterize even-order trees without perfect matching that have maximal energy.

Lemma 5.3 Let T be an n-vertex tree with n = 6k + 2r ≥ 4, where k is a positive

integer and r ∈ {0, 1, 2}. If T contains no perfect matching, then

(1) m(T, i) ≤ m(2k−1T 2k−1
2k+1 , i) when r = 0;

(2) m(T, i) ≤ m(2k+1T 2k+1
2k−1 , i) when r = 1;

(3) m(T, i) ≤ m(2k+1T 2k+1
2k+1 , i) when r = 2.

In each case, the equality holds for every nonnegative integer i if and only if the corre-

sponding two trees are isomorphic.

Proof Let w be the maximum-degree vertex of T . Since T is a non-conjugated tree

of even-order, it follows that d(w) ≥ 3. If T contains a transformable vertex u �= w,

one can perform a GSP-transformation at vertex u to obtain a new tree T1 that contains

no perfect matching. This transformation can be performed until we get a tree T ′ that

contains unique vertex of degree at least three and contains no perfect matching. Now

perform DB-transformations at w if necessary to obtain a tree T � ∈ Ω3
n such that every

branch corresponding to w has odd number of vertices.

If T � contains a branch P2r+1 with r ≥ k + 1, then it contains a branch P2s+1 with

s ≤ k − 2. Perform TTVOB-transformation at u to decrease the order of branch P2r+1
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and increase the order of branch P2s+1, by Lemma 5.2 the resulted tree T �
1 satisfies

m(T �, i) ≤ m(T �
1 , i). This operation stops if and only if any two branches have order-

difference at most two, and so the finally obtained tree is either 2k−1T 2k−1
2k+1 or 2k+1T 2k+1

2k+1

or 2k+1T 2k+1
2k+1 . By Lemma 2.3, Theorem 2.5 and Lemma 5.2, the inequalities in item (1)-

(3) follows and the equalities hold if and only if we never perform any DB-, GSP- or

TTVOB-transformations. The lemma follows. �
Theorem 5.4 Let T be a tree of order 6k+2s, where s ∈ {0, 1, 2} and k is a positive

integer. If T contains no perfect matching, then

(1) E(T ) ≤ E(2k−1T 2k−1
2k+1 ) when s = 0;

(2) E(T ) ≤ E(2k+1T 2k+1
2k−1 ) when s = 1;

(3) E(T ) ≤ E(2k+1T 2k+1
2k+1 ) when s = 2.

In each case, the equality holds if and only if T is isomorphic to the corresponding tree.

Proof The theorem follows directly from Lemma 5.3. �.

Remark Employ the graph transformations introduced here we also characterize a series

of unicyclic and bicyclic graph with maximal energy that have some prescribed properties.

Other graph transformations are also observed by the present author to characterize graph

with minimal energy and Hosoya index, we shall introduction them in a subsequent article.
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