MATCH Communications in Mathematical and in Computer Chemistry

Note on Conjugated Unicyclic Graphs with Minimal Energy¹

Xueliang Li, Yiyang Li

Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, P.R. China. Email: lxl@nankai.edu.cn; livcldk@mail.nankai.edu.cn

(Received July 23, 2009)

Abstract

The energy of a graph G is defined as the sum of the absolute values of all the eigenvalues of the graph. Let U(k) denote the set of all unicyclic graphs of order 2k which have a perfect matching. $S_3^1(k)$ denotes the unicyclic graph on 2k vertices obtained from a triangle C_3 by attaching one pendant edge and k-2paths of length 2 together to one of the vertices of C_3 , and $S_4^1(k)$ denotes the unicyclic graph on 2k vertices obtained from a cycle C_4 by attaching one path P of length 2 to one of the four vertices of C_4 and then attaching k-3 paths of length 2 to the middle vertex of the path P. In the paper "X. Li, J. Zhang and B. Zhou, On unicyclic conjugated molecules with minimal energies, J. Math. Chem. 42 (2007) 729-740", the authors proved that either $S_3^1(k)$ or $S_4^1(k)$ is the graph with the minimal energy in U(k). They remarked that computation result shows that the energy of $S_3^1(k)$ is greater than that of $S_4^1(k)$ for larger k. However they could not find a proper way to prove this, and finally they conjectured that $S_4^1(k)$ is the unique graph with minimal energy in U(k). This short note is to give a confirmative proof to the conjecture.

¹Supported by NSFC No.10831001, PCSIRT and the "973" program.

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of a graph G of order n. The energy of G is defined as $E(G) = |\lambda_1| + |\lambda_2| + \ldots + |\lambda_n|$. A (molecular) graph is called *conjugated* if it has a perfect matching. Let U(k) denote the set of all conjugated unicyclic graphs of order 2k. $S_3^1(k)$ denotes the unicyclic graph on 2k vertices obtained from a triangle C_3 by attaching one pendant edge and k-2 paths of length 2 together to one of the vertices of C_3 , and $S_4^1(k)$ denotes the unicyclic graph on 2k vertices obtained from a cycle C_4 by attaching one path P of length 2 to one of the four vertices of C_4 and then attaching k-3 paths of length 2 to the middle vertex of the path P. See Figure 1 for the graphs $S_3^1(k)$ and $S_4^1(k)$. For more information on graph energy we refer to [1], and for terminology and notations not defined here, we refer to [2] and the references therein.

Figure 1. The graphs $S_3^1(k)$ and $S_4^1(k)$

In [2] the authors proved that either $S_3^1(k)$ or $S_4^1(k)$ is the graph with the minimal energy in U(k). But, they could not determine which one of the two is smaller. They remarked that computation result shows that the energy of $S_3^1(k)$ is greater than that of $S_4^1(k)$ for $k \leq 100, 1000, 10000$. However, they could not find a proper way to prove this, and at the end of paper [2] they proposed a conjecture that $S_4^1(k)$ is the unique graph with the minimal energy in U(k). In this short note we will give a confirmative proof to the conjecture.

By easy calculation or from Lemma 11 of [2], we have the following characteristic polynomials for $S_3^1(k)$ and $S_4^1(k)$:

$$\begin{split} \phi(S_3^1(k),\lambda) &= (\lambda^2 - 1)^{k-2}(\lambda^4 - (k+4)\lambda^2 - 2\lambda + 1), \\ \phi(S_4^1(k),\lambda) &= \lambda^2(\lambda^2 - 1)^{k-4}(\lambda^6 - (k+4)\lambda^4 + 4k\lambda^2 - 6). \end{split}$$

Theorem 1. $S_4^1(k)$ is the graph with minimal energy in U(k).

Proof. We proceed our proof by estimating the roots of the characteristic polynomials of $S_1^1(k)$ and $S_4^1(k)$. Let x_1, x_2 ($x_1 > x_2$) be the two positive roots of $f(x) = x^4 - (k + 4)x^2 - 2x + 1$ and y_1, y_2, y_3 ($y_1 > y_2 > y_3$) be the three roots of $g(y) = y^3 - (k+4)y^2 + 4ky - 6$. Noticing that g(1) > 0 and g(4) = g(0) = -6, we have $y_i > 0$ (i = 1, 2, 3).

Hence,

$$E(S_3^1) = 2(k-2) + 2(x_1 + x_2),$$

$$E(S_4^1) = 2(k-4) + 2(\sqrt{y_1} + \sqrt{y_2} + \sqrt{y_3}).$$

From our Appendix Table, it suffices to prove that $x_1 + x_2 + 2 > \sqrt{y_1} + \sqrt{y_2} + \sqrt{y_3}$ for $k \ge 50$. Consider the above function f(x). Because $f(\sqrt{k+4}) < 0$ and f(0) > 0, we have $x_1 > \sqrt{k+4}$. Since $x_2 > 0$, we only need to show that

$$\sqrt{k+4} + 2 > \sqrt{y_1} + \sqrt{y_2} + \sqrt{y_3}.$$
 (1)

Since g(1) > 0 and g(4) = g(0) = -6, we have $y_2 < 4$. Let $y = \frac{2}{k}$. Note that $g(\frac{2}{k}) = (\frac{2}{k})^3 - \frac{4}{k} - \frac{16}{k^2} + 8 - 6 > 0$ for $k \ge 50$, which means that $y_3 < \frac{2}{k}$. Hence, to finish the proof, it suffices to show that

$$\sqrt{y_1} < \sqrt{k+4} - \sqrt{\frac{2}{k}}.\tag{2}$$

At first, when $y = k + \frac{1}{2}$ and $k \ge 50$, we get that

$$g(k+\frac{1}{2}) = -\frac{7}{2}(k+\frac{1}{2})^2 + 4k(k+\frac{1}{2}) - 6 = (k+\frac{1}{2})(\frac{1}{2}k - \frac{7}{4}) - 6 > 0,$$

which implies that $y_1 < k + \frac{1}{2}$. Then, we only need to prove that

$$\sqrt{k+\frac{1}{2}} < \sqrt{k+4} - \sqrt{\frac{2}{k}}.\tag{3}$$

In fact, it is easy to check that $\frac{17}{4}k^2 - 18k + 4 > 0$ for $k \ge 50$, from which we have that $8k(k + \frac{1}{2}) < \frac{49}{4}k^2 - 14k + 4$. Then, we get that $2 + 2\sqrt{2}\sqrt{k(k + \frac{1}{2})} < \frac{7}{2}k$, which implies that $\sqrt{k(k + \frac{1}{2})} < \sqrt{k(k + 4)} - \sqrt{2}$. By dividing \sqrt{k} from the two sides of the last inequality, we get the required Inequality (3), and then the proof is complete. \Box

Finally, we point out that the Appendix table of [2] has problems for the energies of $S_4^1(k)$ for almost all $k \leq 50$. We re-computed the energies of $S_4^1(k)$ and $S_3^1(k)$ for $5 \leq k \leq 100$. Our computation result is given in the following appendix table.

References

- I. Gutman, X. Li, J. Zhang, Graph Energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH Verlag, Weinheim, (2009) 145-174.
- [2] X. Li, J. Zhang, B. Zhou, On unicyclic conjugated molecules with minimal energies, J. Math. Chem. 42 (2007) 729-740.

Appendix Table

11					
n = 2k	$E(S_4^1(k))$	$E(S_3^1(k))$	n = 2k	$E(S_4^1(k))$	$E(S_3^1(k))$
k = 5	11.4006	12.0355	k = 53	116.8829	117.1020
k = 6	13.7663	14.3551	k = 54	119.0167	119.2338
k = 7	16.1047	16.6598	k = 55	121.1494	121.3645
k = 8	18.4251	18.9516	k = 56	123.2809	123.4941
k = 9	20.7301	21.2319	k = 57	125.4113	125.6226
k = 10	23.0219	23.5020	k = 58	127.5406	127.7501
k = 11	25.3019	25.7628	k = 59	129.6688	129.8765
k = 12	27.5715	28.0153	k = 60	131.7960	132.0019
k = 13	29.8318	30.2602	k = 61	133.9221	134.1264
k = 14	32.0837	32.4982	k = 62	136.0473	136.2499
k = 15	34.3279	34.7297	k = 63	138.1715	138.3725
k = 16	36.5652	36.9553	k = 64	140.2948	140.4942
k = 17	38.7960	39.1754	k = 65	142.4171	142.6150
k = 18	41.0209	41.3904	k = 66	144.5385	144.7349
k = 19	43.2403	43.6006	k = 67	146.6590	146.8540
k = 20	45.4545	45.8064	k = 68	148.7787	148.9722
k = 21	47.6641	48.0079	k = 69	150.8975	151.0896
k = 22	49.8691	50.2055	k = 70	153.0155	153.2062
k = 23	52.0700	52.3994	k = 71	155.1327	155.3220
k = 24	54.2669	54.5897	k = 72	157.2491	157.4371
k = 25	56.4602	56.7767	k = 73	159.3647	159.5514
k = 26	58.6499	58.9605	k = 74	161.4795	161.6650
k = 27	60.8362	61.1413	k = 75	163.5936	163.7778
k = 28	63.0194	63.3192	k = 76	165.7070	165.8899
k = 29	65.1996	65.4944	k = 77	167.8196	168.0014
k = 30	67.3770	67.6669	k = 78	169.9315	170.1121
k = 31	69.5516	69.8370	k = 79	172.0427	172.2222
k = 32	71.7236	72.0046	k = 80	174.1533	174.3316
k = 33	73.8931	74.1699	k = 81	176.2631	176.4404
k = 34	76.0603	76.3331	k = 82	178.3724	178.5485
k = 35	78.2251	78.4941	k = 83	180.4809	180.6560
k = 36	80.3878	80.6530	k = 84	182.5889	182.7629
k = 37	82.5483	82.8100	k = 85	184.6962	184.8691
k = 38	84.7068	84.9651	k = 86	186.8029	186.9748
k = 39	86.8634	87.1184	k = 87	188.9090	189.0799
k = 40	89.0180	89.2699	k = 88	191.0145	191.1845
k = 41	91.1709	91.4197	k = 89	193.1194	193.2884
k = 42	93.3219	93.5678	k = 90	195.2237	195.3918
k = 43	95.4713	95.7144	k = 91	197.3275	197.4947
k = 44	97.6191	97.8594	k = 92	199.4308	199.5970
k = 45	99.7652	100.0029	k = 93	201.5334	201.6988
k = 46	101.9099	102.1449	k = 94	203.6356	203.8000
k = 47	104.0530	104.2856	k = 95	205.7372	205.9008
k = 48	106.1947	106.4249	k = 96	207.8383	208.0010
k = 49	108.3350	108.5628	k = 97	209.9389	210.1007
k = 50	110.4739	110.6994	k = 98	212.0390	212.2000
k = 51	112.6115	112.8348	k = 99	214.1386	214.2987
k = 52	114.7478	114.9690	k = 100	216.2376	216.3970