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Abstract

Let G be a simple undirected n-vertex graph with the characteristic polynomial
of its Laplacian matrix L(G), det(λI −L(G)) =

∑n
k=0(−1)kckλ

n−k. Laplacian–like
energy of a graph is newly proposed graph invariant, defined as the sum of square
roots of Laplacian eigenvalues. For bipartite graphs, the Laplacian–like energy
coincides with the recently defined incidence energy IE(G) of a graph. In [D.
Stevanović, Laplacian–like energy of trees, MATCH Commun. Math. Comput.
Chem. 61 (2009), 407–417.] the author introduced a partial ordering of graphs
based on Laplacian coefficients. We point out that original proof was incorrect and
illustrate the error on the example using Laplacian Estrada index. Furthermore,
we found the inverse of Jacobian matrix with elements representing derivatives of
symmetric polynomials of order n, and provide a corrected elementary proof of
the fact: Let G and H be two n-vertex graphs; if for Laplacian coefficients holds
ck(G) � ck(H) for k = 1, 2, . . . , n − 1, then LEL(G) � LEL(H). In addition, we
generalize this theorem and provide a necessary condition for functions that satisfy
partial ordering based on Laplacian coefficients.
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1 Introduction

Let G = (V,E) be a simple undirected graph with n = |V | vertices and m = |E| edges.
The Laplacian polynomial P (G, λ) of G is the characteristic polynomial of its Laplacian

matrix L(G) = D(G)− A(G),

P (G, λ) = det(λIn − L(G)) =
n∑

k=0

(−1)kckλ
n−k.

The Laplacian matrix L(G) has non-negative eigenvalues μ1 � μ2 � . . . � μn−1 �
μn = 0 [1]. From Viette’s formulas,

ck = σk(μ1, μ2, . . . , μn−1) =
∑

I⊆{1,2,...,n−1},
|I|=k

∏
i∈I

μi (1)

is a symmetric polynomial of order n− 1. Detailed introduction to graph Laplacians may

be found in [2] and [3]. In particular, we have c0 = 1, cn = 0, c1 = 2m, cn−1 = nτ(G),

where τ(G) denotes the number of spanning trees of G. If G is a tree, coefficient cn−2 is

equal to its Wiener index, which is a sum of distances between all pairs of vertices

cn−2(T ) = W (T ) =
∑
u,v∈V

d(u, v).

The Wiener index is considered as one of the most used topological indices with high

correlation with many physical and chemical properties of molecular compounds. For

recent results and applications of Wiener index see [4].

Recently, Zhou and Gutman [5] proved that the extreme values of Laplacian coefficients

among all n-vertex trees are attained on one side by the path Pn, and on the other side

by the star Sn. In other words,

ck(Sn) � ck(T ) � ck(Pn), k = 0, 1, 2 . . . , n, (2)

holds for all trees T of order n.

The Laplacian-like energy of graph G, LEL for short, is defined as follows:

LEL(G) =
n−1∑
k=1

√
μk.

This concept was introduced in [6] where it was shown that it has similar features as

molecular graph energy [7] (for recent results on graph energy see [8]). Various prop-

erties of Laplacian coefficients and Laplacian-like energy on trees and unicyclic graphs
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are investigated in [9]–[18]. It was demonstrated in [12] that LEL can be used both in

graph discriminating analysis and correlating studies for modeling a variety of physical

and chemical properties and biological activities.

The signless Laplacian matrix of the graph G is defined as Q(G) = D(G) + A(G).

Matrix Q(G) also has all real and nonnegative eigenvalues μ′
1 � μ′

2 � . . . � μ′
n � 0,

[19]. Motivated by Nikiforov’s idea [20], Jooyandeh et al. [21] introduced the concept of

incidence energy IE(G) of a graph G, defining it as the sum of the singular values of the

incidence matrix I(G). It turns out that

IE(G) =

n∑
k=1

√
μ′
i.

In particular, if G is a bipartite graph, the spectra of Q(G) and L(G) coincide, and we

have IE(G) = LEL(G). This relation provides a new interpretation of the Laplacian–like

energy, and offers a new insight into its possible physical or chemical meaning. Many

mathematical properties of this quantity were established in [22] and [23].

Stevanović in [10] showed a connection between LEL and Laplacian coefficients.

Theorem 1.1 Let G and H be two n-vertex graphs. If ck(G) � ck(H) for k = 1, 2, . . . , n−
1 then LEL(G) � LEL(H). Furthermore, if a strict inequality ck(G) < ck(H) holds for

some 1 � k � n− 1, then LEL(G) < LEL(H).

We will show that this fact remains true, but the original author’s proof was not

correct. Here, we will provide a corrected elementary proof.

Let us move to a more general setting. Consider the open set in R
n

X = {(x1, x2, . . . , xn) : n > x1 > x2 > . . . > xn−1 > xn > 0} .

Let C denote the set of coefficients of polynomials having roots in X ,

C = {(c1, c2, . . . , cn−1, cn) : ∃(x1, x2, . . . , xn) ∈ X
P (x) = xn − c1x

n−1 + c2x
n−2 − . . .+ (−1)n−1cn−1x+ (−1)ncn

= (x− x1)(x− x2) · . . . · (x− xn)} .

Let F : X → C be the bijection defined by Viette’s formulas (1). This function

represents polynomial coefficients from C via the roots from X . Since every coordinate
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of the vector function F is a polynomial, we conclude that F is a continuous function.

Symmetric polynomials are continuously differentiable functions and we have

∂ck
∂xj

=
∑

j∈I⊆{1,2,...,n−1},
|I|=k

∏
i∈I\{j}

xi. (3)

Let F−1 : C → X be the inverse function of F . The Jacobian matrix of F is

JF =

[
∂ci
∂xj

]
i,j=1,n

=

⎡⎢⎢⎢⎢⎢⎢⎣

∂c1
∂x1

∂c1
∂x2

· · · ∂c1
∂xn−1

∂c1
∂xn

∂c2
∂x1

∂c2
∂x2

· · · ∂c2
∂xn−1

∂c2
∂xn

∂c3
∂x1

∂c3
∂x2

· · · ∂c3
∂xn−1

∂c3
∂xn

...
...

. . .
...

...
∂cn
∂x1

∂cn
∂x2

· · · ∂cn
∂xn−1

∂cn
∂xn

⎤⎥⎥⎥⎥⎥⎥⎦
In [10] the author has following identity

∂LEL

∂ck
=

n∑
i=1

∂LEL

∂μi

· ∂μi

∂ck
=

n∑
i=1

∂LEL/∂μi

∂ck/∂μi

. (4)

This is incorrect – we cannot use fact that the derivatives ∂μi

∂ck
and ∂ck

∂μi
are reciprocal,

since ck is a function of n variables. We can illustrate this error on the recently introduced

molecular structure descriptor – Laplacian Estrada index [24]–[26], defined as

LEE(G) =
n∑

k=1

eμk .

Namely, the derivative ∂LEE
∂ck

is strictly positive, since ∂LEE
∂ck

= eμi > 0. Therefore,

according to the equation (4), this function is increasing in every coordinate ck. The

following conclusion is obviously not true – from inequalities (2) we have that LEL(Sn) <

LEL(Pn) and on the other side

LEE(Pn) =
n∑

k=1

e2+2 cos kπ
n < en + 1 + (n− 2)e = LEE(Sn),

since for n > 5 we have ne4 < en.

This error can be fixed by finding the Jacobian matrix of the inverse F−1. Let

ω(x) = (x− x1)(x− x2) · . . . · (x− xn)

be the polynomial with n distinct real roots x1, x2, . . . , xn. The following theorem is the

main contribution of this paper.
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Theorem 1.2 The Jacobian matrix of function F−1 equals

JF−1 =

[
(−1)j−1 xn−j

i

ω′(xi)

]
i,j=1,n

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xn−1
1

ω′(x1)
− xn−2

1

ω′(x1)
· · · (−1)n−2 x1

ω′(x1)
(−1)n−1 1

ω′(x1)
xn−1
2

ω′(x2)
− xn−2

2

ω′(x2)
· · · (−1)n−2 x2

ω′(x2)
(−1)n−1 1

ω′(x2)
xn−1
3

ω′(x3)
− xn−2

3

ω′(x3)
· · · (−1)n−2 x3

ω′(x3)
(−1)n−1 1

ω′(x3)
...

...
. . .

...
...

xn−1
n

ω′(xn)
− xn−2

n

ω′(xn)
· · · (−1)n−2 xn

ω′(xn)
(−1)n−1 1

ω′(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The paper is organized as follows. After a few preliminary results involving Newton’s

identities and complex analysis in Section 2, we prove Theorem 1.2 in Section 3. In Sec-

tion 4 we provide a sufficient condition for establishing a partial ordering of graphs based

on Laplacian coefficients and finally in Section 5 we give a corrected proof of Theorem

1.1.

2 Preliminary results

Before presenting the proof of Theorem 1.2, we need to prove some useful lemmas.

Lemma 2.1 For every 2 � i � n and 1 � j � n holds:

∂ci
∂xj

= ci−1 − xj · ∂ci−1

∂xj

. (5)

Proof. Notice that from the equation (3), ∂ci/∂xj is a polynomial of degree i − 1

in variables x1, x2, . . . , xj−1, xj+1, . . . , xn. On the right side, we have the sum of product

of all (i − 1)-tuples that does not contain xj. We can derive this set if we consider all

(i− 1)-tuples and subtract those that contain xj – which gives the relation (5). �

Lemma 2.2 Let ω(x) be a polynomial of real coefficients of degree n having distinct real

roots x1, x2, . . . , xn. For any nonnegative integer 0 � k � n− 2 holds:

n∑
i=1

xk
i

ω′(xi)
= 0.

Proof. Consider the rational function f(z) of complex variable z, defined as follows:

f(z) =
zk

ω(z)
.
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By comparing degrees it holds |f(z)| � C
|z|2 for some constant C and large enough |z|.

So, for the integral over the circumference SR of radius R and center at the origin we have

|I| =
∣∣∣∣
∫
SR

f(z)dz

∣∣∣∣ �
∫
SR

|f(z)| dz �
∫
SR

C

|z|2dz =
2πC

R
,

for large enough R. On the other hand, using the Cauchy Residue theorem [27] we have:

I =

∫
SR

f(z)dz = 2πı
n∑

i=1

Res(xi, f) = 2πı
n∑

i=1

xk
i

ω(xi)
.

Therefore, for large enough radius R, we have inequality:∣∣∣∣∣
n∑

i=1

xk
i

ω(xi)

∣∣∣∣∣ � C

R
,

and taking the limit as R → ∞ we obtain that the sum equals zero. �

Lemma 2.3 Let ω(x) be a polynomial of real coefficients of degree n having distinct real

roots x1, x2, . . . , xn. It holds:
n∑

i=1

xn−1
i

ω′(xi)
= 1.

Proof. Consider the function

f(z) =
zn−1

ω(z)
− 1

z
=

zn − ω(z)

zω(z)
.

Similarly, we get that |f(z)| � C
|z|2 . Using the additive property of integrals and∫
SR

dz

z
=

∫ 2π

0

ıReıφdφ

Reıφ
= 2πı,

the relation follows. �

For i � 1 denote by si(x1, x2, . . . , xn) the i-th power sum

si =
n∑

k=1

xi
k

ω′(xk)
.

The Newton identities [28] (also known as Newton-Girard formulae) give relations

between power sums and elementary symmetric polynomials.

k · ck =
k∑

i=1

(−1)i−1ck−i · si. (6)

-116-



For k > n, by definition is ck = 0. We already proved that s0 = s1 = . . . = sn−2 = 0

and sn−1 = 1. For k = 2, . . . , n+ 1, holds:

(n+ k − 1)cn+k−1 = cn+k−2s1 − cn+k−3s2 + . . .+ (−1)n−1ck+1sn−2

+(−1)n−2cksn−1 + (−1)n−1ck−1sn + . . .+ (−1)n+k−2c0sn+k−1,

or equivalently

ck · sn−1 − ck−1 · sn + ck−2 · sn+1 − . . .+ (−1)k−1 · c1 · sn+k−2 + (−1)k · sn+k−1 = 0. (7)

3 The proof of Theorem 1.2

The theorem states that

JF · JF−1 = JF−1 · JF = In = [δi,j]i,j=1,n,

where In is identity matrix of order n. Therefore, we have to prove the following equalities

for every 1 � i, j,� n,
n∑

k=1

(−1)k−1 xn−k
i

ω′(xi)
· ∂ck
∂xj

= δi,j (8)

and
n∑

k=1

∂ci
∂xk

· xn−j
k

ω′(xk)
= (−1)j−1 · δi,j. (9)

Define the polynomials ωi(x), i = 1, 2, . . . , n as

ωi(x) = (x− x1)(x− x2) · . . . · (x− xi−1)(x− xi+1) · . . . · (x− xn).

By the derivation of the product, we get

ω′(x) =
n∑

i=1

ωi(x).

The proof of (8) follows from the identity (case i = j):

ω′(xi) = ωi(xi)

= (xi − x1)(xi − x2) · . . . · (xi − xi−1)(xi − xi+1) · . . . · (xi − xn)

=
∂c1
∂xi

· xn−1
i − ∂c2

∂xi

· xn−2
i +

∂c3
∂xi

· xn−3
i − . . .+ (−1)n−2∂cn−1

∂xi

· xi + (−1)n−1∂cn
∂xi

.
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For i �= j, similarly we get:

0 = ωj(xi) =
n∑

k=1

(−1)k−1xn−k
i · ∂ck

∂xj

.

Since the first row in JF equals (1, 1, 1, . . . , 1), from Lemma 2.2 and Lemma 2.3 follows

that first row in the matrix product JF ·JF−1 is (1, 0, 0, . . . , 0). For the rows i = 2, 3, . . . , n

we proceed by mathematical induction using the recurrent formula (5).

n∑
k=1

∂ci
∂xk

· xn−j
k

ω′(xk)
=

n∑
k=1

(
ci−1 − xk · ∂ci−1

∂xk

)
· xn−j

k

ω′(xk)

= ci−1 ·
n∑

k=1

xn−j
k

ω′(xk)
−

n∑
k=1

∂ci−1

∂xk

· x
n−j+1
k

ω′(xk)

For j > 1, we have that the sum equals −(−1)j−1δi−1,j−1 = (−1)jδi,j. The case j = 1,

we have to consider independently.

n∑
k=1

∂ci
∂xk

· xn−1
k

ω′(xk)
= ci−1sn−1 −

n∑
k=1

∂ci−1

∂xk

· xn
k

ω′(xk)

= ci−1sn−1 − ci−2sn +
n∑

k=1

∂ci−2

∂xk

· xn+1
k

ω′(xk)
.

Applying this substitutions i times and using the identity (7) we get that the first

element in the i-th row equals zero. This finishes the inductive proof of (9).

4 Partial ordering of graphs based on Laplacian co-

efficients

First, we will give some general method for deriving the sign of special summation that

we need. Let f be any smooth function and let

P (x) = c0x
n−1 + c1x

n−2 + . . .+ cn−2x+ cn−1

be the interpolating polynomial for f at the points x1, x2, . . . , xn of degree n − 1. Using

the Lagrange interpolating theorem, we have:

P (x) =
n∑

i=1

f(xi) · (x− x1)(x− x2) · . . . · (x− xi−1)(x− xi+1) · . . . · (x− xn)

ω′(xi)
.

The sum

S =
n∑

i=1

f(xi)

ω′(xi)
=

n∑
i=1

P (xi)

ω′(xi)
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equals to the leading coefficient of P . Using Taylor expansion of P (x), we have

S =
n∑

i=1

f(xi)

ω′(xi)
= c1 =

1

(n− 1)!
P (n−1)(x).

Since f(x) − P (x) has n real roots, we conclude by Rolle’s theorem that f (n−1)(x) −
P (n−1)(x) has at least one real root. Therefore, for some ξ in the interval containing all

xi’s we have

S =
1

(n− 1)!
f (n−1)(ξ).

If the function f (n−1)(x) preserves the sign, we can uniquely determine the sign of sum

S.

5 The proof of Theorem 1.1

Consider the open set in R
n−1

M = {(μ1, μ2, . . . , μn−1) : n > μ1 > μ2 > . . . > μn−1 > 0} .

Let C denote the set of coefficients of polynomials having roots in M,

C = {(c1, c2, . . . , cn−1) : (∃(μ1, μ2, . . . , μn−1) ∈ M
P (x) = xn−1 − c1x

n−1 + c2x
n−2 + . . .+ (−1)n−1cn−1

= (x− μ1)(x− μ2) . . . (x− μn−1)} .

The Laplacian–like energy function LEL : M → R, defined by

LEL(μ1, μ2, . . . , μn−1) =
√
μ1 +

√
μ2 + . . .+

√
μn−1 + 0,

may then be represented as an implicit function of coefficients from C. By the chain rule,

for arbitrary k, 1 � k � n, we have

∂LEL

∂ck
=

n∑
i=1

∂LEL

∂μi

· ∂μi

∂ck
=

n∑
i=1

1

2
√
μi

· ∂μi

∂ck
.

Therefore,

∂LEL

∂ck
=

1

2

n∑
i=1

1√
μi

· (−1)k−1 · μ
n−1−k
i

ω′(μi)
=

(−1)k−1

2

n∑
i=1

μn−1−k
i

ω′(μi)
√
μi

.

-119-



Let f(x) = xn−k− 3
2 and according to the previous consideration we have to examine

the sign of (n− 2)-th derivative of f .

f (n−2)(x) =
(
xn−k− 3

2

)(n−1)

=

(
n− k − 3

2

)(
n− k − 5

2

)
· . . . ·

(
3

2
− k

)
x1/2−k.

This means that the sign of f (n−2)(x) is equals to (−1)k−1, and finally

∂LEL

∂ck
> 0,

and the Laplacian–like energy function is strictly increasing on C in each coordinate.

So far we have dealt with the case of distinct eigenvalues only. The remaining step is

to consider the closure of M

M = {(μ1, μ2, . . . , μn−1) : n � μ1 � μ2 � . . . � μn−1 � 0} .

Its image under equations (1) is the set C of coefficients of polynomials having roots

in M. The previous proof on M can not be applied since F is not injection - but, it can

be done simply using the continuity.

Suppose that we have two points x1 and x2 in M\M such that ck(x1) < ck(x2) for

some k ∈ {1, 2, . . . , n− 1}, cj(x1) = cj(x2) for j �= k and LEL(x1) > LEL(x2). Functions

ck and LEL are continuous, so we can find disjoint balls B1(x1, ε) = {x | ‖x − x1‖ < ε}
and B2(x2, ε) = {x | ‖x − x2‖ < ε} such that ck(x) < ck(y) and LEL(x) > LEL(y)

for all x ∈ B1(x1, ε) and y ∈ B2(x2, ε). The set M \ M has empty interior, so there

exists points x′ ∈ B1(x1, ε) ∩ M and y′ ∈ B1(x1, ε) ∩ M such that ck(x
′) < ck(y

′) and

LEL(x′) > LEL(y′). Surfaces cj(x) = Cj (for j �= k and some constants Cj) can be

arbitrarily close to the surfaces passing through points x1 and x2 by continuity. Therefore,

it follows that such surfaces have common points with both B1(x1, ε) and B2(x2, ε) – so

we can choose x′ and y′ such that cj(x
′) = cj(y

′) for every j �= k.

This is a contradiction with the first part of the proof, since x′, y′ ∈ M. Finally, the

Laplacian-like energy function LEL, which is strictly increasing on C in each coordinate,

must be strictly increasing on C as well.
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[11] A. Ilić, A. Ilić, D. Stevanović, On the Wiener index and Laplacian coefficients of

graphs with given diameter or radius, MATCH Commun. Math. Comput. Chem., in

press.
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